Effects of Different Levels of Inclusion of Apulo-Calabrese Pig Meat on Microbiological, Physicochemical and Rheological Parameters of Salami during Ripening
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Salami Production and Sample Collection
2.2. pH and aw Measurements
2.3. Microbiological Analyses
2.4. Fatty Acids Analysis
2.5. Rheological Analysis
2.5.1. Texture Profile Analysis
2.5.2. Color
2.6. TBARS Analysis
2.7. Statistical Analyses
3. Results and Discussion
3.1. Microbiological Analyses
3.2. pH and aw Measurements
3.3. Fatty Acids Analysis
3.4. Rheological Analysis
3.4.1. Texture Profile Analysis
3.4.2. Color
3.5. Thiobarbituric Acid-Reactive Substances (TBARS)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romeo, F.; Runcio, A.; Piscopo, A.; Iaccarino, T.; Mincione, A.; Poiana, M. Characterization of four typical calabrian cured meat products: Spicy sausage, soppressata, ’nduja and capocollo. Acta Aliment. 2014, 43, 564–573. [Google Scholar] [CrossRef] [Green Version]
- Madonia, G.; Diaferia, C.; Moretti, V.M.; Margiotta, S.; Manganelli, E.; Pruiti, V.; Caprino, F.; D’Amico, A. Nero Siciliano pigs proposed as a traditional quality product: Comparison between salami made from black pig’s meat and white pig’s meat. Cah. Options Mediterr. 2007, 76, 251–257. [Google Scholar]
- Franci, O.; Bozzi, R.; Pugliese, C.; Acciaioli, A.; Campodoni, G.; Gandini, G. Performance of Cinta Senese pigs and their crosses with Large White. 1 Muscle and subcutaneous fat characteristics. Meat Sci. 2005, 69, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Salvatori, G.; Filetti, F.; Di Cesare, C.; Maiorano, G.; Pilla, F.; Oriani, G. Lipid composition of meat and backfat from Casertana purebred and crossbred pigs reared outdoors. Meat Sci. 2008, 80, 623–631. [Google Scholar] [CrossRef]
- Nevrkla, P.; Kapelański, W.; Václavková, E.; Hadaš, Z.; Cebulska, A.; Horký, P. Meat quality and fatty acid profile of pork and backfat from an indigenous breed and a commercial hybrid of pigs. Ann. Anim. Sci. 2017, 17, 1215. [Google Scholar] [CrossRef] [Green Version]
- Poklukar, K.; Čandek-Potokar, M.; Batorek Lukač, N.; Tomažin, U.; Škrlep, M. Lipid Deposition and Metabolism in Local and Modern Pig Breeds: A Review. Animals 2020, 10, 424. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- World Health Organization. World Health Statistics 2019: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- van Dijk, S.J.; Feskens, E.J.; Bos, M.B.; Hoelen, D.W.; Heijligenberg, R.; Bromhaar, M.G.; de Groot, L.C.P.G.M.; de Vries, J.H.M.; Müller, M.; Afman, L.A. A saturated fatty acid–rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome. Am. J. Clin. Nutr. 2009, 90, 1656–1664. [Google Scholar] [CrossRef] [Green Version]
- Michielsen, C.C.; Hangelbroek, R.W.; Feskens, E.J.; Afman, L.A. Disentangling the Effects of Monounsaturated Fatty Acids from Other Components of a Mediterranean Diet on Serum Metabolite Profiles: A Randomized Fully Controlled Dietary Intervention in Healthy Subjects at Risk of the Metabolic Syndrome. Mol. Nutr. Food Res. 2019, 63, 1801095. [Google Scholar] [CrossRef]
