Dietary Lycopene Supplementation Could Alleviate Aflatoxin B1 Induced Intestinal Damage through Improving Immune Function and Anti-Oxidant Capacity in Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Experimental Birds, Diets, and Management
2.3. Collection of Samples and Measurement
2.4. Preparation of Intestinal Mucosal Homogenate
2.5. Assay of Mucosal Inflammatory, Serum D-Lactate, and Diamine Oxidase (DAO) Status
2.6. Assay of Antioxidant Parameters
2.7. Total RNA Extraction and mRNA Quantification
2.8. Statistical Analysis
3. Results
3.1. Inflammatory Cytokines Concentration of the Intestine Mucosa
3.2. Inflammatory Related Gene Expression of the Intestine Mucosa
3.3. D-Lactate Concentration and DAO Activity in Serum
3.4. Tight Junction Related Genes Expression of the Intestine Mucosa
3.5. Oxidative Status of the Intestine Mucosa
3.6. Antioxidant Enzyme Activities of the Intestine Mucosa
3.7. Antioxidant Related Gene Expression of the Intestine Mucosa
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Constantinescu, C.S.; Chou, I.-J. Intestinal bacterial antigens, toxin-induced pathogenesis and immune cross-reactivity in neuromyelitis optica and multiple sclerosis. Neuro-Immuno-Gastroenterology 2016, 227–236. [Google Scholar]
- Grenier, B.; Applegate, T.J. Modulation of intestinal functions following mycotoxin ingestion: Meta-analysis of published experiments in animals. Toxins 2013, 5, 396–430. [Google Scholar] [CrossRef] [Green Version]
- Gratz, S.; Wu, Q.; El-Nezami, H.; Juvonen, R.; Mykkänen, H.; Turner, P. Lactobacillus rhamnosus strain GG reduces aflatoxin B1 transport, metabolism, and toxicity in Caco-2 cells. Appl. Environ. Microbiol. 2007, 73, 3958–3964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilan, Y. Leaky gut and the liver: A role for bacterial translocation in nonalcoholic steatohepatitis. World J. Gastroenterol. WJG 2012, 18, 2609. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Naehrer, K.; Applegate, T. Interactive effects of dietary protein concentration and aflatoxin B1 on performance, nutrient digestibility, and gut health in broiler chicks. Poult. Sci. 2016, 95, 1312–1325. [Google Scholar] [CrossRef]
- Shen, H.-M.; Shi, C.-Y.; Lee, H.-P.; Ong, C.-N. Aflatoxin B1-induced lipid peroxidation in rat liver. Toxicol. Appl. Pharmacol. 1994, 127, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F. Natural Antioxidants in Avian Nutrition and Reproduction; Nottingham University Press: Nottingham, UK, 2002. [Google Scholar]
- Zhang, N.-Y.; Qi, M.; Zhao, L.; Zhu, M.-K.; Guo, J.; Liu, J.; Gu, C.-Q.; Rajput, S.A.; Krumm, C.S.; Qi, D.-S. Curcumin prevents aflatoxin B1 hepatoxicity by inhibition of cytochrome P450 isozymes in chick liver. Toxins 2016, 8, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Ma, Q.; Zhao, L.; Guo, Y.; Duan, G.; Zhang, J.; Ji, C. Protective efficacy of alpha-lipoic acid against aflatoxinB1-induced oxidative damage in the liver. Asian-Australas. J. Anim. Sci. 2014, 27, 907. [Google Scholar] [CrossRef]
- Abdel-Hamid, A.A.; Firgany, A.E.-D.L. Vitamin E supplementation ameliorates aflatoxin B1-induced nephrotoxicity in rats. Acta Histochem. 2015, 117, 767–779. [Google Scholar] [CrossRef] [PubMed]
