Effect of Dams and Suckling Lamb Feeding Systems on the Fatty Acid Composition of Suckling Lamb Meat
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Quality of Sucking Lamb Fat
3. Suckling Lamb Feeding System and Meat Fatty Acid Profile
3.1. Suckling Lambs from Ewes Grazing on Pasture
3.2. Suckling Lambs Fed Maternal Milk or Milk Replacers
3.3. Suckling Lambs from Ewes Fed Diets Containing Vegetable or Marine Oils
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pulina, G.; Milán, M.J.; Lavín, M.P.; Theodoridis, A.; Morin, E.; Capote, J.; Thomas, D.L.; Francesconi, A.H.D.; Caja, G. Invited review: Current production trends, farm structures, and economics of the dairy sheep and goat sectors. J. Dairy Sci. 2018, 101, 6715–6729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agricultural Organization of the United Nations (FAO). Meat & Meat Products. 2021. Available online: https://www.fao.org/ag/againfo/themes/en/meat/home.html (accessed on 12 October 2021).
- Nudda, A.; Battacone, G.; Boe, R.; Manca, M.G.; Rassu, S.P.G.; Pulina, G. Influence of outdoor and indoor rearing system of suckling lambs on fatty acid profile and lipid oxidation of raw and cooked meat. Ital. J. Anim Sci. 2013, 12, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Ferro, M.M.; Tedeschi, L.O.; Atzori, A.S. The comparison of the lactation and milk yield and composition of selected breeds of sheep and goats. Transl. Anim. Sci. 2017, 1, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.A.C.; Silva, S.R.; Mena, E.G.; Azevedo, J.M.T.D. Live weight and sex effects on carcass and meat quality of “Borrego terrincho–PDO” suckling lambs. Meat Sci. 2007, 77, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, B.; Gómez-Cortés, P.; Mantecón, A.R.; Juárez, M.; Manso, T.; De La Fuente, M.A. Effects of olive and fish oil Ca soaps in ewe diets on milk fat and muscle and subcutaneous tissue fatty-acid profiles of suckling lambs. Animal 2014, 8, 1178–1190. [Google Scholar] [CrossRef] [Green Version]
- Nudda, A.; Atzori, A.S.; Boe, R.; Francesconi, A.H.D.; Battacone, G.; Pulina, G. Seasonal variation in the fatty acid profile in meat of Sarda suckling lambs. Ital. J. Anim. Sci. 2019, 18, 488–497. [Google Scholar] [CrossRef] [Green Version]
- Lanza, M.; Bella, M.; Priolo, A.; Barbagallo, D.; Galofaro, V.; Landi, C.; Pennisi, P. Lamb meat quality as affected by a natural or artificial milk feeding regime. Meat Sci. 2006, 73, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Rassu, S.P.G.; Nudda, A.; Carzedda, C.; Battacone, G.; Bencini, R.; Pulina, G. A partial suckling regime increases milk production in Sarda dairy sheep without affecting meat quality of lambs. Small Rumin. Res. 2015, 125, 15–20. [Google Scholar] [CrossRef]
- Napolitano, F.; Cifuni, G.F.; Pacelli, C.; Riviezzi, A.M.; Girolami, A. Effect of artificial rearing on lamb welfare and meat quality. Meat Sci. 2002, 60, 307–315. [Google Scholar] [CrossRef]
- Fusaro, I.; Giammarco, M.; Chincarini, M.; Odintsov Vaintrub, M.; Palmonari, A.; Mammi, L.M.E.; Formigoni, A.; Di Giuseppe, L.; Vignola, G. Effect of ewe diet on milk and muscle fatty acid composition of suckling lambs of the protected geographical origin abbacchio romano. Animals 2020, 10, 25. [Google Scholar] [CrossRef] [Green Version]
- Nudda, A.; Cannas, A.; Correddu, F.; Atzori, A.S.; Lunesu, M.F.; Battacone, G.; Pulina, G. Sheep and goats respond differently to feeding strategies directed to improve the fatty acid profile of milk fat. Animals 2020, 10, 1290. [Google Scholar] [CrossRef]
- Nudda, A.; Correddu, F.; Cesarani, A.; Pulina, G.; Battacone, G. Functional odd-and branched-chain fatty acid in sheep and goat milk and cheeses. Dairy 2021, 2, 79–89. [Google Scholar] [CrossRef]
- Nudda, A.; Battacone, G.; Bee, G.; Boe, R.; Castanares, N.; Lovicu, M.; Pulina, G. Effect of linseed supplementation of the gestation and lactation diets of dairy ewes on the growth performance and the intramuscular fatty acid composition of their lambs. Animal 2015, 9, 800–809. [Google Scholar] [CrossRef]
