Combining Grape Byproducts to Maximise Biological Activity of Polyphenols in Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Grape Byproducts
2.2. Birds and Diets
2.3. Collection of Samples and Measurements
2.4. Chemical Analyses
2.4.1. Total Extractable Polyphenol and Tannin Contents
2.4.2. Plasma and Meat α-Tocopherol Quantification
2.4.3. Meat Lipid Oxidation
2.5. Calculations and Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Intestinal Utilization of Protein and Polyphenols
3.3. Plasma and Meat α-Tocopherol Concentration
3.4. Meat Lipid Oxidation (Thiobarbituric Acid Reactive Substances, TBARS)
4. Discussion
4.1. Growth Performance and Protein and Polyphenol Intestinal Utilization
4.2. Plasma and Meat α-Tocopherol Concentration
4.3. Meat Lipid Oxidation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Food Losses and Food Waste-Extent, Causes and Prevention; FAO: Rome, Italy, 2011; pp. 1–37. [Google Scholar]
- Brenes, A.; Viveros, A.; Chamorro, S.; Arija, I. Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Anim. Feed Sci. Technol. 2016, 211, 1–17. [Google Scholar] [CrossRef]
- Romero-Huelva, M.; Ramírez-Fenosa, M.A.; Planelles-González, R.; García-Casado, P.; Molina-Alcaide, E. Can by-products replace conventional ingredients in concentrate of dairy goat diet? J. Dairy Sci. 2017, 100, 4500–4512. [Google Scholar] [CrossRef] [Green Version]
- Nudda, A.; Buffa, G.; Atzori, A.S.; Cappai, M.G.; Caboni, P.; Fais, G.; Pulina, G. Small amounts of agro-industrial byproducts in dairy ewes diets affects milk production traits and hematological parameters. Anim. Feed Sci. Technol. 2019, 251, 76–85. [Google Scholar] [CrossRef]
- Iuga, M.; Mironeasa, S. Potential of grape byproducts as functional ingredients in baked goods and pasta. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2473–2505. [Google Scholar] [CrossRef] [PubMed]
- Lapornik, B.; Prošek, M.; Golc Wondra, A. Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng. 2005, 71, 214–222. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Jourdes, M.; Femenia, A.; Simal, S.; Rosselló, C.; Teissedre, P.L. Characterization of polyphenols and antioxidant potential of white grape pomace byproducts (Vitis vinifera L.). J. Agric. Food Chem. 2013, 61, 11579–11587. [Google Scholar] [CrossRef] [PubMed]
- Iora, S.R.; Maciel, G.M.; Zielinski, A.A.; Silva, M.V.; Pontes, P.V.A.; Haminiuk, C.W. Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. Int. J. Food Sci. Technol. 2014, 50, 60–69. [Google Scholar] [CrossRef]
- Viveros, A.; Chamorro, S.; Pizarro, M.; Arija, I.; Centeno, C.; Brenes, A. Effects of dietary polyphenol rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult. Sci. 2011, 90, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, S.; Romero, C.; Brenes, A.; Sánchez-Patán, F.; Bartolomé, B.; Viveros, A.; Arija, I. Impact of a sustained consumption of grape extract on digestion, gut microbial metabolism and intestinal barrier in broiler chickens. Food Funct. 2019, 10, 1444–1454. [Google Scholar] [CrossRef] [Green Version]