- Saada, H.N.; Rezk, R.G.; Eltahawy, N.A. Lycopene protects the structure of the small intestine against gamma-radiation-induced oxidative stress. Phytother. Res. 2010, 24, S204–S208. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Yu, K.; Yu, H.; Wang, P.; Song, M.; Xiu, C.; Li, Y. Lycopene relieves AFB1-induced liver injury through enhancing hepatic antioxidation and detoxification potential with Nrf2 activation. J. Funct. Foods 2017, 39, 215–224. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Xu, F.; Huang, W.; Ji, Q.; Han, Y.; Shao, B.; Li, Y. Protective effects of lycopene against AFB1-induced erythrocyte dysfunction and oxidative stress in mice. Res. Vet. Sci. 2020, 129, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Boeira, S.P.; Borges Filho, C.; Del’fabbro, L.; Roman, S.S.; Royes, L.F.F.; Fighera, M.R.; Jessé, C.R.; Oliveira, M.S.; Furian, A.F. Lycopene treatment prevents hematological, reproductive and histopathological damage induced by acute zearalenone administration in male Swiss mice. Exp. Toxicol. Pathol. 2014, 66, 179–185. [Google Scholar] [CrossRef]
- Lee, K.-W.; Choo, W.-D.; Kang, C.-W.; An, B.-K. Effect of lycopene on the copper-induced oxidation of low-density lipoprotein in broiler chickens. Springerplus 2016, 5, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, B.; Chen, C.; Wang, W.; Ma, J.; Xie, Q.; Gao, Y.; Chen, F.; Zhang, X.; Bi, Y. Effects of lycopene supplementation in both maternal and offspring diets on growth performance, antioxidant capacity and biochemical parameters in chicks. J. Anim. Physiol. Anim. Nutr. 2015, 99, 42–49. [Google Scholar] [CrossRef]
- Herzog, A.; Siler, U.; Spitzer, V.; Seifert, N.; Denelavas, A.; Hunziker, P.B.; Hunziker, W.; Goralczyk, R.; Wertz, K. Lycopene reduced gene expression of steroid targets and inflammatory markers in normal rat prostate. FASEB J. 2005, 19, 1–24. [Google Scholar] [CrossRef]
- Giovannucci, E.; Rimm, E.B.; Liu, Y.; Stampfer, M.J.; Willett, W.C. A prospective study of cruciferous vegetables and prostate cancer. Cancer Epidemiol. Prev. Biomark. 2003, 12, 1403–1409. [Google Scholar]
- Costa-Rodrigues, J.; Pinho, O.; Monteiro, P. Can lycopene be considered an effective protection against cardiovascular disease? Food Chem. 2018, 245, 1148–1153. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Jiang, B.; Cao, X.; Xie, Y.; Huang, T. Protective effect of lycopene on fluoride-induced ameloblasts apoptosis and dental fluorosis through oxidative stress-mediated Caspase pathways. Chem.-Biol. Interact. 2017, 261, 27–34. [Google Scholar] [CrossRef]
- Sahin, K.; Orhan, C.; Tuzcu, M.; Sahin, N.; Hayirli, A.; Bilgili, S.; Kucuk, O. Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers. Poult. Sci. 2016, 95, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Rivas, A.; Romero, A.; Mariscal-Arcas, M.; Monteagudo, C.; López, G.; Ocaña-Peinado, F.; Olea-Serrano, F. Association between dietary antioxidant quality score (DAQs) and bone mineral density in Spanish women. Nutr. Hosp. 2012, 27, 1886–1893. [Google Scholar]