- Addis, M.; Fiori, M.; Manca, C.; Riu, G.; Scintu, M.F. Muscle colour and chemical and fatty acid composition of “Agnello di Sardegna” PGI suckling lamb. Small Rumin. Res. 2013, 115, 51–55. [Google Scholar] [CrossRef]
- Nudda, A.; Battacone, G.; Boaventura Neto, O.; Cannas, A.; Francesconi, A.H.D.; Atzori, A.S.; Pulina, G. Feeding strategies to design the fatty acid profile of sheep milk and cheese. R Bras Zootec. 2014, 43, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, B.; Manca, M.G.; Mantecon, A.R.; Nudda, A.; Manso, T. Effects of linseed oil and natural or synthetic vitamin E supplementation in lactating ewes’ diets on meat fatty acid profile and lipid oxidation from their milk fed lambs. Meat Sci. 2015, 102, 79–89. [Google Scholar] [CrossRef]
- Calder, P.C. Functional roles of fatty acids and their effects on human health. J. Parenter. Enter. Nutr. 2015, 39, 18S–32S. [Google Scholar] [CrossRef] [PubMed]
- Juárez, M.; Lam, S.; Bohrer, B.M.; Dugan, M.E.; Vahmani, P.; Aalhus, J.; Juárez, A.; López-Campos, O.; Prieto, N.; Segura, J. Enhancing the nutritional value of red meat through genetic and feeding strategies. Foods 2021, 10, 872. [Google Scholar] [CrossRef] [PubMed]
- Lauritzen, L.; Hansen, H.S.; Jorgensen, M.H.; Michaelsen, K.F. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog. Lipid Res. 2001, 40, 1–94. [Google Scholar] [CrossRef]
- Koletzko, B.; Lien, E.; Agostoni, C.; Böhles, H.; Campoy, C.; Cetin, I.; Decsi, T.; Dudenhausen, J.W.; Dupont, C.; Forsyth, S.; et al. World association of perinatal medicine dietary guidelines working group. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: Review of current knowledge and consensus recommendations. J. Perinatal Med. 2008, 36, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Cardi, E.; Corrado, G.; Cavaliere, M.; Grandina, G.; Pacchiarotti, C.; Rea, P.; Mazza, M.L.; Nardelli, F.; Agazie, E. Rezza-Cardi’s diet as dietary treatment of short bowel syndrome. Gastroenterology 1998, 114, A869. [Google Scholar] [CrossRef]
- Martino, F.; Bruno, G.; Aprigliano, D.; Agolini, D.; Guido, F.; Giardini, O.; Businco, L. Effectiveness of a home-made meat based formula (the Rezza-Cardi diet) as a diagnostic tool in children with food induced a topic dermatitis. Ped. Allergy Immunol. 1998, 9, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Osorio, M.T.; Zumalacárregui, J.M.; Figueira, A.; Mateo, J. Fatty acid composition in subcutaneous, intermuscular and intramuscular fat deposits of suckling lamb meat: Effect of milk source. Small Rumin. Res. 2007, 73, 127–134. [Google Scholar] [CrossRef]
- FDA. FDA Backgrounder, The Food Label, B99-5. 1999. Available online: http://www.fda.gov (accessed on 22 October 2021).
- Serra, A.; Macciotta, N.P.P.; Mele, M.; Nudda, A.; Conte, G.; Secchiari, P. Effect of weight of slaughter and feeding regimen on conjugated linoleic acid and trans fatty acid content in lamb meat: A meta-analysis approach. Ital. J. Anim. Sci. 2009, 8, 540–542. [Google Scholar] [CrossRef] [Green Version]
- Nudda, A.; McGuire, M.K.; Battacone, G.; Manca, M.G.; Boe, R.; Pulina, G. Documentation of fatty acid profiles in lamb meat and lamb-based infant foods. J. Food Sci. 2011, 76, H43–H47. [Google Scholar] [CrossRef]
- Albenzio, M.; Santillo, A.; Avondo, M.; Nudda, A.; Chessa, S.; Pirisi, A.; Banni, S. Nutritional properties of small ruminant food products and their role on human health. Small Rumin. Res. 2016, 135, 3–12. [Google Scholar] [CrossRef]
- Díaz, M.T.; Álvarez, I.; De la Fuente, J.; Sañudo, C.; Campo, M.M.; Oliver, M.A.; Font i Furnols, M.; Montossi, F.; San Julia´n, R.; Nute, G.R.; et al. Fatty acid composition of meat from typical lamb production systems of Spain, United Kingdom, Germany and Uruguay. Meat Sci. 2005, 71, 256–263. [Google Scholar] [CrossRef]
