Effect of Fentanyl Infusion on Heart Rate Variability and Anaesthetic Requirements in Isoflurane-Anaesthetized Horses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Anaesthesia and Instrumentation
2.3. Determination of Isoflurane Requirement and Fentanyl Administration
2.4. Determination of Fentanyl Plasma Concentration
2.5. Evaluation of PTA
2.6. Recovery Assessment
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bennett, R.C.; Steffey, E.P. Use of opioids for pain and anesthetic management in horses. Vet. Clin. N. Am. Equine Pract. 2002, 18, 47–60. [Google Scholar] [CrossRef]
- Clutton, R.E. Opioid Analgesia in Horses. Vet. Clin. N. Am. Equine Pract. 2010, 26, 493–514. [Google Scholar] [CrossRef] [Green Version]
- Kamerling, S.G.; DeQuick, D.J.; Weckman, T.J.; Tobin, T. Dose-Related Effects of Fentanyl on Autonomic and Behavioral Responses in Performance Horses. Gen. Pharmacol. 1985, 16, 253–258. [Google Scholar] [CrossRef]
- Knych, H.K.; Steffey, E.P.; Mama, K.R.; Stanley, S.D. Effects of high plasma fentanyl concentrations on minimum alveolar concentration of isoflurane in horses. Am. J. Vet. Res. 2009, 70, 1193–1200. [Google Scholar] [CrossRef]
- Mama, K.R.; Pascoe, P.J.; Steffey, E.P. Evaluation of the Interaction of Mu and Kappa Opioid Agonists on Locomotor Behavior in the Horse. Can. J. Vet. Res. 1993, 57, 106–109. [Google Scholar]
- Sanchez, L.C.; Robertson, S.A.; Maxwell, L.K.; Zientek, K.; Cole, C. Effect of Fentanyl on Visceral and Somatic Nociception in Conscious Horses. J. Vet. Intern. Med. 2007, 21, 1067–1075. [Google Scholar] [CrossRef]
- Senior, J.M.; Pinchbeck, G.L.; Dugdale, A.H.A.; Clegg, P.D. Retrospectoive Study of the Risk Factors and Prevalence of Colic in Horses after Orthopaedic Surgery. Vet. Rec. 2004, 155, 321–325. [Google Scholar] [CrossRef]
- Wetmore, L.A.; Pascoe, P.J.; Shilo-Benjamini, Y.; Lindsey, J.C. Effects of Fentanyl Administration on Locomotor Response in Horses with the G57C Μ-Opioid Receptor Polymorphism. Am. J. Vet. Res. 2016, 77, 828–832. [Google Scholar] [CrossRef]
- Armenian, P.; Vo, K.T.; Barr-Walker, J.; Lynch, K.L. Fentanyl, fentanyl analogs and novel synthetic opioids: A comprehensive review. Neuropharmacology 2018, 134, 121–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEwan, A.I.; Smith, C.; Dyar, O.; Goodman, D.; Smith, L.R.; Glass, P.S.A. Isoflurane Minimum Alveolar Concentration Reduction by Fentanyl. Anesthesiology 1993, 78, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Moon, P.F.; Scarlett, J.M.; Ludders, J.W.; Conway, T.A.; Lamb, S.V. Effect of Fentanyl on the Minimum Alveolar Concentration of Isoflurane in Swine. Anesthesiology 1995, 83, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Funes, J.F.; Granados, M.M.; Morgaz, J.; Navarrete, R.; Fernández-Sarmiento, A.; Gómez-Villamandos, R.; Muñoz, P.; Quirós, S.; Carrillo, J.M.; López-Villalba, I.; et al. Anaesthetic and cardiorespiratory effects of a constant rate infusion of fentanyl in isoflurane-anaesthetized sheep. Vet. Anaesth. Analg. 2015, 42, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Williamson, A.J.; Soares, J.H.N.; Pavlisko, N.D.; McAlister Council-Troche, R.; Henao-Guerrero, N. Isoflurane minimum alveolar concentration sparing effects of fentanyl in the dog. Vet. Anaesth. Analg. 