- Yonar, M.E. The effect of lycopene on oxytetracycline-induced oxidative stress and immunosuppression in rainbow trout (Oncorhynchus mykiss, W.). Fish Shellfish. Immunol. 2012, 32, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Sahin, K.; Yazlak, H.; Orhan, C.; Tuzcu, M.; Akdemir, F.; Sahin, N. The effect of lycopene on antioxidant status in rainbow trout (Oncorhynchus mykiss) reared under high stocking density. Aquaculture 2014, 418, 132–138. [Google Scholar] [CrossRef]
- Englmaierová, M.; Bubancová, I.; Vít, T.; Skrivan, M. The effect of lycopene and vitamin E on growth performance, quality and oxidative stability of chicken leg meat. Czech J. Anim. Sci. 2011, 56, 536–543. [Google Scholar] [CrossRef] [Green Version]
- Ševčíková, S.; Skřivan, M.; Dlouhá, G. The effect of lycopene supplementation on lipid profile and meat quality of broiler chickens. Czech J. Anim. Sci. 2008, 53, 431–440. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academy of Sciences Press: Washington, DC, USA, 1994. [Google Scholar]
- Peng, X.; Zhang, S.; Fang, J.; Cui, H.; Zuo, Z.; Deng, J. Protective roles of sodium selenite against aflatoxin B1-induced apoptosis of jejunum in broilers. Int. J. Environ. Res. Public Health 2014, 11, 13130–13143. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Ma, Q.; Zhao, L.; Jia, R.; Zhang, J.; Ji, C.; Wang, X. Protective effects of sporoderm-broken spores of ganderma lucidum on growth performance, antioxidant capacity and immune function of broiler chickens exposed to low level of aflatoxin B1. Toxins 2016, 8, 278. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, Á.; Madsen, K.; Spiller, R.; Van Meerveld, B.; Verne, G. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol. Motil. 2012, 24, 503–512. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Fang, J.; Peng, X.; Cui, H.; Zuo, Z.; Deng, J.; Chen, Z.; Lai, W.; Shu, G.; Tang, L. Effects of sodium selenite on aflatoxin B 1-induced decrease of ileac T cell and the mRNA contents of IL-2, IL-6, and TNF-α in broilers. Biol. Trace Elem. Res. 2014, 159, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zuo, Z.; Chen, K.; Peng, X.; Fang, J.; Cui, H.; Shu, G.; He, M.; Tang, L. Selenium Rescues Aflatoxin B 1-Inhibited T Cell Subsets and Cytokine Levels in Cecal Tonsil of Chickens. Biol. Trace Elem. Res. 2019, 188, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Solis-Cruz, B.; Hernandez-Patlan, D.; Petrone, V.M.; Pontin, K.P.; Latorre, J.D.; Beyssac, E.; Hernandez-Velasco, X.; Merino-Guzman, R.; Owens, C.; Hargis, B.M. Evaluation of cellulosic polymers and curcumin to reduce aflatoxin b1 toxic effects on performance, biochemical, and immunological parameters of broiler chickens. Toxins 2019, 11, 121. [Google Scholar] [CrossRef] [Green Version]
- Sarker, M.T.; Wang, Z.Y.; Yang, H.; Wan, X.; Emmanuel, A. Evaluation of the protective effect of lycopene on growth performance, intestinal morphology, and digestive enzyme activities of aflatoxinB1 challenged broilers. Anim. Sci. J. 2021, 92, e13540. [Google Scholar] [PubMed]