- Lee, H.; Jang, H.B.; Yoo, M.G.; Chung, K.S.; Lee, H.J. Protective Effects of Dietary MUFAs Mediating Metabolites against Hypertension Risk in the Korean Genome and Epidemiology Study. Nutrients 2019, 11, 1928. [Google Scholar] [CrossRef] [Green Version]
- Bozzi, R.; Gallo, M.; Geraci, C.; Fontanesi, L.; Batorek-Lukač, N. European Local Pig Breeds-Diversity and Performance. A Study of Project TREASURE; Apulo-Calabrese Pig; IntechOpen: London, UK, 2019. [Google Scholar]
- Diaferia, C.; Ciampa, V.; Iaccarino, T.; La Pietra, L.; Pirone, G. Improvement of the technology of production of Calabria POD salami: Soppressata and dry-cured sausage. In Proceedings of the 3rd CIGR Section VI–International Symposium on Food and Agricultural Products: Processing and Innovations, Napoli, Italy, 24–26 September 2007; pp. 24–26. [Google Scholar]
- Marziano, F.; Morra, A.; Nanni, B.; Fornataro, D.; Palazzo, M.; Matassino, D. Production of Napoli salami from some swine autochthonous genetic types. Characteristics of the mycoflora. Cah. Options Mediterr. 2000, IV, 245–249. [Google Scholar]
- Demeyer, D.; Stahnke, L. Quality control of fermented meat products. Meat Process. Improv. Qual. 2002, 359–393. [Google Scholar] [CrossRef]
- Hara, A.; Radin, N.S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Aboagye, G.; Zappaterra, M.; Pasini, F.; Dall’Olio, S.; Davoli, R.; Costa, L.N. Fatty acid composition of the intramuscular fat in the longissimus thoracis muscle of Apulo-Calabrese and crossbreed pigs. Livest. Sci. 2020, 232, 103878. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Smaldone, G.; Marrone, R.; Vollano, L.; Peruzy, M.F.; Barone, C.M.A.; Ambrosio, R.L.; Anastasio, A. Microbiological, rheological and physical-chemical characteristics of bovine meat subjected to a prolonged ageing period. Ital. J. Food Saf. 2019, 8, 3. [Google Scholar] [CrossRef]
- Marrone, R.; Salzano, A.; Di Francia, A.; Vollano, L.; Di Matteo, R.; Balestrieri, A.; Anastasio, A.; Barone, C.M.A. Effects of feeding and maturation system on qualitative characteristics of buffalo meat (Bubalus bubalis). Animals 2020, 10, 899. [Google Scholar] [CrossRef]
- Settanni, L.; Barbaccia, P.; Bonanno, A.; Ponte, M.; Di Gerlando, R.; Franciosi, E.; Di Grigoli, A.; Gaglio, R. Evolution of indigenous starter microorganisms and physicochemical parameters in spontaneously fermented beef, horse, wild boar and pork salamis produced under controlled conditions. Food Microbiol. 2020, 87, 103385. [Google Scholar] [CrossRef]
- Pisacane, V.; Callegari, M.L.; Puglisi, E.; Dallolio, G.; Rebecchi, A. Microbial analyses of traditional Italian salami reveal microorganisms transfer from the natural casing to the meat matrix. Int. J. Food Microbiol. 2015, 207, 57–65. [Google Scholar] [CrossRef]
- Comi, G.; Urso, R.; Iacumin, L.; Rantsiou, K.; Cattaneo, P.; Cantoni, C.; Cocolin, L. Characterisation of naturally fermented sausages produced in the North East of Italy. Meat Sci. 2005, 69, 381–392. [Google Scholar] [CrossRef]
- Bedia, M.; Méndez, L.; Bañón, S. Evaluation of different starter cultures (Staphylococci plus Lactic Acid Bacteria) in semi-ripened Salami stuffed in swine gut. Meat Sci. 2011, 87, 381–386. [Google Scholar] [CrossRef]
