Current Diagnostic Methods for Assessing Transfer of Passive Immunity in Calves and Possible Improvements: A Literature Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Why Assess TPI?
3. Methods of Evaluating TPI
3.1. Direct Methods
3.1.1. RID
3.1.2. Turbidimetric Immunoassays
3.1.3. ELISA
3.1.4. Transmitted and Attenuated Total Reflectance Infrared (ATR) Spectroscopic Method
3.1.5. STIGA
3.1.6. Electrophoresis
3.1.7. Capillary Electrophoresis (CE)
3.1.8. Proteomics
3.1.9. Liquid Atmospheric-Pressure Matrix-Assisted Laser Desorption/Ionization Using Mass Spectrometry (AP-MALDI-MS)
3.2. Indirect Methods
3.2.1. Biochemical Analysis of Total Proteins and Fractions
3.2.2. Protein Refractometry
3.2.3. BRIX Refractometer
3.2.4. Zinc Sulfate Turbidity Test
3.2.5. Sodium Sulfite Turbidity Test
3.3. Another Way to Evaluate Colostrum Intake–γ Glutamyltransferase (GGT)
4. Discussion
4.1. Improvements in TPI Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Godden, S.M.; Lombard, J.E.; Woolums, A.R. Colostrum management for dairy calves. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 535–556. [Google Scholar] [CrossRef]
- Weaver, D.M.; Tyler, J.W.; VanMetre, D.C.; Hostetler, D.E.; Barrington, G.M. Passive transfer of colostral immunoglobulins in calves. J. Vet. Intern. Med. 2000, 14, 569–577. [Google Scholar] [CrossRef]
- Alley, M.L.; Haines, D.M.; Smith, G.W. Short communication: Evaluation of serum immunoglobulin G concentrations using an automated turbidimetric immunoassay in dairy calves. J. Dairy Sci. 2012, 95, 4596–4599. [Google Scholar] [CrossRef] [PubMed]
- Elsohaby, I.; Keefe, G.P. Preliminary validation of a calf-side test for diagnosis of failure of transfer of passive immunity in dairy calves. J. Dairy Sci. 2015, 98, 4754–4761. [Google Scholar] [CrossRef]
- Gelsinger, S.L.; Smith, A.M.; Jones, C.M.; Heinrichs, A.J. Technical note: Comparison of radial immunodiffusion and ELISA for quantification of bovine immunoglobulin G in colostrum and plasma. J. Dairy Sci. 2015, 98, 4084–4089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffer, N.E.; McGuire, T.C.; Bendel, R.B.; Weikel, J.M. Quantitation of bovine immunoglobulins: Comparison of single radial immunodiffusion, zinc sulfate turbidity, serum electrophoresis, and refractometer methods. Am. J. Vet. Res. 1977, 38, 693–698. [Google Scholar] [PubMed]
- Pfeiffer, N.E.; McGuire, T.C. Sodium sulfite precipitation test for assessment of colostral immunoglobulin transfer to calves.pdf. J. Am. Vet. Med. Assoc. 1977, 170, 809–811. [Google Scholar]
- Tóthová, C.; Nagy, O.; Kováč, G.; Nagyová, V. Changes in the concentrations of serum proteins in calves during the first month of life. J. Appl. Anim. Res. 2016, 44, 338–346. [Google Scholar] [CrossRef]
- Sutter, F.; Rauch, E.; Erhard, M.; Sargent, R.; Weber, C.; Heuwieser, W.; Borchardt, S. Evaluation of different analytical methods to assess failure of passive transfer in neonatal calves. J. Dairy Sci. 2020, 103, 5387–5397. [Google Scholar] [CrossRef]
- Morittu, V.M.; Lopreiato, V.; Ceniti, C.; Spina, A.A.; Minuti, A.; Trevisi, E.; Britti, D.; Trimboli, F. Technical note: Capillary electrophoresis as a rapid test for the quantification of immunoglobulin G in serum of newborn lambs. J. Dairy Sci. 2020, 103, 6583–6587. [Google Scholar] [CrossRef]