- Mele, M.; Serra, A.; Pauselli, M.; Luciano, G.; Lanza, M.; Pennisi, P.; Conte, G.; Taticchi, A.; Esposto, S.; Morbidini, L. The use of stoned olive cake and rolled linseed in the diet of intensively reared lambs: Effect on the intramuscular fatty-acid composition. Animal 2014, 8, 152–162. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M. Monounsaturated fatty acids and risk of cardiovascular disease. Circulation 1999, 100, 1253–1258. [Google Scholar] [CrossRef] [Green Version]
- Sales-Campos, H.; Reis de Souza, P.; Crema Peghini, B.; Santana da Silva, J.; Ribeiro Cardoso, C. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 2013, 13, 201–210. [Google Scholar]
- Dehghan, M.; Mente, A.; Zhang, X.; Swaminathan, S.; Li, W.; Mohan, V.; Iqbal, R.; Kumar, R.; Wentzel-Viljoen, E.; Rosengren, A.; et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. Lancet 2017, 390, 2050–2062. [Google Scholar] [CrossRef] [Green Version]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic acid: Physiological role, metabolism and nutritional implications. Front. Physiol. 2017, 8, 902. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M. Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am. J. Clin. Nutr. 1994, 60, 986S–990S. [Google Scholar] [CrossRef]
- Papotti, B.; Julve, J.; Potì, F.; Zanotti, I. Impact of dietary lipids on the reverse cholesterol transport: What we learned from animal studies. Nutrients 2021, 13, 2643. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. Maywood 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Jerónimo, E.; Alves, S.P.; Prates, J.A.; Santos-Silva, J.; Bessa, R.J. Effect of dietary replacement of sunflower oil with linseed oil on intramuscular fatty acids of lamb meat. Meat Sci. 2009, 83, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Warren, H.E.; Scollan, N.D.; Enser, M.; Hughes, S.I.; Richardson, R.I.; Wood, J.D. Effects of breed and a concentrate or grass silage diet on beef quality in cattle of 3 ages. I: Animal performance, carcass quality and muscle fatty acid composition. Meat Sci. 2008, 78, 256–269. [Google Scholar] [CrossRef]
- Tallima, H.; El Ridi, R. Arachidonic acid: Physiological roles and potential health benefits–A review. J. Adv. Res. 2018, 11, 33–41. [Google Scholar] [CrossRef]
- Kursun, O.; Yemisci, M.; van den Maagdenberg, A.M.; Karatas, H. Migraine and neuroinflammation: The inflammasome perspective. J. Headache Pain 2021, 22, 55. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, S.I.; Rao, J.S.; Igarashi, M. Brain metabolism of nutritionally essential polyunsaturated fatty acids depends on both the diet and the liver. Prostaglandins Leukot. Essent Fatty Acids 2007, 77, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Ran-Ressler, R.R.; Khailova, L.; Arganbright, K.M.; Adkins-Rieck, C.K.; Jouni, Z.E.; Koren, O.; Ley, R.E.; Brenna, T.; Dvorak, B. Branched chain fatty acids reduce the incidence of necrotizing enterocolitis and alter gastrointestinal microbial ecology in a neonatal rat model. PLoS ONE 2011, 6, e29032. [Google Scholar] [CrossRef] [Green Version]
- Ran-Ressler, R.R.; Bae, S.; Lawrence, P.; Wang, D.H.; Brenna, J.T. Branched-chain fatty acid content of foods and estimated intake in the USA. Br. J. Nutr. 2014, 112, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, S.; Chen, X.; Chen, H.; Huang, M.; Zheng, J. Induction of apoptotic cell death and in vivo growth inhibition of human cancer cells by a saturated branched-chain fatty acid, 13-methyltetradecanoic acid. Cancer Res. 2000, 60, 505–509. [Google Scholar] [PubMed]
- Wongtangtintharn, S.; Oku, H.; Iwasaki, H.; Toda, T. Effect of branched-chain fatty acids on fatty acid biosynthesis of human breast cancer cells. J. Nutr. Sci. Vitaminol. 