2017, 44, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Thomasy, S.M.; Steffey, E.P.; Mama, K.R.; Solano, A.; Stanley, S.D. The Effects of i.v. Fentanyl Administration on the Minimum Alveolar Concentration of Isoflurane in Horses. Br. J. Anaesth. 2006, 97, 232–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohta, M.; Wakuno, A.; Okada, J.; Kodaira, K.; Nagata, S.; Ito, M.; Oku, K. Effects of Intravenous Fentanyl Administration on End-Tidal Sevoflurane Concentrations in Thoroughbred Racehorses Undergoing Orthopedic Surgery. J. Vet. Med. Sci. 2010, 72, 1107–1111. [Google Scholar] [CrossRef] [Green Version]
- Mansour, C.; Merlin, T.; Bonnet-Garin, J.-M.; Chaaya, R.; Mocci, R.; Ruiz, C.C.; Allaouchiche, B.; Boselli, E.; Junot, S. Evaluation of the Parasympathetic Tone Activity (PTA) Index to Assess the Analgesia/Nociception Balance in Anaesthetised Dogs. Res. Vet. Sci. 2017, 115, 271–277. [Google Scholar] [CrossRef]
- Jeanne, M.; Clément, C.; de Jonckheere, J.; Logier, R.; Tavernier, B. Variations of the analgesia nociception index during general anaesthesia for laparoscopic abdominal surgery. J. Clin. Monit. Comput. 2012, 26, 289–294. [Google Scholar] [CrossRef]
- Pomfrett, C.J. Heart rate variability, BIS and ‘depth of anaesthesia’. Br. J. Anaesth. 1999, 82, 659–662. [Google Scholar] [CrossRef]
- Boselli, E.; Bouvet, L.; Bégou, G.; Dabouz, R.; Davidson, J.; Deloste, J.Y.; Rahali, N.; Zadam, A.; Allaouchiche, B. Prediction of Immediate Postoperative Pain Using the Analgesia/Nociception Index: A Prospective Observational Study. Br. J. Anaesth. 2014, 112, 715–721. [Google Scholar] [CrossRef] [Green Version]
- Logier, R.; Jeanne, M.; de Jonckheere, J.; Dassonneville, A.; Delecroix, M.; Tavernier, B. PhysioDoloris: A monitoring device for Analgesia/Nociception balance evaluation using Heart Rate Variability analysis. In Proceedings of the 32nd Annual Internation Conference of the IEEE EMBS, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 1194–1197. [Google Scholar] [CrossRef]
- Aguado, D.; Bustamante, R.; García-Sanz, V.; González-Blanco, P.; Gómez de Segura, I.A. Efficacy of the Parasympathetic Tone Activity Monitor to Assess Nociception in Healthy Dogs Anaesthetized with Propofol and Sevoflurane. Vet. Anaesth. Analg. 2020, 47, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Manzo, A.; Ootaki, Y.; Ootaki, C.; Kamohara, K.; Fukamachi, K. Comparative Study of Heart Rate Variability between Healthy Human Subjects and Healthy Dogs, Rabbits and Calves. Lab. Anim. 2009, 43, 41–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trim, C.M. Monitoring during Anaesthesia: Techniques and Interpretation. Equine Vet. Educ. 1998, 15, 30–40. [Google Scholar] [CrossRef]
- Delbeke, F.T.; Debackere, M. ELISA detection of fentanyl in horse urine and plasma. J. Vet. Pharmacol. Ther. 1989, 12, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Thomasy, S.M.; Mama, K.R.; Whitley, K.; Steffey, E.P.; Stanley, S.D. Influence of general anaesthesia on the pharmacokinetics of intravenous fentanyl and its primary metabolite in horses. Equine Vet. J. 2007, 39, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.M.; Kruse-Elliott, K.T.; Markel, M.D.; Pluhar, G.E.; Massa, K.; Bjorling, D.E. A comparison of transdermal fentanyl versus epidural morphine for analgesia in dogs undergoing major orthopedic surgery. J. Am. Anim. Hosp. Assoc. 1999, 35, 95–100. [Google Scholar] [CrossRef]