- Long, M.; Zhang, Y.; Li, P.; Yang, S.-H.; Zhang, W.-K.; Han, J.-X.; Wang, Y.; He, J.-B. Intervention of grape seed proanthocyanidin extract on the subchronic immune injury in mice induced by aflatoxin B1. Int. J. Mol. Sci. 2016, 17, 516. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ma, Q.-G.; Zhao, L.-H.; Wei, H.; Duan, G.-X.; Zhang, J.-Y.; Ji, C. Effects of lipoic acid on immune function, the antioxidant defense system, and inflammation-related genes expression of broiler chickens fed aflatoxin contaminated diets. Int. J. Mol. Sci. 2014, 15, 5649–5662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xavier, R.; Podolsky, D. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007, 448, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Capaldo, C.T.; Nusrat, A. Cytokine regulation of tight junctions. Biochim. Biophys. Acta (BBA)-Biomembr. 2009, 1788, 864–871. [Google Scholar] [CrossRef] [Green Version]
- Madsen, K.L.; Lewis, S.A.; Tavernini, M.M.; Hibbard, J.; Fedorak, R.N. Interleukin 10 prevents cytokine-induced disruption of T84 monolayer barrier integrity and limits chloride secretion. Gastroenterology 1997, 113, 151–159. [Google Scholar] [CrossRef]
- Hashem, H.; Hussein, S.A. Lycopene mitigates experimental colitis in rats by inhibiting oxidative stress-mediated inflammation and apoptosis. Benha Vet. Med. J. 2020, 39, 16–21. [Google Scholar] [CrossRef]
- Gouranton, E.; Thabuis, C.; Riollet, C.; Malezet-Desmoulins, C.; El Yazidi, C.; Amiot, M.; Borel, P.; Landrier, J. Lycopene inhibits proinflammatory cytokine and chemokine expression in adipose tissue. J. Nutr. Biochem. 2011, 22, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Wu, X.-G. Lycopene enhances antioxidant enzyme activities and immunity function in N-Methyl-N′-nitro-N-nitrosoguanidine–induced gastric cancer rats. Int. J. Mol. Sci. 2011, 12, 3340–3351. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.W.; O’garra, A.; Malefyt, R.D.; Vieira, P.; Mosmann, T.R. Interleukin-10. Annu. Rev. Immunol. 1993, 11, 165–190. [Google Scholar] [CrossRef]
- Vasconcelos, A.G.; Das Gn Amorim, A.; Dos Santos, R.C.; Souza, J.M.T.; De Souza, L.K.M.; De Sl Araújo, T.; Nicolau, L.A.D.; De Lima Carvalho, L.; De Aquino, P.E.A.; Da Silva Martins, C. Lycopene rich extract from red guava (Psidium guajava L.) displays anti-inflammatory and antioxidant profile by reducing suggestive hallmarks of acute inflammatory response in mice. Food Res. Int. 2017, 99, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Mariathasan, S.; Monack, D.M. Inflammasome adaptors and sensors: Intracellular regulators of infection and inflammation. Nat. Rev. Immunol. 2007, 7, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Groschwitz, K.R.; Hogan, S.P. Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 2009, 124, 3–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Li, S.; Wang, J.; Luo, C.; Zhao, S.; Zheng, N. Modulation of intestinal epithelial permeability in differentiated Caco-2 cells exposed to aflatoxin M1 and ochratoxin A individually or collectively. Toxins 2018, 10, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.-Y.; Lu, Y.; Hu, S.; Sun, D.; Yao, Y.-M. Preventive effect of glutamine on intestinal barrier dysfunction induced by severe trauma. World J. Gastroenterol. 2002, 8, 168. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, H.; Chen, Y.; Yang, M.; Zhang, L.; Lu, Z.; Zhou, Y.; Wang, T. Bacillus amyloliquefaciens supplementation alleviates immunological stress and intestinal damage in lipopolysaccharide-challenged broilers. Anim. Feed. Sci. Technol. 2015, 208, 119–131. [Google Scholar] [CrossRef]