- Romero, C.; Nardoia, M.; Arija, I.; Viveros, A.; Rey, A.I.; Prodanov, M.; Chamorro, S. Feeding broiler chickens with grape seed and skin meals to enhance α- and γ-tocopherol content and meat oxidative stability. Antioxidants 2021, 10, 699. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.R.; Bulnes, P.; Zuñiga, M.C.; Pérez-Jiménez, J.; Torres, J.L.; Mateos-Martin, M.L.; Agosin, E.; Pérez-Correa, J.R. Effect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation. J. Agric. Food Chem. 2013, 61, 6929–6936. [Google Scholar] [CrossRef]
- Nardoia, M.; Romero, C.; Brenes, A.; Arija, I.; Viveros, A.; Ruiz-Capillas, C.; Chamorro, S. Addition of fermented and unfermented grape skin in broilers’ diets: Effect on digestion, growth performance, intestinal microbiota and oxidative stability of meat. Animal 2020, 14, 1371–1381. [Google Scholar] [CrossRef]
- Kelm, M.A.; Versari, A.; Parpinello, G.A.; Thorngate, J.H. Mass spectral characterization of Uva Longanesi seed and skin extracts. Am. J. Enol. Vitic. 2012, 63, 402–406. [Google Scholar] [CrossRef]
- Rodríguez Montealegre, R.; Romero Peces, R.; Chacón Vozmediano, J.L.; Martínez Gascueña, J.; García Romero, E. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J. Food Compos. Anal. 2006, 19, 687–693. [Google Scholar] [CrossRef]
- Labarbe, B.; Cheynier, V.; Brossaud, F.; Souquet, J.M.; Moutounet, M. Quantitative fractionation of grape proanthocyanidins according to their degree of polymerization. J. Agric. Food Chem. 1999, 47, 2719–2723. [Google Scholar] [CrossRef]
- Gungor, E.; Altop, A.; Erener, G. Effect of raw and fermented grape pomace on the growth performance, antioxidant status, intestinal morphology, and selected bacterial species in broiler chicks. Animals 2021, 11, 364. [Google Scholar] [CrossRef]
- Colon, M.; Nerín, C. Synergistic, antagonistic and additive interactions of green tea polyphenols. Eur. Food Res. Technol. 2016, 242, 211–220. [Google Scholar] [CrossRef]
- Slavova-Kazakova, A.; Janiak, M.A.; Sulewska, K.; Kancheva, V.D.; Karamać, M. Synergistic, additive, and antagonistic antioxidant effects in the mixtures of curcumin with (−)-epicatechin and with a green tea fraction containing (−)-epicatechin. Food Chem. 2021, 360, 129994. [Google Scholar] [CrossRef]
- Chamorro, S.; Viveros, A.; Centeno, C.; Romero, C.; Arija, I.; Brenes, A. Effects of dietary grape seed extract on growth performance amino acid digestibility and plasma lipids and mineral content in broiler chicks. Animal 2013, 7, 555–561. [Google Scholar] [CrossRef] [Green Version]
- NRC. Nutrient Requirements of Poultry, 9th ed.; The National Academies Press: Washington, DC, USA, 1994; pp. 1–157. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists International: Arlington, VA, USA, 1995. [Google Scholar]
- Siriwan, P.; Bryden, W.L.; Mollah, Y.; Annison, E.F. Measurements of endogenous amino acid losses in poultry. Brit. Poult. Sci. 1993, 34, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Montreau, F.R. Sur le dosage des composés phénoliques totaux dans les vins par la méthode Folin-Ciocalteu. J. Int. Sci. Vigne Vin. 1972, 6, 397–404. [Google Scholar] [CrossRef]
- Waterman, P.G.; Mole, S. Analysis of phenolic plant metabolites. In Methods in Ecology; Lawton, J.H., Likens, G.E., Eds.; Blackwell: Oxford, UK, 1994; pp. 83–85. [Google Scholar]