- Bañón, S.; Serrano, R.; Bedia, M. Factors limiting the shelf-life of salami pieces kept in retailing conditions. Ital. J. Food Sci. 2014, 26, 289. [Google Scholar]
- Coppola, S.; Mauriello, G.; Aponte, M.; Moschetti, G.; Villani, F. Microbial succession during ripening of Naples-type salami, a southern Italian fermented sausage. Meat Sci. 2000, 56, 321–329. [Google Scholar] [CrossRef]
- Wang, X.H.; Ren, H.Y.; Wang, W.; Bai, T.; Li, J.X.; Zhu, W.Y. Effects of inoculation of commercial starter cultures on the quality and histamine accumulation in fermented sausages. J. Food Sci. 2015, 80, 377–383. [Google Scholar] [CrossRef]
- Jelen, H.H.; Wasowicz, E. Volatile fungal metabolites and their relation to the spoilage of agricultural commodities. Food Rev. Int. 1998, 14, 391–426. [Google Scholar] [CrossRef]
- Cenci-Goga, B.T.; Ranucci, D.; Miraglia, D.; Cioffi, A. Use of starter cultures of dairy origin in the production of Salame nostrano, an Italian dry-cured sausage. Meat Sci. 2008, 78, 381–390. [Google Scholar] [CrossRef]
- Ambrosiadis, J.; Soultos, N.; Abrahim, A.; Bloukas, J.G. Physicochemical, micro- biological and sensory attributes for the characterization of Greek traditional sausages. Meat Sci. 2003, 66, 279–287. [Google Scholar] [CrossRef]
- Cocconcelli, P.S.; Fontana, C. Starter cultures for meat fermentation. In Handbook of Meat Processing; Toldraà, F., Ed.; Blackwell Publishing: Ames, IA, USA, 2010; pp. 199–218. [Google Scholar]
- Lucke, F.K. Fermented meat products. Food Res. Int. 1994, 27, 299–307. [Google Scholar] [CrossRef]
- Spaziani, M.; Torre, M.D.; Stecchini, M.L. Changes of physicochemical, microbiological, and textural properties during ripening of Italian low-acid sausage. Proteolysis, sensory and volatile profiles. Meat Sci. 2009, 81, 77–85. [Google Scholar] [CrossRef]
- Mendonça, R.C.S.; Gouvêa, D.M.; Hungaro, H.M.; Sodreé, A.F.; Querol-Simon, A. Dynamics of the yeast flora in artisanal country style and industrial dry cured sausage (yeast in fermented sausage). Food Control 2013, 29, 143. [Google Scholar] [CrossRef] [Green Version]
- Aboagye, G.; Dall’Olio, S.; Tassone, F.; Zappaterra, M.; Carpino, S.; Nanni Costa, L. Apulo-Calabrese and crossbreed pigs show different physiological response and meat quality traits after short distance transport. Animals 2018, 8, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugliese, C.; Sirtori, F.; Ruiz, J.; Martin, D.; Parenti, S.; Franci, O. Effect of pasture on chestnut or acorn on fatty acid composition and aromatic profile of fat of Cinta Senese dry-cured ham. Grasas Aceites 2009, 60, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Palacios, T.; Antequera, T.; Durán, M.L.; Caro, A.; Rodríguez, P.G.; Ruiz, J. MRI-based analysis, lipid composition and sensory traits for studying Iberian dry-cured hams from pigs fed with different diets. Food Res. Int. 2010, 43, 248–254. [Google Scholar] [CrossRef]
- Hammad, S.; Pu, S.; Jones, P.J. Current evidence supporting the link between dietary fatty acids and cardiovascular disease. Lipids 2016, 51, 507–517. [Google Scholar] [CrossRef]
- Teye, G.A.; Sheard, P.R.; Whittington, F.M.; Nute, G.R.; Stewart, A.; Wood, J.D. Influence of dietary oils and protein level on pork quality. 1. Effects on muscle fatty acid composition, carcass, meat and eating quality. Meat Sci. 2006, 73, 157–165. [Google Scholar] [CrossRef]