- Elsohaby, I.; Hou, S.; McClure, J.T.; Riley, C.B.; Shaw, R.A.; Keefe, G.P. A rapid field test for the measurement of bovine serum immunoglobulin G using attenuated total reflectance infrared spectroscopy. BMC Vet. Res. 2015, 11, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsohaby, I.; McClure, J.T.; Riley, C.B.; Shaw, R.A.; Keefe, G.P. Quantification of bovine immunoglobulin G using transmission and attenuated total reflectance infrared spectroscopy. J. Vet. Diagn. Investig. 2016, 28, 30–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drikic, M.; Windeyer, C.; Olsen, S.; Fu, Y.; Doepel, L.; De Buck, J. Determining the IgG concentrations in bovine colostrum and calf sera with a novel enzymatic assay. J. Anim. Sci. Biotechnol. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hogan, I.; Doherty, M.; Fagan, J.; Kennedy, E.; Conneely, M.; Brady, P.; Ryan, C.; Lorenz, I. Comparison of rapid laboratory tests for failure of passive transfer in the bovine. Ir. Vet. J. 2015, 68, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsohaby, I.; Mweu, M.M.; Mahmmod, Y.S.; McClure, J.T.; Keefe, G.P. Diagnostic performance of direct and indirect methods for assessing failure of transfer of passive immunity in dairy calves using latent class analysis. Prev. Vet. Med. 2019, 164, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Tyler, J.W.; Hancock, D.D.; Parish, S.M.; Rea, D.E.; Besser, T.E.; Sanders, S.G.; Wilson, L.K. Evaluation of 3 assays for failure of passive transfer in calves. J. Am. Vet. Med. Assoc. 1996, 10, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Quigley, J. Calf Note # 39—Using a Refractometer. Available online: http://calfnotes.com/pdffiles/CN039.pdf (accessed on 12 September 2018).
- Morrill, K.M.; Polo, J.; Lago, A.; Campbell, J.; Quigley, J.; Tyler, H. Estimate of serum immunoglobulin G concentration using refractometry with or without caprylic acid fractionation. J. Dairy Sci. 2013, 96, 4535–4541. [Google Scholar] [CrossRef]
- Deelen, S.M.; Ollivett, T.L.; Haines, D.M.; Leslie, K.E. Evaluation of a Brix refractometer to estimate serum immunoglobulin G concentration in neonatal dairy calves. J. Dairy Sci. 2014, 97, 3838–3844. [Google Scholar] [CrossRef]
- Elsohaby, I.; Mcclure, J.T.; Keefe, G.P. Evaluation of digital and optical refractometers for assessing failure of transfer of passive immunity in dairy calves. J. Vet. Intern. Med. 2015, 29, 721–726. [Google Scholar] [CrossRef]
- Morrill, K.M.; Conrad, E.; Lago, A.; Campbell, J.; Quigley, J.; Tyler, H. Nationwide evaluation of quality and composition of colostrum on dairy farms in the United States. J. Dairy Sci. 2012, 95, 3997–4005. [Google Scholar] [CrossRef] [Green Version]
- Denholm, K.; Haggerty, A.; Mason, C.; Ellis, K. Comparison of tests for failure of passive transfer in neonatal calf serum using total protein refractometry and the biuret method. Prev. Vet. Med. 2021, 189, 105290. [Google Scholar] [CrossRef]
- Moraes, M.P.; Weiblen, R.; Rebelatto, M.C.; Silva, A.M. da Relationship between passive immunity and morbidity and weight gain in dairy cattle. Ciência Rural 2000, 30, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Güngör, Ö.; Bastan, A.; Erbil, M.K. The usefulness of the γ-glutamyltransferase activity and total proteinemia in serum for detection of the failure of immune passive transfer in neonatal calves. Rev. Med. Vet. 2004, 155, 27–30. [Google Scholar]