- Fanning, A.S.; Jameson, B.J.; Jesaitis, L.A.; Anderson, J.M. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J. Biol. Chem. 1998, 273, 29745–29753. [Google Scholar] [PubMed] [Green Version]
- Choi, K.-C.; Chung, W.-T.; Kwon, J.-K.; Yu, J.-Y.; Jang, Y.-S.; Park, S.-M.; Lee, S.-Y.; Lee, J.-C. Inhibitory effects of quercetin on aflatoxin B1-induced hepatic damage in mice. Food Chem. Toxicol. 2010, 48, 2747–2753. [Google Scholar] [CrossRef] [PubMed]
- Banan, A.; Choudhary, S.; Zhang, Y.; Fields, J.; Keshavarzian, A. Oxidant-induced intestinal barrier disruption and its prevention by growth factors in a human colonic cell line: Role of the microtubule cytoskeleton. Free. Radic. Biol. Med. 2000, 28, 727–738. [Google Scholar] [CrossRef]
- Zuo, R.-Y.; Chang, J.; Yin, Q.-Q.; Wang, P.; Yang, Y.-R.; Wang, X.; Wang, G.-Q.; Zheng, Q.-H. Effect of the combined probiotics with aflatoxin B1-degrading enzyme on aflatoxin detoxification, broiler production performance and hepatic enzyme gene expression. Food Chem. Toxicol. 2013, 59, 470–475. [Google Scholar] [PubMed]
- Fan, Y.; Zhao, L.; Ji, C.; Li, X.; Jia, R.; Xi, L.; Zhang, J.; Ma, Q. Protective effects of Bacillus subtilis ANSB060 on serum biochemistry, histopathological changes and antioxidant enzyme activities of broilers fed moldy peanut meal naturally contaminated with aflatoxins. Toxins 2015, 7, 3330–3343. [Google Scholar] [CrossRef]
- Wang, F.; Shu, G.; Peng, X.; Fang, J.; Chen, K.; Cui, H.; Chen, Z.; Zuo, Z.; Deng, J.; Geng, Y. Protective effects of sodium selenite against aflatoxin B1-induced oxidative stress and apoptosis in broiler spleen. Int. J. Environ. Res. Public Health 2013, 10, 2834–2844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali Rajput, S.; Sun, L.; Zhang, N.; Mohamed Khalil, M.; Gao, X.; Ling, Z.; Zhu, L.; Khan, F.A.; Zhang, J.; Qi, D. Ameliorative effects of grape seed proanthocyanidin extract on growth performance, immune function, antioxidant capacity, biochemical constituents, liver histopathology and aflatoxin residues in broilers exposed to aflatoxin B1. Toxins 2017, 9, 371. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.J.; Mathuria, N. Curcumin ameliorates aflatoxin-induced changes in caput and cauda epididymis of mice. Int. J. Fertil. Steril. 2010, 4, 17–22. [Google Scholar]
- Cui, Y.; Cheng, Y.; Guo, Y.; Xie, Y.; Yao, W.; Zhang, W.; Qian, H. Evaluating the hepatoprotective efficacy of Aloe vera polysaccharides against subchronic exposure of aflatoxins B1. J. Taiwan Inst. Chem. Eng. 2017, 76, 10–17. [Google Scholar] [CrossRef]
- Delles, R.M.; Xiong, Y.L.; True, A.D.; Ao, T.; Dawson, K.A. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity. Poult. Sci. 2014, 93, 1561–1570. [Google Scholar]
- Liu, J.; Li, N.; Ma, L.; Duan, Y.; Wang, J.; Zhao, X.; Wang, S.; Wang, H.; Hong, F. Oxidative injury in the mouse spleen caused by lanthanides. J. Alloys Compd. 2010, 489, 708–713. [Google Scholar] [CrossRef]
- Liu, X.-F.; Zhang, L.-M.; Guan, H.-N.; Zhang, Z.-W.; Xu, S.-W. Effects of oxidative stress on apoptosis in manganese-induced testicular toxicity in cocks. Food Chem. Toxicol. 2013, 60, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Taș, M.; Saruhan, B.G.; Kurt, D.; Yokuș, B.; Denli, M. Protective role of lycopene on aflatoxin B1 induced changes sperm characteristics and testicular damages in rats. Kafkas Üniversitesi Vet. Fakültesi Derg. 2010, 16, 597–604. [Google Scholar]