2004, 50, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Warensjö, E.; Jansson, J.H.; Berglund, L.; Boman, K.; Ahren, B.; Weinehall, L.; Lindahl, B.; Hallmans, G.; Vessby, B. Estimated intake of milk fat is negatively associated with cardiovascular risk factors and does not increase the risk of a first acute myocardial infarction. A prospective case–control study. Br. J. Nutr. 2004, 91, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Ma, J.; Campos, H.; Hankinson, S.E.; Manson, J.E.; Stampfer, M.J.; Rexrode, K.M.; Willett, W.C.; Hu, F.B. A prospective study of trans fatty acids in erythrocytes and risk of coronary heart disease. Circulation 2007, 115, 1858–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warensjö, E.; Jansson, J.H.; Cederholm, T.; Boman, K.; Eliasson, M.; Hallmans, G.; Johansson, I.; Sjögren, P. Biomarkers of milk fat and the risk of myocardial infarction in men and women: A prospective, matched case-control study. Am. J. Clin. Nutr. 2010, 92, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Khaw, K.T.; Friesen, M.D.; Riboli, E.; Luben, R.; Wareham, N. Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: The EPIC-Norfolk prospective study. PLoS Med. 2012, 9, e1001255. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, B.; West, J.A.; Koulman, A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15: 0) and heptadecanoic acid (C17: 0) in health and disease. Molecules 2015, 20, 2425–2444. [Google Scholar] [CrossRef] [Green Version]
- Hodge, A.M.; English, D.R.; O’Dea, K.; Sinclair, A.J.; Makrides, M.; Gibson, R.A.; Giles, G.G. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: Interpreting the role of linoleic acid. Am. J. Clin. Nutr. 2007, 86, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Krachler, B.; Norberg, M.; Eriksson, J.W.; Hallmans, G.; Johansson, I.; Vessby, B.; Weinehall, L.; Lindahl, B. Fatty acid profile of the erythrocyte membrane preceding development of Type 2 diabetes mellitus. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Forouhi, N.G.; Koulman, A.; Sharp, S.J.; Imamura, F.; Kröger, J.; Schulze, M.B.; Crowe, F.L.; Huerta, J.M.; Guevara, M.; Beulens, J.W.J.; et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: The EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol. 2014, 2, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Imamura, F.; Fretts, A.; Marklund, M.; Ardisson Korat, A.V.; Yang, W.S.; Lankinen, M.; Qureshi, W.; Helmer, C.; Chen, T.A.; Wong, K.; et al. Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies. PLoS Med. 2018, 15, e1002670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venn-Watson, S.; Lumpkin, R.; Dennis, E.A. Efficacy of dietary odd-chain saturated fatty acid pentadecanoic acid parallels broad associated health benefits in humans: Could it be essential? Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Moloney, F.; Yeow, T.P.; Mullen, A.; Nolan, J.J.; Roche, H.M. Conjugated linoleic acid supplementation, insulin sensitivity, and lipoprotein metabolism in patients with type 2 diabetes mellitus. Am. J. Clin. Nutr. 2004, 80, 887–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, A.; Banu, J.; Rahman, M.; Causey, J.; Fernandes, G. Biological effects of conjugated linoleic acids in health and disease. J. Nutr. Biochem. 2006, 17, 789–810. [Google Scholar] [CrossRef]
- Sofi, F.; Rapini, D.; Innocenti, G.; Abbate, R.; Gensini, G.F.; Casini, A. Dietary intake of trans fatty acids as a cardiovascular risk factor in a population of Italian teenagers. Cardiol. Young 2009, 19, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Tricon, S.; Burdge, G.C.; Kew, S.; Banerjee, T.; Russell, J.J.; Jones, E.L.; Grimble, R.F.; Williams, C.M.; Yaqoob, P.; Calder, P.C. Opposing effects of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid on blood lipids in healthy humans. Am. J. Clin. Nutr. 2004, 80, 614–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaullier, J.M.; Halse, J.; Høye, K.; Kristiansen, K.; Fagertun, H.; Vik, H.; Gudmundsen, O. Supplementation with conjugated linoleic acid for 24 months is well tolerated by and reduces body fat mass in healthy, overweight humans. J. Nutr. 2005, 135, 778–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pintus, S.; Murru, E.; Carta, G.; Cordeddu, L.; Batetta, B.; Accossu, S.; Pistis, D.; Uda, S.; Ghiani, M.E.; Mele, M.; et al. Sheep cheese naturally enriched in α-linolenic, conjugated linoleic and vaccenic acids improves the lipid profile and reduces anandamide in