- Tóthová, C.; Nagy, O.; Nagyová, V.; Kováč, G. Serum protein electrophoretic pattern in dairy cows during the periparturient period. J. Appl. Anim. Res. 2018, 46, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.L.; Drackley, J.K. The Development, Nutrition, and Management of the Young Calf; Iowa State University Press: Ames, IA, USA, 1998. [Google Scholar]
- Lora, I.; Gottardo, F.; Bonfanti, L.; Stefani, A.L.; Soranzo, E.; Dall’Ava, B.; Capello, K.; Martini, M.; Barberio, A. Transfer of passive immunity in dairy calves: The effectiveness of providing a supplementary colostrum meal in addition to nursing from the dam. Animal 2019, 13, 2621–2629. [Google Scholar] [CrossRef] [PubMed]
- Chigerwe, M.; Hagey, J.V.; Aly, S.S. Determination of neonatal serum immunoglobulin G concentrations associated with mortality during the first 4 months of life in dairy heifer calves. J. Dairy Res. 2015, 82, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Lombard, J.; Urie, N.; Garry, F.; Godden, S.; Quigley, J.; Earleywine, T.; McGuirk, S.; Moore, D.; Branan, M.; Chamorro, M.; et al. Consensus recommendations on calf- and herd-level passive immunity in dairy calves in the United States. J. Dairy Sci. 2020, 103, 7611–7624. [Google Scholar] [CrossRef]
- Furman-Fratczak, K.; Rzasa, A.; Stefaniak, T. The influence of colostral immunoglobulin concentration in heifer calves’ serum on their health and growth. J. Dairy Sci. 2011, 94, 5536–5543. [Google Scholar] [CrossRef]
- Windeyer, M.C.; Leslie, K.E.; Godden, S.M.; Hodgins, D.C.; Lissemore, K.D.; LeBlanc, S.J. Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age. Prev. Vet. Med. 2014, 113, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Lora, I.; Gottardo, F.; Contiero, B.; Dall Ava, B.; Bonfanti, L.; Stefani, A.; Barberio, A. Association between passive immunity and health status of dairy calves under 30 days of age. Prev. Vet. Med. 2018, 152, 12–15. [Google Scholar] [CrossRef]
- Donovan, G.A.; Dohoo, I.R.; Montgomery, D.M.; Bennett, F.L. Associations between passive immunity and morbidity and mortality in dairy heifers in Florida, USA. Prev. Vet. Med. 1998, 34, 31–46. [Google Scholar] [CrossRef]
- DeNise, S.K.; Robison, J.D.; Stott, G.H.; Armstrong, D.V. Effects of passive immunity on subsequent production in dairy heifers. J. Dairy Sci. 1989, 72, 552–554. [Google Scholar] [CrossRef]
- Raboisson, D.; Trillat, P.; Cahuzac, C. Failure of passive immune transfer in calves: A meta-analysis on the consequences and assessment of the economic impact. PLoS ONE 2016, 11, e0150452. [Google Scholar] [CrossRef] [PubMed]
- Beam, A.L.; Lombard, J.E.; Kopral, C.A.; Garber, L.P.; Winter, A.L.; Hicks, J.A.; Schlater, J.L. Prevalence of failure of passive transfer of immunity in newborn heifer calves and associated management practices on US dairy operations. J. Dairy Sci. 2009, 92, 3973–3980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivley, C.B.; Lombard, J.E.; Urie, N.J.; Haines, D.M.; Sargent, R.; Kopral, C.A.; Earleywine, T.J.; Olson, J.D.; Garry, F.B. Preweaned heifer management on US dairy operations: Part II. Factors associated with colostrum quality and passive transfer status of dairy heifer calves. J. Dairy Sci. 2018, 101, 9185–9198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trotz-Williams, L.A.; Leslie, K.E.; Peregrine, A.S. Passive immunity in Ontario dairy calves and investigation of its association with calf management practices. J. Dairy Sci. 2008, 91, 3840–3849. [Google Scholar] [CrossRef]