- Yılmaz, S.; Kaya, E.; Comakli, S. Vitamin E (α tocopherol) attenuates toxicity and oxidative stress induced by aflatoxin in rats. Adv. Clin. Exp. Med. Off. Organ Wroc. Med. Univ. 2017, 26, 907–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Zhang, Y.; Miao, W.; Cheng, T. Reactive oxygen species and Nrf2: Functional and transcriptional regulators of hematopoiesis. Oxidative Med. Cell. Longev. 2019, 2019, 5153268. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, S. The Nrf2/HO-1 axis as targets for flavanones: Neuroprotection by pinocembrin, naringenin, and eriodictyol. Oxidative Med. Cell. Longev. 2019, 2019, 11. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, H.; Wang, J.; Liu, P.; Tan, X.; Ren, B.; Liu, Z.; Liu, X. Lycopene supplementation attenuates oxidative stress, neuroinflammation, and cognitive impairment in aged CD-1 mice. J. Agric. Food Chem. 2018, 66, 3127–3136. [Google Scholar] [PubMed]
- Marcotorchino, J.; Romier, B.; Gouranton, E.; Riollet, C.; Gleize, B.; Malezet-Desmoulins, C.; Landrier, J.F. Lycopene attenuates LPS-induced TNF-α secretion in macrophages and inflammatory markers in adipocytes exposed to macrophage-conditioned media. Mol. Nutr. Food Res. 2012, 56, 725–732. [Google Scholar] [CrossRef] [PubMed]
Items | 1–21 d | 22–42 d |
---|---|---|
Ingredients (g/kg) | ||
Corn | 570.10 | 610.00 |
Soybean meal | 310.00 | 280.00 |
Corn gluten meal | 40.00 | 24.0 |
Soybean oil | 30.00 | 40.0 |
Dicalcium phosphate | 20.00 | 16.0 |
Limestone | 10.20 | 13.0 |
L-Lysine | 2.00 | 2.50 |
DL-Methionine | 2.00 | 1.50 |
Premix 1 | 3.10 | 10.00 |
Sodium chloride | 3.00 | 3.00 |
Calculated nutrient levels (%) | ||
Metabolizable energy (MJ/kg) | 12.61 | 12.96 |
Crude protein | 21.36 | 19.44 |
Calcium | 1.00 | 0.93 |
Available phosphorus | 0.46 | 0.39 |
Lysine | 1.09 | 1.05 |
Methionine | 0.56 | 0.47 |
Arginine | 1.27 | 1.16 |
Methionine+ cysteine | 0.91 | 0.80 |
Gene Name 1 | Accession ID | Primer Sequence (5′-3′) | Length bp |
---|---|---|---|
IL-10 | NM_001004414 | Forward (F): ACTATTTTCAATCCAGGGACGA | 242 |
Reverse (R): GCAGGTGAAGAAGCGGTGA | |||
IL-1β | NM_204524 | F: CCGAGGAGCAGGGACTTT | 133 |
R: AGGACTGTGAGCGGGTGTAG | |||
IL-6 | NM_204628 | F: AATCCCTCCTCGCCAATCT | 102 |
R: TCACGGTCTTCTCCATAAACG | |||
IL-2 | NM_204153 | F: TGATCTTTGGCTGTATTTCGG | 169 |
R: TCCTGGGTCTCAGTTGGTGT | |||
INF-γ | NM_205149 | F: AAGAACTGGACAGAGAGAAATGAGA | 154 |
R: CGCCATCAGGAAGGTTGTT | |||
Mucin-2 | NM_001318434 | F: AAATGTATCTGTCGCCCCTCA | 121 |
R: TGTCGCCATCCTTTATTGTTG | |||
OCLN | NM_205128 | F: TCATCGCCTCCATCGTCTAC | 189 |
R: CGATGAGGAACCCACAGACA | |||
CLDN-1 | NM_001013611 | F: GGATGACCAGGTGAAGAAGATG | 184 |
R: TGCCCAGCCAATGAAGAG | |||
CLDN-2 | NM_001277622 | F: TCAACCTGCCTCCCGACA | 167 |
R: GATGAAGACCACCCCACCC | |||
CLDN-3 | NM_204202 | F: TTCATCGGCAACAACATCG | 242 |
R: GCCTTGGTGGTCTCGTCCT | |||
ZO-1 | XM_015278975 | F: CGCTAATAGAAAGGTCCAAAGG | 238 |
R: CTGGAATGGTCTGAAGGCTCT | |||
Nrf2 | NM_205117 | F: CACCAAAGAAAGACCCTCCTG | 201 |
R: CACTGAACTGCTCCTTCGACAT | |||