- Buttriss, J.L.; Diplock, A.T. High-performance liquid chromatography methods for vitamin E in tissues. Method Enzymol. 1984, 105, 131–138. [Google Scholar]
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiu, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. J. Agric. Food Chem. 1994, 42, 1931–1937. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Goñi, I.; Centeno, C.; Sáyago-Ayerdy, S.G.; Arija, I.; Saura-Calixto, F. Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens. Poult. Sci. 2008, 87, 307–316. [Google Scholar] [CrossRef]
- Turcu, R.P.; Panaite, T.D.; Untea, A.E.; Șoica, C.; Iuga, M.; Mironeasa, S. Effects of supplementing grape pomace to broilers fed polyunsaturated fatty acids enriched diets on meat quality. Animals 2020, 10, 947. [Google Scholar] [CrossRef]
- Tag El-Din, T.H.; Awad, A.L.; Sherief, A.A. Effect of using grape seeds on productive performance and nutrients utilization for broiler chicks during fattening period. J. Anim. Poult. Prod. 2019, 10, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Chamorro, S.; Viveros, A.; Rebolé, A.; Arija, I.; Romero, C.; Álvarez, I.; Rey, A.; Brenes, A. Addition of exogenous enzymes to diets containing grape pomace: Effects on intestinal utilization of catechins and antioxidant status of chickens. Food Res. Int. 2017, 96, 226–234. [Google Scholar] [CrossRef]
- Ortiz, L.T.; Centeno, C.; Treviño, J. Tannins in faba bean seeds: Effects on the digestion of protein and amino acids in growing chicks. Anim. Feed Sci. Technol. 1993, 41, 271–278. [Google Scholar] [CrossRef]
- Monagas, M.; Urpi-Sarda, M.; Sánchez-Patán, F.; Llorach, R.; Garrido, I.; Gómez-Cordovés, C.; Andrés-Lacueva, C.; Bartolomé, B. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct. 2010, 1, 233–253. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-González, I.; Chamorro, S.; Pérez-Jiménez, J.; López-Andrés, P.; Álvarez-Acero, I.; Herrero, A.M.; Nardoia, M.; Brenes, A.; Viveros, A.; Arija, I.; et al. Phenolic metabolites in plasma and thigh meat of chickens supplemented with grape byproducts. J. Agric. Food Chem. 2019, 67, 4463–4471. [Google Scholar] [CrossRef]
- Ky, I.; Lorrain, B.; Kolbas, N.; Crozier, A.; Teissedre, P.L. Wine by-products: Phenolic characterization and antioxidant activity evaluation of grapes and grape pomaces from six different French grape varieties. Molecules 2014, 19, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appeldoorn, M.M.; Vincken, J.P.; Aura, A.M.; Hollman, P.C.; Gruppen, H. Procyanidins dimers are metabolized by human microbiota with 2-(3,4-dihydroxyphenil) acetic acid and 5-(3,4-dihydroxyphenil)-γ-valerolactone as the major metabolites. J. Agric. Food Chem. 2009, 57, 1084–1092. [Google Scholar] [CrossRef]
- Kawabata, K.; Yoshioka, Y.; Terao, J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules 2019, 24, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goñi, I.; Brenes, A.; Centeno, C.; Viveros, A.; Saura-Calixto, F.; Rebolé, A.; Arija, I.; Esteve, R. Effect of dietary grape pomace and vitamin E on growth performance, nutrient digestibility, and susceptibility to meat lipid oxidation. Poult. Sci. 2007, 86, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Wie, M.; Sung, J.; Choi, Y.; Kim, Y.; Sang Jeong, H.; Lee, Y. Tocopherols and tocotrienols in grape seeds from 14 cultivars grown in Korea. Eur. J. Lipid Sci. Technol. 2009, 111, 1255–1258. [Google Scholar] [CrossRef]