- Lora, I.; Barberio, A.; Contiero, B.; Paparella, P.; Bonfanti, L.; Brscic, M.; Stefani, A.L.; Gottardo, F. Factors associated with passive immunity transfer in dairy calves: Combined effect of delivery time, amount and quality of the first colostrum meal. Animal 2017, 12, 1041–1049. [Google Scholar] [CrossRef]
- Vogels, Z.; Chuck, G.; Morton, J. Failure of transfer of passive immunity and agammaglobulinaemia in calves in south-west Victorian dairy herds: Prevalence and risk factors. Aust. Vet. J. 2013, 91, 150–158. [Google Scholar] [CrossRef]
- Abuelo, A.; Havrlant, P.; Wood, N.; Hernandez-Jover, M. An investigation of dairy calf management practices, colostrum quality, failure of transfer of passive immunity, and occurrence of enteropathogens among Australian dairy farms. J. Dairy Sci. 2019, 102, 8352–8366. [Google Scholar] [CrossRef]
- Lawrence, K.; Broerse, N.; Hine, L.; Yapura, J.; Tulley, W.J. Prevalence of failure of passive transfer of maternal antibodies in dairy calves in the Manawatu region of New Zealand. N. Z. Vet. J. 2017, 65, 1–5. [Google Scholar] [CrossRef]
- McGuirk, S.M.; Collins, M. Managing the production, storage, and delivery of colostrum. Vet. Clin. N. Am.-Food Anim. Pract. 2004, 20, 593–603. [Google Scholar] [CrossRef]
- Dunn, A.; Duffy, C.; Gordon, A.; Morrison, S.; Argűello, A.; Welsh, M.; Earley, B. Comparison of single radial immunodiffusion and ELISA for the quantification of immunoglobulin G in bovine colostrum, milk and calf sera. J. Appl. Anim. Res. 2018, 46, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Santos, G.G.F.; Deschk, M.; Silva, A.K.G.; Pólo, T.S.; Marinho, M.; Peiró, J.R.; Mendes, L.C.N.; Feitosa, F.L.F. Proteinograma sérico de bezerros recém-nascidos alimentados com colostro de vacas com mastite. Braz. J. Vet. Res. Anim. Sci. 2013, 50, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Jaekal, J.; Bae, C.S.; Chung, B.H.; Yun, S.C.; Gwak, M.J.; Noh, G.J.; Lee, D.H. Enzyme-linked immunosorbent assay, single radial immunodiffusion, and indirect methods for the detection of failure of transfer of passive immunity in dairy calves. J. Vet. Intern. Med. 2008, 22, 212–218. [Google Scholar] [CrossRef]
- Wild, D.; John, R.; Sheehan, C. The Immunoassay Handbook Theory and Applications of Ligand Binding, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9780080970370. [Google Scholar]
- Penhale, W.J.; Christie, G. Quantitative studies on bovine immunoglobulins: I. Adult plasma and colostrum levels. Res. Vet. Sci. 1969, 10, 493. [Google Scholar] [CrossRef]
- Penhale, W.J.; Christie, G.; McEwan, A.D.; Fisher, E.W.; Selman, I.E. Quantitative studies on bovine immunoglobulins. II. Plasma immunoglobulin levels in market calves and their relationship to neonatal infection. Br. Vet. J. 1970, 126, 30–32. [Google Scholar] [CrossRef]