- Marino, R.; Della Malva, A.; Seccia, A.; Caroprese, M.; Sevi, A.; Albenzio, M. Consumers’ expectations and acceptability for low saturated fat ‘salami’: Healthiness or taste? J. Sci. Food Agric. 2017, 97, 3515–3521. [Google Scholar] [CrossRef]
- Yu, K.; Shu, G. Fatty acid and transcriptome profiling of longissimus dorsi muscles between pig breeds differing in meat quality. Int. J. Biol. Sci. 2013, 9, 108. [Google Scholar] [CrossRef]
- Stiebing, A.; Kühne, D.; Rödel, W. Fettqualität. Einfluss auf die Lagerstabilität von schnittfester Rohwurst. Fleischwirtschaft (Frankfurt) 1993, 73, 1169–1172. [Google Scholar]
- Li, Y.; Liu, S. Reducing lipid peroxidation for improving colour stability of beef and lamb: On-farm considerations. J. Sci. Food Agric. 2012, 92, 719–726. [Google Scholar] [CrossRef]
- Department of Health. Evidence to the House of Commons Health Committee. Priority Setting in the NHS: Inquiry into the NHS Drugs Budget; Her Majesty’s Stationery Office: London, UK, 1994. [Google Scholar]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Ansorena, D.; Astiasarán, I. The use of linseed oil improves nutritional quality of the lipid fraction of dry-fermented sausages. Food Chem. 2004, 87, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Khosla, P.; Sundram, K. Effects of dietary fatty acid composition on plasma cholesterol. Prog. Lipid Res. 1996, 35, 93–132. [Google Scholar] [CrossRef]
- Del Nobile, M.A.; Conte, A.; Incoronato, A.L.; Panza, O.; Sevi, A.; Marino, R. New strategies for reducing the pork back-fat content in typical Italian salami. Meat Sci. 2009, 81, 263–269. [Google Scholar] [CrossRef]
- Bozkurt, H.; Bayram, M. Colour and textural attributes of sucuk during ripening. Meat Sci. 2006, 73, 344–350. [Google Scholar] [CrossRef]
- Maw, S.J.; Fowler, V.R.; Hamilton, M.; Petchey, A.M. Physical characteristics of pig fat and their relation to fatty acid composition. Meat Sci. 2003, 63, 185–190. [Google Scholar] [CrossRef]
- Ventanas, S.; Ventanas, J.; Tovar, J.; García, C.; Estévez, M. Extensive feeding versus oleic acid and tocopherol enriched mixed diets for the production of Iberian dry-cured hams: Effect on chemical composition, oxidative status and sensory traits. Meat Sci. 2007, 77, 246–256. [Google Scholar] [CrossRef]
- Carrapiso, A.I.; Tejeda, J.F.; Noguera, J.L.; Ibáñez-Escriche, N.; González, E. Effect of the genetic line and oleic acid-enriched mixed diets on the subcutaneous fatty acid composition and sensory characteristics of dry-cured shoulders from Iberian pig. Meat Sci. 2020, 159, 107933. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Franco, D. Fat effect on physico-chemical, microbial and textural changes through the manufactured of dry-cured foal sausage lipolysis, proteolysis and sensory properties. Meat Sci. 2012, 92, 704–714. [Google Scholar] [CrossRef]
- Bedia, M.; Serrano, R.; Bañón, S. Use of rustic pigs to manufacture pork salami free of colour and taste enhancers. Ital. J. Food Sci. 2012, 24, 223. [Google Scholar]