- Gutierrez-Blanco, E.; Victoria-Mora, J.M.; Ibancovichi-Camarillo, J.A.; Sauri-Arceo, C.H.; Bolio-González, M.E.; Acevedo-Arcique, C.M.; Marin-Cano, G.; Steagall, P.V. Evaluation of the isoflurane-sparing effects of fentanyl, lidocaine, ketamine, dexmedetomidine, or the combination lidocaine-ketamine-dexmedetomidine during ovariohysterectomy in dogs. Vet. Anaesth. Analg. 2013, 40, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Dzikiti, T.B.; Stegmann, G.F.; Dzikiti, L.N.; Hellebrekers, L.J. Effects of fentanyl on isoflurane minimum alveolar concentration and cardiovascular function in mechanically ventilated goats. Vet. Rec. 2011, 168, 429. [Google Scholar] [CrossRef] [Green Version]
- Robertson, S.A.; Taylor, P.M.; Sear, J.W.; Keuhnel, G. Relationship between plasma concentrations and analgesia after intravenous fentanyl and disposition after other routes of administration in cats. J. Vet. Pharmacol. Ther. 2005, 28, 87–93. [Google Scholar] [CrossRef]
- Ilkiw, J.E. Balanced techniques in dogs and cats. Clin. Tech. Small Anim. Pract. 1999, 14, 27–37. [Google Scholar] [CrossRef]
- Maxwell, L.K.; Thomasy, S.M.; Slovis, N. Pharmacokinetics of fentanyl following intravenous and transdermal administration in horses. Equine Vet. J. 2003, 35, 484–490. [Google Scholar] [CrossRef]
- Moksnes, K.; Fredheim, O.M.; Klepstad, P.; Kaasa, S.; Angelsen, A.; Nilsen, T.; Dale, O. Early pharmacokinetics of nasal fentanyl: Is there a significant arterio-venous difference? Eur. J. Clin. Pharmacol. 2008, 64, 497–502. [Google Scholar] [CrossRef]
- Echelmeyer, J.; Taylor, P.M.; Hopster, K.; Rohn, K.; Delarocque, J.; Kästner, S.B.R. Effect of fentanyl on thermal and mechanical nociceptive thresholds in horses and estimation of anti-nociceptive plasma concentration. Vet. J. 2019, 249, 82–88. [Google Scholar] [CrossRef]
- Ilkiw, J.E.; Pascoe, P.J.; Hasking, S.C.; Patz, J.D.; Jaffe, R. The cardiovascular sparing effect of fentanyl and atropine, administered to enflurane anesthetized dogs. Can. J. Vet. Res. 1994, 58, 248–253. [Google Scholar]
- Kamerling, S.G. Narcotics and local anesthetics. Vet. Clin. N. Am. Equine Pract. 1993, 9, 605–620. [Google Scholar] [CrossRef]
- Hellyer, P.W.; Bai, L.; Supon, J.; Quail, C.; Wagner, A.E.; Mama, K.R.; Magnusson, K.R. Comparison of opioid and alpha-2-adrenergic receptor binding in horse and dog brain using radioligand autoradiography. Vet. Anaesth. Analg. 2003, 30, 172–182. [Google Scholar] [CrossRef]
- Haney, M.F.; Wiklund, U. Can heart rate variability become a screening tool for anesthesia-related hypotension? Acta Anaesthesiol. Scand. 2007, 51, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Thomasy, S.M.; Slovis, N.; Maxwell, L.K.; Kollias-Baker, C. Transdermal fentanyl combined with nonsteroidal anti-inflammatory drugs for analgesia in horses. J. Vet. Intern. Med. 2004, 18, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Orsini, J.A.; Moate, P.J.; Kuersten, K.; Soma, L.R.; Boston, R.C. Pharmacokinetics of fentanyl delivered transdermally in healthy adult horses—Variability among horses and its clinical implications. J. Vet. Pharmacol. Ther. 2006, 29, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Vettorello, M.; Colombo, R.; De Grandis, C.E.; Costantini, E.; Raimondi, F. Effect of fentanyl on heart rate variability during spontaneous and paced breathing in healthy volunteers. Acta Anaesthesiol. Scand. 2008, 52, 1064–1070. [Google Scholar] [CrossRef]