- Burton, J.L.; Kennedy, B.W.; Burnside, E.B.; Wilkie, B.N.; Burton, J.H. Variation in serum concentrations of immunoglobulins G, A, and M in Canadian holstein-friesian calves. J. Dairy Sci. 1989, 72, 135–149. [Google Scholar] [CrossRef]
- Mancini, G.; Carbonara, A.O.; Heremans, J.F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 1965, 2, 235–254. [Google Scholar] [CrossRef]
- Ameri, M.; Wilkerson, M.J. Comparison of two commercial radial immunodiffusion assays for detection of bovine immunoglobulin G in newborn calves. J. Vet. Diagn. Investig. 2008, 20, 333–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godden, S. Colostrum management for dairy calves. Vet. Clin. N. Am.-Food Anim. Pract. 2008, 24, 19–39. [Google Scholar] [CrossRef]
- Renaud, D.L.; Duffield, T.F.; LeBlanc, S.J.; Kelton, D.F. Short communication: Validation of methods for practically evaluating failed passive transfer of immunity in calves arriving at a veal facility. J. Dairy Sci. 2018, 101, 9516–9520. [Google Scholar] [CrossRef]
- Kaneco, J.J.; Harvey, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals, 6th ed.; Academic Press: Cambridge, MA, USA, 2008; ISBN 9780123704917. [Google Scholar]
- Hay, F.C.; Westwood, O.M.R. Practical Immunology, 4th ed.; Blackwell Science: Hoboken, NJ, USA, 2002; Volume 4, ISBN 0865429618. [Google Scholar]
- Tscheschlok, L.; Venner, M.; Howard, J. Comparison of IgG concentrations by radial immunodiffusion, electrophoretic gamma globulin concentrations and total globulins in neonatal foals. Equine Vet. J. 2017, 49, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Turini, L.; Bonelli, F.; Nocera, I.; Meucci, V.; Conte, G.; Sgorbini, M. Evaluation of different methods to estimate the transfer of immunity in donkey foals fed with colostrum of good IgG quality: A preliminary study. Animals 2021, 11, 507. [Google Scholar] [CrossRef] [PubMed]
- Regeniter, A.; Siede, W.H. Peaks and tails: Evaluation of irregularities in capillary serum protein electrophoresis. Clin. Biochem. 2018, 51, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Crivellente, F.; Bonato, M.; Cristofori, P. Analysis of mouse, rat, dog, marmoset, and human serum proteins by capillary electrophoresis: Comparison with agarose gel electrophoresis. Vet. Clin. Pathol. 2008, 37, 73–78. [Google Scholar] [CrossRef]
- Petersen, J.R.; Okorodudu, A.O.; Mohammad, A.; Payne, D.A. Capillary electrophoresis and its application in the clinical laboratory. Clin. Chim. Acta 2003, 330, 1–30. [Google Scholar] [CrossRef]
- Lopreiato, V.; Ceniti, C.; Trimboli, F.; Fratto, E.; Marotta, M.; Britti, D.; Morittu, V.M. Evaluation of the capillary electrophoresis method for measurement of immunoglobulin concentration in ewe colostrum. J. Dairy Sci. 2017, 100, 6465–6469. [Google Scholar] [CrossRef]
- Brenner, S.; Miller, J.H.; Broughton, W. Encyclopedia of Genetics; Academic Press: Cambridge, MA, USA, 2001; ISBN 9780080547909. [Google Scholar]
- Zhang, L.; Boeren, S.; Hageman, J.A.; Van Hooijdonk, T.; Vervoort, J.; Hettinga, K. Bovine milk proteome in the first 9 days: Protein interactions in maturation of the immune and digestive system of the newborn. PLoS ONE 2015, 10, e0116710. [Google Scholar] [CrossRef]