the plasma of hypercholesterolaemic subjects. Br. J. Nutr. 2013, 109, 1453–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Almeida, M.M.; Luquetti, S.C.; Sabarense, C.M.; do Amaral Corrêa, J.O.; dos Reis, L.G.; Santos da Conceição, E.P.; Lisboa, P.C.; de Moura, E.G.; Gameiro, J.; da Gama, M.A.; et al. Butter naturally enriched in cis-9, trans-11 CLA prevents hyperinsulinemia and increases both serum HDL cholesterol and triacylglycerol levels in rats. Lipids Health Dis. 2014, 13, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virsangbhai, C.K.; Goyal, A.; Tanwar, B.; Sihag, M.K. Potential health benefits of conjugated linoleic acid: An important functional dairy ingredient. Eur. J. Nutr. Food Saf. 2020, 11, 200–213. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Cometto-Muñiz, J.E.; Abraham, M.H. Odor detection by humans of lineal aliphatic aldehydes and helional as gauged by dose–response functions. Chem. Senses 2010, 35, 289–299. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, A.G.; Maiorano, G.; Kowaliszyn, B.; Loiudice, P.; Martemucci, G. How the nutritional value and consumer acceptability of suckling lambs meat is affected by the maternal feeding system. Small Rumin. Res. 2012, 106, 83–91. [Google Scholar] [CrossRef]
- Joy, M.; Sanz, A.; Ripoll, G.; Panea, B.; Ripoll-Bosch, R.; Blasco, I.; Alvarez-Rodriguez, J. Does forage type (grazing vs. hay) fed to ewes before and after lambing affect suckling lambs performance, meat quality and consumer purchase intention? Small Rumin. Res. 2012, 104, 1–9. [Google Scholar] [CrossRef]
- Pulina, G.; Atzori, A.S.; Dimauro, C.; Ibba, I.; Gaias, G.F.; Correddu, F.; Nudda, A. The milk fingerprint of Sardinian dairy sheep: Quality and yield of milk used for Pecorino Romano PDO cheese production on population-based 5-year survey. Ital. J. Anim. Sci. 2021, 20, 171–180. [Google Scholar] [CrossRef]
- Wilches, D.; Rovira, J.; Jaime, I.; Palacios, C.; Lurueña-Martínez, M.A.; Vivar-Quintana, A.M.; Revilla, I. Evaluation of the effect of a maternal rearing system on the odour profile of meat from suckling lamb. Meat Sci. 2011, 88, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Scerra, M.; Caparra, P.; Foti, F.; Galofaro, V.; Sinatra, M.C.; Scerra, V. Influence of ewe feeding systems on fatty acid composition of suckling lambs. Meat Sci. 2007, 76, 390–394. [Google Scholar] [CrossRef]
- Dervishi, E.; Joy, M.; Alvarez-Rodriguez, J.; Serrano, M.; Calvo, J.H. The forage type (grazing versus hay pasture) fed to ewes and the lamb sex affect fatty acid profile and lipogenic gene expression in the longissimus muscle of suckling lambs. J. Anim. Sci. 2012, 90, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Joy, M.; Ripoll, G.; Molino, F.; Dervishi, E.; Alvarez-Rodriguez, J. Influence of the type of forage supplied to ewes in pre-and post-partum periods on the meat fatty acids of suckling lambs. Meat Sci. 2012, 90, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Parrini, S.; Sirtori, F.; Acciaioli, A.; Becciolini, V.; Crovetti, A.; Bonelli, A.; Franci, O.; Bozzi, R. Effect of farming system on meat traits of native Massese suckling lamb. Ital. J. Anim. Sci. 2021, 20, 71–83. [Google Scholar] [CrossRef]
- Griinari, J.M.; Corl, B.A.; Lacy, S.H.; Chouinard, P.Y.; Nurmela, K.V.; Bauman, D.E. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by delta(9)-desaturase. J. Nutr. 2000, 130, 2285–2291. [Google Scholar] [CrossRef] [PubMed]
- Wachira, A.M.; Sinclair, L.A.; Wilkinson, R.G.; Hallett, K.; Enser, M.; Wood, J.D. Rumen biohydrogenation of n-3 polyunsaturated fatty acids and their effects on microbial efficiency and nutrient digestibility in sheep. J. Agric. Sci. 2000, 135, 419–428. [Google Scholar] [CrossRef]