- de Lima, L.C.; Navarro, D.M.; Souza-Santos, L.P. Effect of diet on the fatty acid composition of the copepod Tisbe biminiensis. J. Crustacean Biol. 2013, 33, 372–381. [Google Scholar] [CrossRef] [Green Version]
- Erdmann, M.E.; Lautenschlaeger, R.; Zeeb, B.; Gibis, M.; Weiss, J. Effect of differently sized O/W emulsions loaded with rosemary extract on lipid oxidation in cooked emulsion-type sausages rich in n-3 fatty acids. LWT- Food Sci. Technol. 2017, 79, 496–502. [Google Scholar] [CrossRef]
- Pavlović, M.; Ostojić, S.; Zlatanović, S.; Mitić-Ćulafić, D.; Kovačević, O.; Micić, D. Physicochemical characterics of sugar beet molasses used as the medium for osmotic dehydration of pork meat. J. Process. Energy Agric. 2014, 18, 115–118. [Google Scholar]
Day | 1 | 30 | 60 | 120 | |
---|---|---|---|---|---|
M ± sE | M ± sE | M ± sE | M ± sE | ||
TAB 30 °C | BD | 5.62 ± 0.18 X | |||
SR | 4.96 ± 0.17 Y,A | 6.51 ± 0.22 B | 8.12 ± 0.17 X,C | 7.86 ± 0.17 xX,D | |
S50 | 5.2 ± 0.17 Z,A | 6.30 ± 0.16 B | 8.39 ± 0.17 Y,C | 8.24 ± 0.24 yX,C | |
S75 | 5.78 ± 0.16 X,A | 6.22 ± 0.39 aB | 7.18 ± 0.19 Z,bB | 9.22 ± 0.19 Y,C | |
Total coliforms | BD | 5.26 ± 0.12 X | |||
SR | 4.36 ± 0.14 Y,A | 3.37 ± 0.12 X,B | 2.97 ± 0.12 X,C | 1.39 ± 0.12 X,D | |
S50 | 4.19 ± 0.11 Y,A | 3.74 ± 0.13 Y,B | 3.33 ± 0.12 Y,C | 1.95 ± 0.11 Y,D | |
S75 | 4.15 ± 0.10 Y,A | 3.43 ± 0.20 B | 4.44 ± 0.12 Z,C | 1.40 ± 0.14 X,D | |
Lactic acid bacilli | BD | 4.19 ± 0.13 xX | |||
SR | 3.60 ± 0.16 Y,A | 5.94 ± 0.13 X,B | 7.49 ± 0.13 X,C | 7.76 ± 0.19 X,C | |
S50 | 4.01 ± 0.13 yX,A | 4.61 ± 0.15 Y,B | 8.42 ± 0.19 Y,C | 7.52 ± 0.18 X,D | |
S75 | 4.56 ± 0.17 Z,A | 4.66 ± 0.14 Y,A | 8.82 ± 0.14 Y,B | 6.62 ± 0.17 Y,C | |
Pseudomonas spp. | BD | 5.25 ± 0.10 X | |||
SR | 3.18 ± 0.11 Y,A | 1.34 ± 0.11 X,B | 3.57 ± 0.12 X,C | 4.15 ± 0.11 X,D | |
S50 | 5.20 ± 0.13 X,A | 2.83 ± 0.13 Y,B | 3.62 ± 0.16 X,C | 5.15 ± 0.11 Y,A | |
S75 | 5.70 ± 0.13 Z,A | 2.95 ± 0.10 Y,B | 2.91 ± 0.10 Y,B | 3.48 ± 0.16 Z,C | |
Yeasts | BD | 2.84 ± 0.13 X | |||
SR | 3.17 ± 0.12 xY,A | 4.83 ± 0.15 x,B | 5.63 ± 0.15 X,C | 3.93 ± 0.15 D | |
S50 | 3.40 ± 0.14 yY,A | 4.74 ± 0.17 B | 4.84 ± 0.14 Y,B | 4.14 ± 0.17 C | |
S75 | 3.85 ± 0.13 Z,A | 4.43 ± 0.17 y,B | 4.90 ± 0.14 Y,C | 3.88 ± 0.13 A | |
Molds | BD | 2.56 ± 0.10 xX | |||
SR | 2.78 ± 0.12 yX,A | 4.84 ± 0.16 X,B | 4.82 ± 0.10 B | 3.69 ± 0.10 xX,C | |
S50 | 3.21 ± 0.09 Y,A | 4.87 ± 0.11 X,B | 4.78 ± 0.16 B | 3.85 ± 0.11 yX,C | |
S75 | 3.88 ± 0.10 Z,A | 5.43 ± 0.10 Y,B | 4.79 ± 0.16 C | 4.39 ± 0.10 Y,D | |
pH | SR | 5.97 ± 0.01 X,A | 5.17 ± 0.01 X,B | 5.29 ± 0.03 X,C | 5.54 ± 0.00 X,D |
S50 | 5.96 ± 0.02 X,A | 5.08 ± 0.01 Y,B | 5.18 ± 0.02 xY,C | 5.51 ± 0.01 Y,D | |
S75 | 5.75 ± 0.03 Y,A | 5.13 ± 0.00 Z,B | 5.11 ± 0.03 yY,B | 5.29 ± 0.01 Z,C | |
aw | SR | 0.978 ± 0.002 A | 0.837 ± 0.013 B | 0.848 ± 0.009 B | 0.794 ± 0.008 X,C |
S50 | 0.976 ± 0.001 x,A | 0.863 ± 0.004 X,B | 0.854 ± 0.005 B | 0.835 ± 0.004 Y,C | |
S75 | 0.978 ± 0.000 y,A | 0.825 ± 0.003 Y,aB | 0.849 ± 0.006 C | 0.837 ± 0.005 Y,bC |
Day | 1 | 30 | 60 | 120 | |
---|---|---|---|---|---|
M ± sE | M ± sE | M ± sE | M ± sE | ||
C14:0 | SR | 1.76 ± 0.02 X,a,A | 1.68 ± 0.03 X,b | 1.51 ± 0.06 X,a,B | 1.81 ± 0.04 X,a,A |
S50 | 1.69 ± 0.01 Y,A | 1.52 ± 0.02 Y,B | 1.44 ± 0.04 X,a,B | 1.56 ± 0.01 Y,b,B | |