- Busse-Valverde, N.; Gómez-Plaza, E.; López-Roca, J.M.; Gil-Muñoz, R.; Fernández-Fernández, J.I.; Bautista-Ortín, A.B. Effect of different enological practices on skin and seed proanthocyanidins in three varietal wines. J. Agric. Food Chem. 2010, 58, 11333–11339. [Google Scholar] [CrossRef]
- Jerez, M.; Selga, A.; Sineiro, J.; Torres, J.L.; Núñez, M.J. A comparison between bark extracts from Pinus pinaster and Pinus radiata: Antioxidant activity and procyanidin composition. Food Chem. 2007, 100, 439–444. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, X.; Zhang, M.; Blanchard, C. Phenolics, flavonoids, proanthocyanidin and antioxidant activity of brown rice with different pericarp colors following storage. J. Stored Prod. Res. 2014, 59, 120–125. [Google Scholar] [CrossRef]
- Requena, T.; Monagas, M.; Pozo-Bayón, M.A.; Martín-Álvarez, P.J.; Bartolomé, B.; del Campo, R.; Ávila, M.; Martínez-Cuesta, M.C.; Peláez, C.; Moreno-Arribas, M.V. Perspectives of the potential implications of wine polyphenols on human oral and gut microbiota. Trends Food Sci. Technol. 2010, 21, 332–344. [Google Scholar] [CrossRef]
- Alldritt, I.; Whitham-Agut, B.; Sipin, M.; Studholme, J.; Trentacoste, A.; Tripp, J.A.; Cappai, M.G.; Ditchfield, P.; Devièse, T.; Hedges, R.E.M.; et al. Metabolomics reveals diet-derived plant polyphenols accumulate in physiological bone. Sci. Rep. 2019, 9, 8047. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, P.; Ciappellano, S.; Gardana, C.; Bramati, L.; Pietta, P. Procyanidins from Vitis vinifera seeds: In vivo effects on oxidative stress. J. Agric. Food Chem. 2002, 50, 6217–6221. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, J.; Pazos, M.; Torres, J.L.; Medina, I. Antioxidant mechanism of grape procyanidins in muscle tissues: Redox interactions with endogenous ascorbic acid and α-tocopherol. Food Chem. 2012, 134, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Experimental Diets | |||||
---|---|---|---|---|---|---|
Control | Control GS 1 20 + GK 2 20 | Control GS30 + GK10 | Control GS10 + GK30 | Control + GS40 | Control + GK40 | |
Corn (8.1% crude protein) | 451 | 459 | 463 | 454 | 468 | 453 |
Soybean (48% crude protein) | 373 | 364 | 362 | 364 | 360 | 362 |
Sunflower oil | 86.0 | 83.0 | 82.0 | 84.0 | 81.0 | 85.0 |
Salt | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
Monocalcium phosphate | 15.3 | 15.2 | 15.5 | 15.5 | 15.5 | 15.5 |
Calcium carbonate | 15.6 | 15.3 | 15.3 | 15.3 | 15.3 | 15.3 |
Vitamin-mineral premix 3 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
DL-Methionine | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Straw | 42.0 | 6.0 | 5.0 | 10.0 | 3.0 | 12.0 |
Grape seed | - | 20.0 | 30.0 | 10.0 | 40.0 | - |
Grape skin | - | 20.0 | 10.0 | 30.0 | - | 40.0 |
Celite 4 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Analysed composition | ||||||
Crude protein | 203 | 208 | 207 | 194 | 209 | 205 |
Ether extract | 109 | 109 | 108 | 109 | 108 | 110 |
Calculated composition | ||||||