- Mann, S.; Curone, G.; Chandler, T.L.; Sipka, A.; Cha, J.; Bhawal, R.; Zhang, S. Heat treatment of bovine colostrum: II. Effects on calf serum immunoglobulin, insulin, and IGF-I concentrations, and the serum proteome. J. Dairy Sci. 2020, 103, 9384–9406. [Google Scholar] [CrossRef]
- Ryumin, P.; Brown, J.; Morris, M.; Cramer, R. Investigation and optimization of parameters affecting the multiply charged ion yield in AP-MALDI MS. Methods 2016, 104, 11–20. [Google Scholar] [CrossRef]
- Piras, C.; Ceniti, C.; Hartmane, E.; Costanzo, N.; Morittu, V.M.; Roncada, P.; Britti, D.; Cramer, R. Rapid liquid AP-MALDI MS profiling of lipids and proteins from goat and sheep milk for speciation and colostrum analysis. Proteomes 2020, 8, 20. [Google Scholar] [CrossRef]
- Hale, O.J.; Morris, M.; Jones, B.; Reynolds, C.K.; Cramer, R. Liquid Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Adds Enhanced Functionalities to MALDI MS Profiling for Disease Diagnostics. ACS Omega 2019, 4, 12759–12765. [Google Scholar] [CrossRef] [Green Version]
- Borges, A.S.; Feitosa, F.L.F.; Benesi, F.J.; Birgel, E.H.; Mendes, L.C.N. Influence of volume and method of administration of colostrum on total protein and electrophoretic serum fractions in Holstein calves. Arq. Bras. Med. Vet. Zootec. 2001, 53, 629–634. [Google Scholar] [CrossRef]
- Teixeira, W.T.; Fonteque, G.V.; Ramos, A.F.; Mariante, A.S.; do Egito, A.A.; Martins, V.M.V.; Saito, M.E.; Fonteque, J.H. Transfer of passive immunity and serum proteinogram in the first six months of life of Criollo lageano and black and white holstein calves. Pesqui. Vet. Bras. 2012, 32, 980–986. [Google Scholar] [CrossRef]
- Murphy, J.M.; Hagey, J.V.; Chigerwe, M. Comparison of serum immunoglobulin G half-life in dairy calves fed colostrum, colostrum replacer or administered with intravenous bovine plasma. Vet. Immunol. Immunopathol. 2014, 158, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Wilm, J.; Costa, J.H.C.; Neave, H.W.; Weary, D.M.; von Keyserlingk, M.A.G. Technical note: Serum total protein and immunoglobulin G concentrations in neonatal dairy calves over the first 10 days of age. J. Dairy Sci. 2018, 101, 6430–6436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nocek, J.E.; Braund, D.G.; Warner, R.G. Influence of neonatal colostrum administration, immunoglobulin, and continued feeding of colostrum on calf gain, health, and serum protein. J. Dairy Sci. 1984, 67, 319–333. [Google Scholar] [CrossRef]
- Tothova, C.; Nagy, O.; Kovac, G. Serum proteins and their diagnostic utility in veterinary medicine: A review. Vet. Med. 2016, 61, 475–496. [Google Scholar] [CrossRef] [Green Version]
- Buczinski, S.; Gicquel, E.; Fecteau, G.; Takwoingi, Y.; Chigerwe, M.; Vandeweerd, J.M. Systematic review and meta-analysis of diagnostic accuracy of serum refractometry and Brix refractometry for the diagnosis of inadequate transfer of passive immunity in calves. J. Vet. Intern. Med. 2018, 32, 474–483. [Google Scholar] [CrossRef] [Green Version]
- Elsohaby, I.; McClure, J.T.; Waite, L.A.; Cameron, M.; Heider, L.C.; Keefe, G.P. Using serum and plasma samples to assess failure of transfer of passive immunity in dairy calves. J. Dairy Sci. 2019, 102, 567–577. [Google Scholar] [CrossRef] [Green Version]
- Quigley, J. Calf Note 187—BRIX Refractometer for Serum IgG. Available online: https://www.calfnotes.com/pdffiles/CN187.pdf (accessed on 20 October 2018).