S75 | 1.44 ± 0.04 Z,A | 1.40 ± 0.02 Z,A | 1.26 ± 0.04 Y,B | 1.33 ± 0.01 Z,B | |
C16:0 | SR | 24.26 ± 0.04 X,A | 25.44 ± 0.05 X,B | 24.24 ± 0.14 X,A | 26.04 ± 0.04 X,B |
S50 | 23.38 ± 0.04 Y,A | 24.16 ± 0.02 Y,a,B | 23.13 ± 0.04 Y,C | 24.06 ± 0.04 Y,b,B | |
S75 | 22.00 ± 0.04 Z,A | 22.57 ± 0.04 Z,B | 21.71 ± 0.06 Z,C | 22.33 ± 0.03 Z,D | |
C18:0 | SR | 15.58 ± 0.02 X,A | 14.48 ± 0.16 X,B | 15.10 ± 0.09 X,C | 15.10 ± 0.09 X,D |
S50 | 13.27 ± 0.20 Y,a | 12.80 ± 0.07 Y,b | 12.79 ± 0.03 Y,b | 12.84 ± 0.04 Y,b | |
S75 | 12.61 ± 0.03 Z,a,A | 11.76 ± 0.01 Z,a,B | 12.15 ± 0.15 Z,b,C | 12.31 ± 0.12 Z,b,C | |
C16:1 | SR | 2.24 ± 0.03 x,X,a | 2.16 ± 0.01 X,b | 2.25 ± 0.06 | 2.28 ± 0.09 |
S50 | 2.55 ± 0.07 Y,A | 2.26 ± 0.02 Y,a,B | 2.17 ± 0.02 A,B | 2.46 ± 0.09 b,A | |
S75 | 2.33 ± 0.03 y,X,A | 2.27 ± 0.01 Y,a,A | 2.11 ± 0.05 B | 2.42 ± 0.07 b,A | |
C18:1n9c | SR | 41.97 ± 0.13 X,A | 42.18 ± 0.10 X,A | 43.22 ± 0.17 X,a,B | 41.70 ± 0.61 X,b |
S50 | 44.36 ± 0.11 Y,A | 45.46 ± 0.01 Y,a,B | 45.40 ± 0.03 Y,b,B | 45.72 ± 0.02 Y,C | |
S75 | 46.72 ± 0.04 Z,A | 47.65 ± 0.10 Z,B | 47.83 ± 0.08 Z,B | 46.54 ± 0.09 Z,A | |
C18:1n9t | SR | 1.05 ± 0.03 x,A | 1.37 ± 0.01 X,a,B | 1.23 ± 0.04 X,C | 1.12 ± 0.10 x,X,b |
S50 | 0.94 ± 0.04 y,A | 0.89 ± 0.02 Y,A | 0.93 ± 0.00 Y,A | 0.63 ± 0.03 Y,B | |
S75 | 0.96 ± 0.03 y,a,A | 0.83 ± 0.06 Y,b,A | 0.79 ± 0.02 Z,B | 1.48 ± 0.09 y,X,C | |
C20:1n9 | SR | 0.45 ± 0.01 A | 0.50 ± 0.01 x,B | 1.01 ± 0.02 X,C | 0.76 ± 0.16 |
S50 | 0.47 ± 0.02 A | 0.52 ± 0.02 B | 1.64 ± 0.05 Y,A | 0.49 ± 0.02 X,B | |
S75 | 0.48 ± 0.02 A | 0.55 ± 0.02 y,B | 1.38 ± 0.04 Z,C | 1.04 ± 0.01 Y,D | |
C18:2n6c | SR | 10.53 ± 0.18 X,A | 10.23 ± 0.00 X,A | 9.41 ± 0.03 X,B | 10.14 ± 0.48 |
S50 | 11.33 ± 0.11 Y,A | 10.30 ± 0.04 X,B | 10.25 ± 0.09 Y,B | 9.63 ± 0.12 C | |
S75 | 11.43 ± 0.06 Y,A | 10.77 ± 0.05 Y,B | 10.45 ± 0.26 Y,a,B | 9.87 ± 0.03 b,C | |
C18:3n3 | SR | 0.31 ± 0.03 a,A | 0.32 ± 0.02 x,A | 0.41 ± 0.01 X,B | 0.47 ± 0.05 x,b,B |
S50 | 0.31 ± 0.03 a,A | 0.38 ± 0.00 y,b,A | 0.49 ± 0.03 Y,B | 0.60 ± 0.01 y,X,C | |
S75 | 0.32 ± 0.02 A | 0.36 ± 0.07 a | 0.46 ± 0.01 Y,B | 0.53 ± 0.02 y,Y,b,C | |
C20:4n6 | SR | 0.53 ± 0.01 x | 0.54 ± 0.01 x,a | 0.54 ± 0.01 X,a | 0.47 ± 0.03 x,b |
S50 | 0.51 ± 0.01 y,A | 0.56 ± 0.02 X,a | 0.58 ± 0.01 Y,B | 0.49 ± 0.03 x,b,A | |
S75 | 0.52 ± 0.01 A | 0.64 ± 0.02 y,Y,a,B | 0.65 ± 0.02 Z,a,B | 0.57 ± 0.03 y,b | |
ΣSFA | SR | 42.44 ± 0.10 X,A | 42.39 ± 0.09 X,a,A | 41.61 ± 0.18 X.B | 42.66 ± 0.09 X,b,A |
S50 | 39.22 ± 0.17 Y,A | 39.30 ± 0.07 Y,A | 38.16 ± 0.09 Y,B | 39.43 ± 0.05 Y,A | |
S75 | 36.93 ± 0.02 Z,A | 36.53 ± 0.05 Z,a,B | 35.93 ± 0.21 Z,b,B | 36.88 ± 0.11 Z,A | |
ΣMUFA | SR | 45.95 ± 0.08 X,A | 46.47 ± 0.12 X,B | 47.96 ± 0.17 X,a,C | 46.13 ± 0.80 X,b |
S50 | 48.55 ± 0.23 Y,A | 49.40 ± 0.04 Y,B | 50.42 ± 0.05 Y,C | 49.72 ± 0.07 Y,D | |
S75 | 50.72 ± 0.05 Z,A | 51.62 ± 0.03 Z,a,B | 52.43 ± 0.03 Z,C | 51.90 ± 0.11 Z,b,B | |
ΣPUFA | SR | 11.45 ± 0.14 X,a,A | 11.15 ± 0.01 X,b,A | 10.43 ± 0.06 X,B | 11.29 ± 0.59 |
S50 | 12.23 ± 0.07 Y,A | 11.30 ± 0.01 Y,B | 11.42 ± 0.03 Y,C | 10.86 ± 0.10 X,D | |
S75 | 12.35 ± 0.08 Y,a,A | 11.85 ± 0.08 Z,B | 11.64 ± 0.23 Y,b | 11.19 ± 0.02 Y,C | |
n-3 | SR | 0.31 ± 0.03 a,A | 0.32 ± 0.02 x,A | 0.41 ± 0.01 X,B | 0.47 ± 0.05 x,b,B |