- Lock, A.L.; Bauman, D.E. Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids 2004, 39, 1197–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wachira, A.M.; Sinclair, L.A.; Wilkinson, R.G.; Enser, M.; Wood, J.D.; Fisher, A.V. Effects of dietary fat source and breed on the carcass composition, n-3 polyunsaturated fatty acid and conjugated linoleic acid content of sheep meat and adipose tissue. Br. J. Nutr. 2002, 88, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Addis, M.; Cabiddu, A.; Pinna, G.; Decandia, M.; Piredda, G.; Pirisi, A.; Molle, G. Milk and cheese fatty acid composition of sheep fed different Mediterranean forages with particular reference to conjugated linoleic acid cis-9, trans-11. J. Dairy Sci. 2005, 88, 3443–3454. [Google Scholar] [CrossRef] [Green Version]
- Cabiddu, A.; Decandia, M.; Addis, M.; Piredda, G.; Pirisi, A.; Molle, G. Managing mediterranean pastures in order to enhance the level of beneficial fatty acids in sheep milk. Small Rumin. Res. 2005, 59, 169–180. [Google Scholar] [CrossRef]
- Nudda, A.; Mele, M.; Battacone, G.; Usai, M.G.; Macciotta, N.P.P. Comparison of conjugated linoleic acid (CLA) content in milk of ewes and goats with the same dietary regimen. Ital. J. Anim. Sci. 2003, 2, 515–517. [Google Scholar]
- Freitas de Melo, A.; Ungerfeld, R. Artificial weaning in sheep: Stress response and animal welfare. Review. Rev. Mex. Cienc. Pecu 2016, 7, 361–375. [Google Scholar] [CrossRef] [Green Version]
- Margetin, M.; Apolen, D.; Oravcova, M.; Avrišinová, K.; Peškovičová, D.; Luptáková, L.; Krupová, Z.; Bučko, O.; Blaško, J. Fatty acids profile of intramuscular fat in light lambs traditionally and artificially reared. J. Cent. Eur. Agric. 2014, 15, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Manca, M.G.; Battacone, G.; Boe, R.; Spanu, G.; Nudda, A. Effect of natural and artificial milk on long chain fatty acid of meat from Sarda suckling lambs. In Proceedings of the 19 Congress of Animal Science and Production Association (ASPA), Cremona, Italy, 7–10 July 2011. [Google Scholar]
- Osorio, M.T.; Zumalacárregui, J.M.; Cabeza, E.A.; Figueira, A.; Mateo, J. Effect of rearing system on some meat quality traits and volatile compounds of suckling lamb meat. Small Rumin. Res. 2008, 78, 1–12. [Google Scholar] [CrossRef]
- Cifuni, G.F.; Braghieri, A.; Riviezzi, A.M.; Girolami, A.; Napolitano, F. Artificial rearing and intramuscular fatty acid composition of unweaned lambs. Ital. J. Food Sci. 2003, 15, 241–248. [Google Scholar]
- Capper, J.L.; Wilkinson, R.G.; Mackenzie, A.M.; Sinclair, L.A. The effect of fish oil supplementation of pregnant and lactating ewes on milk production and lamb performance. Animal 2007, 6, 889–898. [Google Scholar] [CrossRef] [Green Version]
- Or-Rashid, M.M.; Fisher, R.; Karrow, N.; Alzahal, O.; McBride, B.W. Fatty acid profile of colostrum and milk of ewes supplemented with fish meal and the subsequent plasma fatty acid status of their lambs. J. Anim. Sci. 2010, 88, 2092–2102. [Google Scholar] [CrossRef] [PubMed]
- Manso, T.; Bodas, R.; Vieira, C.; Mantecón, A.R.; Castro, T. Feeding vegetable oils to lactating ewes modifies the fatty acid profile of suckling lambs. Animal 2011, 5, 1659–1667. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cortés, P.; Gallardo, B.; Mantecón, A.R.; Juárez, M.; De La Fuente, M.A.; Manso, T. Effects of different sources of fat (calcium soap of palm oil vs. extruded linseed) in lactating ewes’ diet on the fatty acid profile of their suckling lambs. Meat Sci. 2014, 96, 1304–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lurueña-Martínez, M.A.; Palacios, C.; Vivar-Quintana, A.M.; Revilla, I. Effect of the addition of calcium soap to ewes’ diet on fatty acid composition of ewe milk and subcutaneous fat of suckling lambs reared on ewe milk. Meat Sci. 2010, 84, 677–683. [Google Scholar] [CrossRef]
Item 1 | Suckling Lambs 2 | Heavy Lamb 3 | Mature Ewes 4 |
---|---|---|---|
Fat content, % | 1.93 | 2.86 | 3.27 |
C14:0 (Myristic acid, MA) | 3.72 | 4.41 | 1.85 |
C14:1c9 | 0.15 | 0.13 | 0.10 |
isoC14:0 | 0.04 | 0.05 | 0.02 |
isoC15:0 | 0.12 | 0.10 | 0.12 |
anteisoC15:0 | 0.18 | 0.17 | 0.13 |
C15:0 | 0.45 | 0.52 | 0.42 |
C15:1c10 | 0.00 | n.d. 5 | 0.15 |
isoC16:0 | 2.60 | 0.16 | 0.07 |
C16:0 (Palmitic acid, PA) | 16.53 | 20.57 | 24.47 |