- Enderle, A.K.; Levionnois, O.L.; Kuhn, M.; Schatzmann, U. Clinical evaluation of ketamine and lidocaine intravenous infusions to reduce isoflurane requirements in horses under general anaesthesia. Vet. Anaesth. Analg. 2008, 35, 297–305. [Google Scholar] [CrossRef]
- Gozalo-Marcilla, M.; Steblaj, B.; Schauvliege, S.; Duchateau, L.; Gasthuys, F. Comparison of the influence of two different constant-rate infusions (dexmedetomidine versus morphine) on anaesthetic requirements, cardiopulmonary function and recovery quality in isoflurane anaesthetized horses. Res. Vet. Sci. 2013, 95, 1186–1194. [Google Scholar] [CrossRef] [PubMed]
- Bollag, L.; Ortner, C.M.; Jelacic, S.; Rivat, C.; Landau, R.; Richebé, P. The effects of low-dose ketamine on the analgesia nociception index (ANI) measured with the novel PhysioDoloris™ analgesia monitor: A pilot study. J. Clin. Monit. Comput. 2015, 29, 291–295. [Google Scholar] [CrossRef] [PubMed]
Weight (kg) | Group F (Cp 6.2 ± 0.83 ng/mL) | Group C |
---|---|---|
458.7 ± 130.5 | 513.2 ± 43.2 | |
Duration of isoflurane administration (min) | 131.8 ± 51.4 | 138.2 ± 47.2 |
Respiratory rate (rpm) | 10.2 ± 1.3 | 9.9 ± 1.5 |
Tidal volume (mL/kg) | 12.1 ± 1.6 | 11.1 ± 1.1 |
Peak inspiratory pressure (cmH2O) | 23.7 ± 4.5 | 22.6 ± 7.2 |
Mean PaO2 (mmHg) | 216.2 ± 128.3 | 204 ± 123.2 |
Mean PaCO2 (mmHg) | 50.6 ± 4.3 | 51.8 ± 10.9 |
Mean HR before fentanyl or control treatment (bpm) | 39.6 ± 7.5 | 42.3 ± 10.9 |
Mean HR during fentanyl or control treatment (bpm) | 39.9 ± 7.1 | 41.9 ± 10.7 |
Mean EtIso (%) before fentanyl or control treatment | 1.2 ± 0.2 § | 1.2 ± 0.2 § |
Lowest EtIso (%) during fentanyl or control treatment | 1.0 ± 0.1 § | 1.0 ± 0.2 § |
EtIso reduction (%) | 18.0 ± 13.0 | 15.2 ± 12.5 |
Mean MAP (mmHg) before fentanyl or control treatment | 76.9 ± 15.1 | 81.1 ± 23.3 |
Mean MAP (mmHg) during fentanyl or control treatment | 92.7 ± 17.3 | 84.7 ± 21.6 |
Total dobutamine (µg/kg) | 54.1 ± 58.5 | 33.7 ± 28.7 |
Mean PTA before fentanyl or control treatment | 58.1 ± 6.4 § | 65.8 ± 11.4 |
Mean PTA during fentanyl or control treatment | 73 ± 10.6 *,§ | 59.1 ± 9.6 * |
Extra ketamine (mg/kg) | 0.3 ± 0.4 * | 0.9 ± 0.5 * |
Total dose of xylazine on recovery | 0.4 ± 0.1 | 0.4 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmitrović, P.; Vanaga, J.; Dupont, J.; Franck, T.; Gougnard, A.; Detilleux, J.; Kovalcuka, L.; Salciccia, A.; Serteyn, D.; Sandersen, C. Effect of Fentanyl Infusion on Heart Rate Variability and Anaesthetic Requirements in Isoflurane-Anaesthetized Horses. Animals 2021, 11, 2922. https://doi.org/10.3390/ani11102922
Dmitrović P, Vanaga J, Dupont J, Franck T, Gougnard A, Detilleux J, Kovalcuka L, Salciccia A, Serteyn D, Sandersen C. Effect of Fentanyl Infusion on Heart Rate Variability and Anaesthetic Requirements in Isoflurane-Anaesthetized Horses. Animals. 2021; 11(10):2922. https://doi.org/10.3390/ani11102922
Chicago/Turabian StyleDmitrović, Petra, Jana Vanaga, Julien Dupont, Thierry Franck, Alexandra Gougnard, Johann Detilleux, Liga Kovalcuka, Alexandra Salciccia, Didier Serteyn, and Charlotte Sandersen. 2021. "Effect of Fentanyl Infusion on Heart Rate Variability and Anaesthetic Requirements in Isoflurane-Anaesthetized Horses" Animals 11, no. 10: 2922. https://doi.org/10.3390/ani11102922