AME 5 (kcal/kg) | 3095 | 3089 | 3089 | 3080 | 3093 | 3076 |
Crude fibre | 46.0 | 46.0 | 46.0 | 46.0 | 46.0 | 46.0 |
Lysine | 12.1 | 12.0 | 12.0 | 12.1 | 12.2 | 12.2 |
Meth+Cys | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 |
Calcium | 10.0 | 10.0 | 10.0 | 10.0 | 11.0 | 11.0 |
Available P | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |
Extractable grape polyphenols (g GAE 6/kg) | - | 2.1 | 2.6 | 1.5 | 3.2 | 0.9 |
Condensed tannins (g cyanidin/kg) | - | 0.48 | 0.47 | 0.49 | 0.46 | 0.50 |
Dietary Treatments | Daily Weight Gain (g/d) | Daily Feed Intake (g/d) | Feed Conversion Ratio |
---|---|---|---|
Control | 37.9 | 55.6 | 1.46 |
GS20 + GK20 | 37.0 | 56.2 | 1.52 |
GS30 + GK10 | 36.8 | 52.8 | 1.44 |
GS10 + GK30 | 36.6 | 57.2 | 1.54 |
GS40 | 38.6 | 56.1 | 1.46 |
GK40 | 36.9 | 55.2 | 1.50 |
SEM 1 | 0.933 | 1.73 | 0.042 |
p-value 2 | ns | ns | ns |
Dietary Treatments | Ileal Protein Digestibility (%) | Total Extractable Polyphenols (g GAE 1/100 g) | Condensed Tannins (mg Cyanidin/100 g) | ||
---|---|---|---|---|---|
Ileal | Excreta | Ileal | Excreta | ||
Control | 81.3 | 0.504 b | 0.462 c | 0.055 e | 0.056 c |
GS20 + GK20 | 78.5 | 0.680 a | 0.594 b | 0.140 bc | 0.065 b |
GS30 + GK10 | 77.7 | 0.675 a | 0.602 b | 0.121 cd | 0.069 b |
GS10 + GK30 | 78.6 | 0.686 a | 0.672 a | 0.164 ab | 0.083 a |
GS40 | 80.4 | 0.736 a | 0.591 b | 0.100 d | 0.066 b |
GK40 | 81.5 | 0.689 a | 0.669 a | 0.160 ab | 0.089 a |
SEM 2 | 1.70 | 0.024 | 0.019 | 0.009 | 0.003 |
p-value 3 | ns | *** | *** | *** | *** |
Dietary Treatments | Plasma α-Tocopherol (μg/mL) | Thigh Meat α-Tocopherol (μg/g) | |
---|---|---|---|
1 d 1 | 7 d | ||
Control | 7.06 d | 10.7 b | 0.474 e |
GS20 + GK20 | 9.69 ab | 15.7 a | 2.92 a |
GS30 + GK10 | 10.3 a | 14.8 a | 1.28 d |
GS10 + GK30 | 8.55 bc | 14.8 a | 2.34 ab |
GS40 | 7.88 cd | 16.6 a | 1.38 cd |
GK40 | 8.80 bc | 17.2 a | 2.06 bc |
SEM 2 | 0.424 | 1.20 | 0.261 |
p-value 3 | *** | ** | *** |
Dietary Treatments | TBARS (mg MDA/kg Meat) | |
---|---|---|
1 d 1 | 7 d | |
Control | 0.165 | 2.49 a |
GS20 + GK20 | 0.142 | 0.842 d |
GS30 + GK10 | 0.194 | 2.07 b |
GS10 + GK30 | 0.141 | 1.03 d |
GS40 | 0.170 | 1.62 c |
GK40 | 0.143 | 0.793 d |
SEM 2 | 0.016 | 0.145 |
p-value 3 | ns | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, C.; Nardoia, M.; Brenes, A.; Arija, I.; Viveros, A.; Chamorro, S. Combining Grape Byproducts to Maximise Biological Activity of Polyphenols in Chickens. Animals 2021, 11, 3111. https://doi.org/10.3390/ani11113111
Romero C, Nardoia M, Brenes A, Arija I, Viveros A, Chamorro S. Combining Grape Byproducts to Maximise Biological Activity of Polyphenols in Chickens. Animals. 2021; 11(11):3111. https://doi.org/10.3390/ani11113111
Chicago/Turabian StyleRomero, Carlos, Maria Nardoia, Agustín Brenes, Ignacio Arija, Agustín Viveros, and Susana Chamorro. 2021. "Combining Grape Byproducts to Maximise Biological Activity of Polyphenols in Chickens" Animals 11, no. 11: 3111. https://doi.org/10.3390/ani11113111
APA StyleRomero, C., Nardoia, M., Brenes, A., Arija, I., Viveros, A., & Chamorro, S. (2021). Combining Grape Byproducts to Maximise Biological Activity of Polyphenols in Chickens. Animals, 11(11), 3111. https://doi.org/10.3390/ani11113111