C16:1c7 | 0.48 | 0.47 | 0.29 |
C16:1c9 | 1.23 | 1.44 | 1.16 |
isoC17:0 | 0.51 | 0.40 | 0.46 |
anteisoC17:0 | 0.40 | 0.48 | 0.60 |
C17:0 | 0.76 | 1.22 | 1.22 |
C17:1c9 | 0.43 | 0.47 | 0.46 |
isoC18:0 | n.d. | 0.12 | 0.15 |
C18:0 (Stearic acid, SA) | 12.16 | 16.82 | 18.22 |
C18:1t9 (Elaidic acid, EA) | 0.22 | 0.37 | 0.18 |
C18:1t10 | 0.36 | 3.75 | 0.32 |
C18:1t11 (Vaccenic acid, VA) | 1.86 | 1.48 | 2.01 |
C18:1t12 | 0.00 | 0.84 | 0.00 |
C18:1c9 (Oleic acid, OLA) | 29.20 | 30.94 | 37.47 |
C18:1c11 | 1.42 | 1.10 | 0.97 |
C18:1c12 | 0.44 | 0.47 | 0.21 |
C18:1c13 | 0.10 | 0.14 | 0.11 |
C18:1c14 | 0.00 | 0.08 | |
C18:1c15 | 0.14 | 0.09 | 0.18 |
C18:2n6 (Linoleic acid, LA) | 8.84 | 4.98 | 4.34 |
C18:3n3 (Linolenic acid, ALA) | 1.97 | 1.03 | 0.92 |
c9,t11-CLA (Rumenic acid, RA) | 1.16 | 0.62 | 0.84 |
C20:2n6 | 0.08 | 0.04 | 0.04 |
C20:4n6 (Arachidonic acid, ARA) | 3.63 | 1.07 | 0.04 |
C20:3n3 | 0.05 | 0.01 | 0.97 |
C20:5n3 (Eicosapentaenoic acid, EPA) | 1.16 | 0.23 | 0.07 |
C22:0 | 0.04 | 0.03 | 0.00 |
C22:4n6 | 0.23 | 0.08 | 0.05 |
C22:5n3 (Docosapentaenoic acid, DPA) | 1.45 | 0.34 | 0.18 |
C22:6n3 (Docosahexaenoic acid, DHA) | 0.86 | 0.13 | 0.00 |
SFA | 38.21 | 43.76 | 46.84 |
MUFA | 37.62 | 43.69 | 53.04 |
PUFAn3 | 5.58 | 1.78 | 1.17 |
PUFAn6 | 13.44 | 7.78 | 4.77 |
OCFA | 1.22 | 1.76 | 1.66 |
BCFA | 3.86 | 1.47 | 1.49 |
n6/n3 | 2.60 | 4.08 | 4.14 |
Breed | Treatment | Fatty Acid Composition of Ewe Milk (% on Total Fatty Acids) 1 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PA (C16:0) | SA (C18:0) | VA (C18:1t11) | RA (c9,t11-CLA) | LA (C18:2n6) | ALA (C18:3n3) | EPA (C20:5n3) | DHA (C22:6n3) | SFA | MUFA | PUFA | PUFA/SFA | n6 | n3 | n6/n3 | References | ||
Churra Tensina | Hay Pre-partum | 21.04 | 13.30 | - | 1.36 | - | 1.44 | 0.11 | 0.07 | 56.15 | 31.34 | 5.80 | 0.10 | 2.54 | 1.61 | 1.62 | [73] |
Pasture prepartum | 20.37 | 14.07 | - | 1.56 | - | 1.54 | 0.106 | 0.072 | 56.39 | 30.20 | 6.09 ↑ | 0.11 | 2.48 | 1.71 | 1.47 | ||
Hay post-partum | 21.17 ↑ | 12.96 | - | 1.29 | - | 1.4 | 0.104 | 0.074 | 56.37 | 31.61 | 5.70 | 0.10 | 2.53 | 1.58 | 1.64 ↑ | ||
Pasture postpartum | 20.24 | 14.40 ↑ | - | 1.63 ↑ | - | 1.57 ↑ | 0.11 | 0.068 | 56.17 | 29.93 | 6.19 ↑ | 0.11 ↑ | 2.48 | 1.74 ↑ | 1.46 | ||
Churra Tensina | Hay fed mothers | - | - | - | 1.29 | - | - | - | - | 56.37 | 31.61 | 5.70 | 0.10 | 2.53 | 1.58 | 1.64 ↑ | [72] |
Pasture fed mothers | - | - | - | 1.63 ↑ | - | - | - | - | 56.17 | 29.93 | 6.19 ↑ | 0.11 ↑ | 2.48 | 1.74 ↑ | 1.46 | ||
Merino | Stall fed mothers | 22.14 | 9.59 | 1.23 | 1.00 | 3.28 | 2.60 | - | - | 66.88 | 24.33 | 8.80 | 0.13 | - | - | - | [71] |
Pasture fed mothers | 18.38 | 11.48 | 1.70 ↑ | 1.33 | 3.11 | 4.46 ↑ | - | - | 65.26 | 23.89 | 10.85 ↑ | 0.17 ↑ | - | - | - | ||
Massese | Stall (reared indoor fed concentrate and hay) | 25.15 | 8.60 | - | - | 2.35 | 0.87 | 0.13 | 0.09 | 73.10 | 22.07 | 3.95 | - | 2.86 | 1.09 | - | [74] |
Semi free-range (reared indoors during the night, fed concentrate, hay, and herbage) | 23.57 | 12.41 | - | - | 2.73 | 1.38 | 0.18 | 0.09 | 70.94 | 23.19 | 4.78 | - | 3.13 | 1.65 | - | ||
Pasture (reared outdoor and fed pasture and hay) | 23.71 | 15.85 ↑ | - | - | 2.62 | 2.18 ↑ | 0.23 | 0.23 ↑ | 63.18 ↓ | 29.33 ↑ | 6.09 ↑ | - | 3.43 | 2.66 ↑ | - |
Type of Milk | Fatty Acid Composition of Suckled Milk (% on Total Fatty Acids) 1 | References | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SA (C18:0) | RA (c9,t11-CLA) | LA (C18:2n6) | ALA (C18:3n3) | EPA (C20:5n3) | DHA (C22:6n3) | SFA | MUFA | PUFA | n6/n3 | ||
Maternal milk | 12.43 | - | 1.55 | 1.40 | n.d. | 0.15 | 66.37 | 20.07 | 6.19 | 1.64 | [10] |
Milk replacer | 13.56 | - | 4.71 | 0.49 | 0.91 | 0.13 | 60.23 | 30.11 | 9.66 | 4.39 | |
Maternal milk | 10.74 | 1.23 | 1.66 | 2.81 | - | - | 72.38 | 21.01 | 5.69 | 0.59 | [8] |
Milk replacer | 10.14 | 0.50 | 8.30 | 1.07 | - | - | 66.15 | 23.27 | 10.12 | 7.95 | |
Maternal milk | 10.10 | 0.99 | 2.85 | 0.97 | - | - | 69.77 | 24.36 | 5.76 | 3.37 | [24] |
Milk replacer | 11.44 | 0.38 | 5.60 | 0.25 | - | - | 60.04 | 33.66 | 7.20 | 24.21 | |