S50 | 0.31 ± 0.03 a,A | 0.38 ± 0.00 y,b,A | 0.49 ± 0.03 Y,B | 0.60 ± 0.01 y,X,C | |
S75 | 0.32 ± 0.02 A | 0.36 ± 0.07 a | 0.46 ± 0.01 Y,B | 0.53 ± 0.02 Y,b,C | |
n-6 | SR | 11.13 ± 0.17 X,A | 10.83 ± 0.01 X,A | 10.02 ± 0.05 X,B | 10.82 ± 0.54 |
S50 | 11.92 ± 0.10 Y,A | 10.92 ± 0.01 Y,B | 10.93 ± 0.06 Y,B | 10.26 ± 0.09 X,C | |
S75 | 12.03 ± 0.06 Y,A | 11.49 ± 0.02 Z,B | 11.18 ± 0.22Y,a,B | 10.66 ± 0.04 Y,b,C |
Day | 1 | 30 | 60 | 120 | |
---|---|---|---|---|---|
M ± sE | M ± sE | M ± sE | M ± sE | ||
M/S | SR | 1.08 ± 0.00 X,a,B | 1.10 ± 0.01 X,b,A | 1.15 ± 0.01 X,B | 1.08 ± 0.02 X,A |
S50 | 1.24 ± 0.01 Y,A | 1.26 ± 0.00 Y,A | 1.32 ± 0.01 Y,B | 1.26 ± 0.00 Y,A | |
S75 | 1.14 ± 0.23 | 1.41 ± 0.00 Z,A | 1.46 ± 0.01 Z,B | 1.41 ± 0.01 Z,A | |
P/S | SR | 0.27 ± 0.00 X,A | 0.26 ± 0.00 X,A | 0.25 ± 0.00 X,B | 0.27 ± 0.01 X |
S50 | 0.31 ± 0.00 Y,A | 0.29 ± 0.00 Y,B | 0.30 ± 0.00 Y,C | 0.28 ± 0.00 X,D | |
S75 | 0.28 ± 0.05 | 0.32 ± 0.00 Z,A | 0.32 ± 0.01 Z,a | 0.30 ± 0.00 Y,b,B | |
Ai | SR | 0.55 ± 0.00 X,A | 0.56 ± 0.00 X,B | 0.52 ± 0.00 X,C | 0.58 ± 0.01 X,D |
S50 | 0.50 ± 0.00 Y,A | 0.50 ± 0.00 Y,A | 0.47 ± 0.00 Y,B | 0.50 ± 0.00 Y,A | |
S75 | 0.44 ± 0.00 Z,A | 0.45 ± 0.00 Z,a,A | 0.42 ± 0.00 Z,B | 0.44 ± 0.00 Z,b,A | |
Ti | SR | 1.41 ± 0.00 X,A | 1.40 ± 0.00 X,a,A | 1.35 ± 0.01 X,B | 1.39 ± 0.00 X,b,C |
S50 | 1.23 ± 0.01 Y,A | 1.23 ± 0.00 Y,a,A | 1.16 ± 0.01 Y,B | 1.21 ± 0.01 Yb,A | |
S75 | 1.11 ± 0.01 Z,a,A | 1.09 ± 0.01 Z,b,A | 1.06 ± 0.01 Z,B | 1.09 ± 0.01 Z,b,A | |
h/H | SR | 2.21 ± 0.01 X,A | 2.13 ± 0.00 X,B | 2.27 ± 0.01 X,C | 2.06 ± 0.01 X,D |
S50 | 2.42 ± 0.01 Y,A | 2.36 ± 0.00 Y,B | 2.52 ± 0.01 Y,C | 2.36 ± 0.01 Y,B | |
S75 | 2.69 ± 0.02 Z,a,A | 2.65 ± 0.00 Z,b,A | 2.79 ± 0.01 Z,B | 2.67 ± 0.01 Z,A |
Day | 30 | 60 | 120 | |
---|---|---|---|---|
M ± sE | M ± sE | M ± sE | ||
Hardness | SR | 31.13 ± 1.50 X,A | 35.07 ± 2.76 x,A | 70.05 ± 3.30 X,B |
S50 | 30.30 ± 1.24 X,A | 32.16 ± 2.09 A | 62.43 ± 2.62 X,B | |
S75 | 21.13 ± 1.05 Y,A | 29.29 ± 0.90 y,B | 44.31 ± 2.62 Y,C | |
Cohesiveness | SR | 0.46 ± 0.03 | 0.45 ± 0.02 X | 0.45 ± 0.02 x |
S50 | 0.47 ± 0.02 | 0.50 ± 0.02 | 0.47 ± 0.01 | |
S75 | 0.54 ± 0.10 | 0.54 ± 0.01 Y,A | 0.43 ± 0.01 y,B | |
Springiness | SR | 0.97 ± 0.04 A | 0.90 ± 0.01 X,A | 0.86 ± 0.01 x,B |
S50 | 1.03 ± 0.05 A | 0.84 ± 0.02 Y,B | 0.93 ± 0.02 y,A | |
S75 | 1.01 ± 0.06 a | 0.87 ± 0.02 b | 0.90 ± 0.02 y | |
Gumminess | SR | 14.19 ± 0.92 A | 16.13 ± 1.76 A | 31.49 ± 1.94 X,B |
S50 | 14.20 ± 1.00 A | 15.82 ± 0.95 A | 29.14 ± 1.66 X,B | |
S75 | 11.33 ± 2.02 a,A | 15.75 ± 0.65 b,A | 19.23 ± 1.50 Y,B | |
Chewiness | SR | 13.60 ± 0.73 A | 14.45 ± 1.58 A | 26.98 ± 1.66 X,B |
S50 | 14.36 ± 0.86 A | 13.22 ± 0.73 A | 26.77 ± 1.38 X,B | |
S75 | 11.15 ± 1.80 A | 13.77 ± 0.62 a | 17.36 ± 1.43 Y,b,B | |
Adhesiveness | SR | −2.03 ± 0.57 X,A | −3.38 ± 0.72 x,A | −10.18 ± 2.12 X,B |
S50 | −6.44 ± 1.26 Y,A | −1.75 ± 0.46 B | −18.01 ± 1.47 Y,C | |
S75 | −4.35 ± 1.12 a,A | −1.74 ± 0.35 y,b,A | −12.09 ± 2.61 B | |
Resilience | SR | 0.29 ± 0.08 | 0.23 ± 0.03 | 0.18 ± 0.05 |
S50 | 0.39 ± 0.11 a | 0.17 ± 0.03 b | 0.17 ± 0.04 | |
S75 | 0.36 ± 0.11 | 0.17 ± 0.02 | 0.28 ± 0.10 |
Sensory Features | Chemical Composition | Oxidation Index | |||||||