- Bielmann, V.; Gillan, J.; Perkins, N.R.; Skidmore, A.L.; Godden, S.; Leslie, K.E. An evaluation of Brix refractometry instruments for measurement of colostrum quality in dairy cattle. J. Dairy Sci. 2010, 93, 3713–3721. [Google Scholar] [CrossRef]
- Thornhill, J.B.; Krebs, G.L.; Petzel, C.E. Evaluation of the Brix refractometer as an on-farm tool for the detection of passive transfer of immunity in dairy calves. Aust. Vet. J. 2015, 93, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.L. Current Veterinary Therapy, 3rd ed.; WB Saunders Company: Philadelphia, PA, USA, 1993. [Google Scholar]
- Blum, J.W.; Hammon, H. Colostrum effects on the gastrointestinal tract, and on nutritional, endocrine and metabolic parameters in neonatal calves. Livest. Prod. Sci. 2000, 66, 151–159. [Google Scholar] [CrossRef]
- Mann, S.; Curone, G.; Chandler, T.L.; Moroni, P.; Cha, J.; Bhawal, R.; Zhang, S. Heat treatment of bovine colostrum: I. Effects on bacterial and somatic cell counts, immunoglobulin, insulin, and IGF-I concentrations, as well as the colostrum proteome. J. Dairy Sci. 2020, 103, 9368–9383. [Google Scholar] [CrossRef]
- Feitosa, F.L.F.; Birgel, E.H.; Mirandola, R.M.S.; Perri, S.H.V. Diagnóstico de falha de transferência de imunidade passiva em bezerros através da determinação de proteína total e de suas frações eletroforéticas, imunoglobulinas G e M e da atividade da gama glutamil transferase no soro sangüíneo. Ciência Rural 2001, 31, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Nissen, A.; Andersen, P.H.; Bendixen, E.; Ingvartsen, K.L.; Røntved, C.M. Colostrum and milk protein rankings and ratios of importance to neonatal calf health using a proteomics approach. J. Dairy Sci. 2017, 100, 2711–2728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korhonen, H. Antimicrobial factors in bovine colostrum. Agric. Food Sci. 1977, 49, 434–447. [Google Scholar] [CrossRef]
- Wheeler, T.T.; Hodgkinson, A.J.; Prosser, C.G.; Davis, S.R. Immune components of colostrum and milk - A historical Perspective. J. Mammary Gland Biol. Neoplasia 2007, 12, 237–247. [Google Scholar] [CrossRef] [PubMed]
- McGrath, B.A.; Fox, P.F.; McSweeney, P.L.H.; Kelly, A.L. Composition and properties of bovine colostrum: A review. Dairy Sci. Technol. 2016, 96, 133–158. [Google Scholar] [CrossRef]
- Novo, S.M.F.; Costa, J.F.D.R.; Baccili, C.C.; Sobreira, N.M.; Maia, M.A.; Leite, S.B.P.; Hurley, D.J.; Gomes, V. Specific immune response in neonate Holstein heifer calves fed fresh or frozen colostrum. Pesqui. Vet. Bras. 2017, 37, 1385–1394. [Google Scholar] [CrossRef] [Green Version]
- Van Hese, I.; Goossens, K.; Vandaele, L.; Opsomer, G. Invited review: MicroRNAs in bovine colostrum—Focus on their origin and potential health benefits for the calf. J. Dairy Sci. 2020, 103, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammon, H.M.; Liermann, W.; Frieten, D.; Koch, C. Review: Importance of colostrum supply and milk feeding intensity on gastrointestinal and systemic development in calves. Animal 2020, 14, S133–S143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyazaki, T.; Okada, K.; Yamashita, T.; Miyazaki, M. Two-dimensional gas chromatography time-of-flight mass spectrometry-based serum metabolic fingerprints of neonatal calves before and after first colostrum ingestion. J. Dairy Sci. 2017, 100, 4354–4364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Methods | IgG Evaluation | Main Characteristics of the Method | Statistics Compared to the Gold Standard | Using These Methods in the Field |
---|---|---|---|---|
RID | Direct | Gold standard, classic method, but time-consuming | - | No |