Maternal milk | 10.43 | 4.93 | 2.90 | 0.94 | 0.05 | 0.04 | 61.49 | 31.60 | 1.22 | 2.71 | Our data |
Milk replacer | 4.17 | 0.04 | 8.67 | 1.18 | n.d. | n.d. | 52.67 | 35.56 | 1.26 | 7.66 |
Breed | Type of Rearing System | Fatty Acid Composition of Intramuscular Suckling Lamb Meat (% on Total Fatty Acids) 1 | References | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SA (C18:0) | VA (C18:1t11) | RA (c9,t11-CLA) | LA (C18:2n6) | ALA (C18:3n3) | EPA (C20:5n3) | DHA (C22:6n3) | SFA | MUFA | PUFA | n6/n3 | |||
Comisana | Artificial | 14.00 | - | - | 8.48 | 0.42 | 0.18 | 0.17 | 43.2 | 43.2 | 13.6 | 9.5 | [10] |
Traditional | 12.83 | - | - | 4.05 | 1.37 | 0.62 | 0.45 | 46.6 | 41.8 | 11.6 | 2.0 | ||
Sarda | Artificial | 11.33 | - | - | 10.51 | 0.53 | 0.21 | 0.28 | 43.9 | 38.7 | 17.3 | 9.9 | [86] |
Traditional | 11.37 | - | - | 7.63 | 0.69 | 0.40 | 0.35 | 50.3 | 34.5 | 15.2 | 6.0 | ||
Barbaresca | Artificial | 11.64 | - | 0.47 | 18.47 | 0.37 | 0.80 | 0.53 | 34.1 | 33.3 | 32.6 | 9.7 | [8] |
Traditional | 12.02 | - | 1.13 | 10.97 | 1.95 | 1.65 | 1.25 | 37.7 | 34.9 | 27.4 | 2.6 | ||
Churra | Artificial | 8.37 | - | 0.67 | 8.01 | 0.12 | 0.30 | - | 34.0 | 49.9 | 16.3 | 16.3 | [24] |
Traditional | 12.53 | - | 0.51 | 8.44 | 1.30 | 1.44 | - | 40.5 | 39.9 | 19.7 | 5.2 | ||
Slovak | Artificial | 10.14 | 0.11 | 0.15 | 9.07 | 0.25 | 0.06 | 0.08 | 44.7 | 42.5 | 12.7 | 3.5 | [83] |
Traditional | 12.68 | 0.96 | 0.67 | 4.81 | 0.72 | 0.35 | 0.25 | 45.6 | 43.3 | 11.1 | 1.4 | ||
Sarda | Artificial | 8.47 | 0.00 | 0.08 | 15.56 | 0.82 | 0.45 | 0.52 | 35.3 | 40.8 | 23.9 | 8.0 | Our data |
Traditional | 13.07 | 2.34 | 1.63 | 5.08 | 1.26 | 0.66 | 0.59 | 44.6 | 44.8 | 10.6 | 2.1 | ||
Average | Artificial | 10.66 | 0.06 | 0.34 | 11.68 | 0.42 | 0.33 | 0.26 | 39.2 | 41.4 | 19.4 | 9.5 | |
Traditional | 12.42 | 1.65 | 0.98 | 6.83 | 1.22 | 0.85 | 0.48 | 44.2 | 39.8 | 15.9 | 3.2 |
Breed | Dietary Treatment 1 | Dose 2 | Intramuscular Fatty Acids of Suckling Lamb Meat 3 | References | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VA | RA | LA | ALA | EPA | DHA | SFA | MUFA | PUFA | n6/n3 | ||||
Churra | Olive oil | 63 g/d | 57% | 3% | −8% | −16% | −13% | 57% | −5% | 11% | −7% | 7% | [89] |
Soya oil | 63 g/d | 176% | 97% | 7% | −19% | −32% | 176% | −6% | 7% | 0.5% | 26% | ||
Linseed oil | 63 g/d | 190% | 71% | −2% | 103% | 35% | 190% | −4% | 2% | 3% | −43% | ||
Churra | Extruded linseed | 189 g/d | 321% | 247% | 9% | 309% | 223% | 102% | −6% | −9% | 76% | −56% | [90] |
Churra | LO (with 3% linseed oil) | 3% linseed oil | 361% | 224% | −6% | 56% | −10% | −39% | −6% | 10% | −5% | −16% | [17] |
LO-Syn E | LO plus 400 mg/kg TMR of synthetic vitamin E | 363% | 208% | 21% | 95% | 90% | 24% | −14% | 8% | 29% | −23% | ||
LO-Nat E | LO plus 400 g/kg TMR of natural vitamin E) | 446% | 226% | −4% | 69% | 3% | −37% | −7% | 9% | −2% | −21% | ||
Comisana | Extruded linseed | 190 g/d | - | 47% | - | - | - | - | −7% | 0.13% | 17% | −31% | [11] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battacone, G.; Lunesu, M.F.; Rassu, S.P.G.; Pulina, G.; Nudda, A. Effect of Dams and Suckling Lamb Feeding Systems on the Fatty Acid Composition of Suckling Lamb Meat. Animals 2021, 11, 3142. https://doi.org/10.3390/ani11113142
Battacone G, Lunesu MF, Rassu SPG, Pulina G, Nudda A. Effect of Dams and Suckling Lamb Feeding Systems on the Fatty Acid Composition of Suckling Lamb Meat. Animals. 2021; 11(11):3142. https://doi.org/10.3390/ani11113142
Chicago/Turabian StyleBattacone, Gianni, Mondina Francesca Lunesu, Salvatore Pier Giacomo Rassu, Giuseppe Pulina, and Anna Nudda. 2021. "Effect of Dams and Suckling Lamb Feeding Systems on the Fatty Acid Composition of Suckling Lamb Meat" Animals 11, no. 11: 3142. https://doi.org/10.3390/ani11113142
APA StyleBattacone, G., Lunesu, M. F., Rassu, S. P. G., Pulina, G., & Nudda, A. (2021). Effect of Dams and Suckling Lamb Feeding Systems on the Fatty Acid Composition of Suckling Lamb Meat. Animals, 11(11), 3142. https://doi.org/10.3390/ani11113142