---|---|---|---|---|---|---|---|---|---|
C16:0 | C18:0 | C18:1n9c | C18:2n6c | TBARS | |||||
Appearance | |||||||||
Redness | −0.233 | −0.319 | 0.208 | 0.358 | 0.155 | ||||
Brightness | −0.505 | ** | −0.220 | 0.500 | ** | 0.044 | −0.577 | ** | |
Chroma | −0.282 | −0.186 | 0.155 | 0.190 | 0.049 | ||||
Texture | |||||||||
Hardness | 0.485 | * | 0.188 | −0.406 | * | −0.440 | * | 0.783 | ** |
Cohesiveness | −0.292 | −0.334 | 0.345 | 0.288 | −0.107 |
Day | 30 | 60 | 120 | |
---|---|---|---|---|
M ± sE | M ± sE | M ± sE | ||
L* | SR | 43.97 ± 1.04 X,A | 44.59 ± 0.12 X,A | 35.81 ± 1.94 X,B |
S50 | 45.21 ± 1.22 A | 43.69 ± 0.10 Y,a | 39.44 ± 1.70 x,b,B | |
S75 | 46.98 ± 0.21 Y,A | 45.53 ± 1.56 | 43.24 ± 0.11 Y,y,B | |
a* | SR | 12.07 ± 0.26 A | 8.78 ± 0.14 X,B | 11.61 ± 0.31 A |
S50 | 11.60 ± 0.13 | 11.76 ± 0.16 Y | 10.61 ± 0.80 | |
S75 | 10.33 ± 0.97 A | 13.84 ± 0.30 Z,B | 12.57 ± 1.42 | |
b* | SR | 5.48 ± 1.04 x | 6.91 ± 0.55 X | 6.03 ± 0.26 x |
S50 | 4.82 ± 0.55 x,A | 8.77 ± 0.20 Y,B | 3.81 ± 0.67 y,X,A | |
S75 | 2.79 ± 0.81 y,A | 8.17 ± 0.38 B | 8.05 ± 0.87 Y,B | |
Chroma | SR | 13.42 ± 0.26 x,A | 11.22 ± 0.27 X,B | 13.10 ± 0.30 A |
S50 | 12.61 ± 0.20 y,A | 14.67 ± 0.25 Y,B | 11.31 ± 0.96 A | |
S75 | 10.76 ± 1.11 y,a,A | 16.09 ± 0.36 Z,B | 14.93 ± 1.66 b | |
Hue angle | SR | 24.12 ± 4.38 a | 37.95 ± 2.54 x,b,A | 27.42 ± 1.20 X,B |
S50 | 22.43 ± 2.40 x,A | 36.71 ± 0.30 X,B | 19.10 ± 2.23 Y,A | |
S75 | 13.68 ± 3.50 y,A | 30.50 ± 1.16 y,Y,B | 32.66 ± 0.22 Z,B |
Day | 1 | 30 | 60 | 120 | |
---|---|---|---|---|---|
M ± sE | M ± sE | M ± sE | M ± sE | ||
TBARS * | SR | 0.042 ± 0.001 X,A | 0.037 ± 0.004 X,A,B | 0.034 ± 0 X,B | 0.300 ± 0 X,x,C |
S50 | 0.070 ± 0.002 Y,A | 0.077 ± 0 Y,B | 0.085 ± 0.002 Y,C | 0.303 ± 0.001 X,y,D | |
S75 | 0.102 ± 0.001 Z,A | 0.140 ± 0 Z,B | 0.160 ± 0 Z,C | 0.264 ± 0 Y,D |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambrosio, R.L.; Smaldone, G.; Di Paolo, M.; Vollano, L.; Ceruso, M.; Anastasio, A.; Marrone, R. Effects of Different Levels of Inclusion of Apulo-Calabrese Pig Meat on Microbiological, Physicochemical and Rheological Parameters of Salami during Ripening. Animals 2021, 11, 3060. https://doi.org/10.3390/ani11113060
Ambrosio RL, Smaldone G, Di Paolo M, Vollano L, Ceruso M, Anastasio A, Marrone R. Effects of Different Levels of Inclusion of Apulo-Calabrese Pig Meat on Microbiological, Physicochemical and Rheological Parameters of Salami during Ripening. Animals. 2021; 11(11):3060. https://doi.org/10.3390/ani11113060
Chicago/Turabian StyleAmbrosio, Rosa Luisa, Giorgio Smaldone, Marika Di Paolo, Lucia Vollano, Marina Ceruso, Aniello Anastasio, and Raffaele Marrone. 2021. "Effects of Different Levels of Inclusion of Apulo-Calabrese Pig Meat on Microbiological, Physicochemical and Rheological Parameters of Salami during Ripening" Animals 11, no. 11: 3060. https://doi.org/10.3390/ani11113060
APA StyleAmbrosio, R. L., Smaldone, G., Di Paolo, M., Vollano, L., Ceruso, M., Anastasio, A., & Marrone, R. (2021). Effects of Different Levels of Inclusion of Apulo-Calabrese Pig Meat on Microbiological, Physicochemical and Rheological Parameters of Salami during Ripening. Animals, 11(11), 3060. https://doi.org/10.3390/ani11113060