Turbidimetric Immunoassays | Direct | Fast, does not require reagents from the user, can be expensive | R2 = 0.98 [3] | Yes |
ELISA | Direct | Time-consuming, requires bench equipment and often needs repetition | R2 = 0.97 [44]; r = 0.90 [9] | No |
Electrophoresis | Direct | Commonly used for serum protein fractionation, highly widespread in laboratories, and requires bench equipment | 89% accuracy [6] | No |
CE | Direct | Fast, precise, accurate, fully automated, compatible with small sample volumes, inexpensive, and requires bench equipment | r = 0.97 [9] | No |
Proteomics | Direct | Used to separate and individually quantify sample proteins; expensive and not widespread in laboratories as it requires bench and expensive equipment | We found no such studies | No |
AP-MALDI-MS | Direct | Ease to operate, fast, precise, robust, compatible with small sample volumes, inexpensive, and requires bench equipment | We found no such studies | No |
Spectroscopic method | Direct | Simple and fast measurement that requires little or no sample preparation; expensive and requires expensive equipment | r = 0.93 [11] | Not yet |
STIGA | Direct | High potential to be a direct analysis of IgG in calves for use in the field | R2 = 0.83–0.94 [13] | Not yet |
Biochemical analysis of total proteins and fractions | Indirect | Highly widespread in laboratories and cheap; requires bench equipment | r = 0.83 [45] | Not yet |
TP by refractometry | Indirect | Cheap, simple, fast, and can be used on farms, uses portable equipment | r = 0.93 [19]; r = 0.41 [17] | Yes |
BRIX by refractometry | Indirect | Used in the field to assess both TPI and colostrum quality, uses portable equipment | r = 0.93 [19] | Yes |
Zinc sulfate turbidity test | Indirect | Cheap, simple, fast, and can be used on farms | R2 = 0.78 [44] | Yes |
Turbidity test for sodium sulfite | Indirect | Cheap, simple, fast, and can be used on farms | 88% accuracy [46] | Yes |
Biochemical serum GGT analysis | – | Evaluates only unpasteurized maternal colostrum intake, requires bench equipment | r = 0.57 [14] | Not yet |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Souza, R.S.; dos Santos, L.B.C.; Melo, I.O.; Cerqueira, D.M.; Dumas, J.V.; Leme, F.d.O.P.; Moreira, T.F.; Meneses, R.M.; de Carvalho, A.U.; Facury-Filho, E.J. Current Diagnostic Methods for Assessing Transfer of Passive Immunity in Calves and Possible Improvements: A Literature Review. Animals 2021, 11, 2963. https://doi.org/10.3390/ani11102963
de Souza RS, dos Santos LBC, Melo IO, Cerqueira DM, Dumas JV, Leme FdOP, Moreira TF, Meneses RM, de Carvalho AU, Facury-Filho EJ. Current Diagnostic Methods for Assessing Transfer of Passive Immunity in Calves and Possible Improvements: A Literature Review. Animals. 2021; 11(10):2963. https://doi.org/10.3390/ani11102963
Chicago/Turabian Stylede Souza, Rayanne Soalheiro, Lucas Braga Costa dos Santos, Isabela Oliveira Melo, Daiane Maria Cerqueira, Juliana Vieira Dumas, Fabiola de Oliveira Paes Leme, Tiago Facury Moreira, Rodrigo Melo Meneses, Antônio Ultimo de Carvalho, and Elias Jorge Facury-Filho. 2021. "Current Diagnostic Methods for Assessing Transfer of Passive Immunity in Calves and Possible Improvements: A Literature Review" Animals 11, no. 10: 2963. https://doi.org/10.3390/ani11102963
APA Stylede Souza, R. S., dos Santos, L. B. C., Melo, I. O., Cerqueira, D. M., Dumas, J. V., Leme, F. d. O. P., Moreira, T. F., Meneses, R. M., de Carvalho, A. U., & Facury-Filho, E. J. (2021). Current Diagnostic Methods for Assessing Transfer of Passive Immunity in Calves and Possible Improvements: A Literature Review. Animals, 11(10), 2963. https://doi.org/10.3390/ani11102963