HO-1 | NM_205344 | F: ACGAGCAGGCGGAGAACA | 170 |
R: CATCGGAAAATAAACAGGAGCA | |||
GSH-Px | NM_001277854 | F: GTTCCAGAAGTGCCAGGTGA | 207 |
R: CTGTAGCGGCGGAAAGGT | |||
Cu/ZnSOD | NM_205064 | F: AAGGGAGGAGTGGCAGAAGT | 210 |
R: TTTCAGGTACAACGGTTAGCACT | |||
MnSOD | NM_204211 | F: CACTCTTCCTGACCTGCCTTAC | 169 |
R: CACCTGAGCTGTAACATCACCTT | |||
CAT | NM_001031215 | F: TCTTGAGTCTTCGCCCTGAG | 166 |
R: TGATCGGTCTTAACGTGGAAC | |||
β-actin | NM_205518 | F: TGATATTGCTGCGCTCGTTG | 183 |
R: ATACCTCTTTTGCTCTGGGCTT |
Dietary Treatments | ||||||
---|---|---|---|---|---|---|
Parameters | Days | Control | AFB1 | AFB1 + LYC | SEM | p-Value |
IFN-γ (ng/g protein) | 21 | 24.08 b | 27.10 a | 23.34 b | 0.586 | 0.011 |
42 | 24.46 b | 28.42 a | 27.16 a,b | 0.669 | 0.036 | |
IL-1β (ng/g protein) | 21 | 25.73 | 27.11 | 24.98 | 0.447 | 0.142 |
42 | 26.32 | 27.64 | 27.49 | 0.709 | 0.731 | |
IL-10 (ng/g protein) | 21 | 10.46 a | 9.28 b | 10.38 a | 0.216 | 0.028 |
42 | 8.36 b | 8.00 b | 9.31 a | 0.191 | 0.006 |
Dietary Treatments | ||||||
---|---|---|---|---|---|---|
Parameters | Days | Control | AFB1 | AFB1 + LYC | SEM | p-Value |
H2O2 (µmol/gprot) | 21 | 6.70 b | 8.33 a | 7.17 ab | 0.271 | 0.030 |
42 | 3.03 b | 4.80 a | 3.62 b | 0.216 | <0.001 | |
MDA (nmol/mgprot) | 21 | 1.41 b | 2.33 a | 1.54 b | 0.108 | <0.001 |
42 | 1.82 b | 2.35 a | 2.00 b | 0.081 | 0.015 |
Dietary Treatments | ||||||
---|---|---|---|---|---|---|
Parameters | Days | Control | AFB1 | AFB1 + LYC | SEM | p-Value |
GSH(µmol/gprot) | 21 | 187.51 | 160.33 | 174.83 | 6.503 | 0.348 |
42 | 95.92 a | 81.38 b | 94.57 a | 2.106 | 0.004 | |
GST(U/mgprot) | 21 | 56.36 | 43.92 | 51.01 | 3.412 | 0.244 |
42 | 40.55 a | 30.66 b | 39.33 a | 1.477 | 0.002 | |
GSH-Px(U/gprot) | 21 | 5.78 | 4.45 | 5.64 | 0.400 | 0.349 |
42 | 2.10 a | 1.40 b | 1.90 a,b | 0.126 | 0.046 | |
GR(U/gprot) | 21 | 8.29 | 6.95 | 8.18 | 0.313 | 0.151 |
42 | 7.68 a | 5.70 b | 6.92 a | 0.277 | 0.005 | |
CAT(U/mgprot) | 21 | 6.42 a | 4.78 b | 5.67 a,b | 0.274 | 0.039 |
42 | 5.13 a | 4.23 b | 4.60 a,b | 0.150 | 0.038 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarker, M.T.; Wan, X.; Yang, H.; Wang, Z. Dietary Lycopene Supplementation Could Alleviate Aflatoxin B1 Induced Intestinal Damage through Improving Immune Function and Anti-Oxidant Capacity in Broilers. Animals 2021, 11, 3165. https://doi.org/10.3390/ani11113165
Sarker MT, Wan X, Yang H, Wang Z. Dietary Lycopene Supplementation Could Alleviate Aflatoxin B1 Induced Intestinal Damage through Improving Immune Function and Anti-Oxidant Capacity in Broilers. Animals. 2021; 11(11):3165. https://doi.org/10.3390/ani11113165
Chicago/Turabian StyleSarker, Md Touhiduzzaman, Xiaoli Wan, Haiming Yang, and Zhiyue Wang. 2021. "Dietary Lycopene Supplementation Could Alleviate Aflatoxin B1 Induced Intestinal Damage through Improving Immune Function and Anti-Oxidant Capacity in Broilers" Animals 11, no. 11: 3165. https://doi.org/10.3390/ani11113165
APA StyleSarker, M. T., Wan, X., Yang, H., & Wang, Z. (2021). Dietary Lycopene Supplementation Could Alleviate Aflatoxin B1 Induced Intestinal Damage through Improving Immune Function and Anti-Oxidant Capacity in Broilers. Animals, 11(11), 3165. https://doi.org/10.3390/ani11113165