The Agreement between Feline Pancreatic Lipase Immunoreactivity and DGGR-Lipase Assay in Cats—Preliminary Results
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Laboratory Measurements
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forman, M.A.; Steiner, J.M.; Armstrong, P.J.; Camus, M.S.; Gaschen, L.; Hill, S.L.; Mansfield, C.S.; Steiger, K. ACVIM consensus statement on pancreatitis in cats. J. Vet. Intern. Med. 2021, 35, 703–723. [Google Scholar] [CrossRef]
- Hill, R.C.; Van Winkle, T. Acute necrotizing pancreatitis and acute suppurative pancreatitis in the cat. A retrospective study of 40 cases (1976–1989). J. Vet. Intern. Med. 1993, 7, 25–33. [Google Scholar] [CrossRef]
- De Cock, H.E.; Forman, M.A.; Farver, T.B.; Marks, S.L. Prevalence and histopathologic characteristics of pancreatitis in cats. Vet. Pathol. 2007, 44, 39–49. [Google Scholar] [CrossRef]
- Xenoulis, P.G.; Steiner, J.M. Canine and feline pancreatic lipase immunoreactivity. Vet. Clin. Pathol. 2012, 41, 312–324. [Google Scholar] [CrossRef]
- Törner, K.; Staudacher, M.; Tress, U.; Weber, C.N.; Stadler, C.; Grassinger, J.M.; Müller, E.; Aupperle-Lellbach, H. Histopathology and Feline Pancreatic Lipase Immunoreactivity in Inflammatory, Hyperplastic and Neoplastic Pancreatic Diseases in Cats. J. Comp. Pathol. 2020, 174, 63–72. [Google Scholar] [CrossRef]
- Forman, M.A.; Shiroma, J.; Armstrong, P.J.; Robertson, J.E.; Buch, J. Evaluation of Feline Pancreas-Specific Lipase (Spec fPLTM) for the Diagnosis of Feline Pancreatitis [Abstract]. J. Vet. Intern. Med. 2009, 23, 733–734. [Google Scholar]
- Schnauß, F.; Hanisch, F.; Burgener, I.A. Diagnosis of feline pancreatitis with SNAP fPL and Spec fPL. J. Feline Med. Surg. 2019, 21, 700–707. [Google Scholar] [CrossRef] [Green Version]
- Panteghini, M.; Bonora, R.; Pagani, F. Measurement of pancreatic lipase activity in serum by a kinetic colorimetric assay using a new chromogenic substrate. Ann. Clin. Biochem. 2001, 38, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.Y.; Xenoulis, P.G.; Stavroulaki, E.M.; Lidbury, J.A.; Suchodolski, J.S.; Carrière, F.; Steiner, J.M. The 1,2-o-dilauryl-rac-glycero-3-glutaric acid-(6′-methylresorufin) ester (DGGR) lipase assay in cats and dogs is not specific for pancreatic lipase. Vet. Clin. Pathol. 2020, 49, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Oppliger, S.; Hartnack, S.; Riond, B.; Reusch, C.E.; Kook, P.H. Agreement of the serum Spec fPL and 1,2-o-dilauryl-rac-glycero-3-glutaric acid-(6′-methylresorufin) ester lipase assay for the determination of serum lipase in cats with suspicion of pancreatitis. J. Vet. Intern. Med. 2013, 27, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Oppliger, S.; Hartnack, S.; Reusch, C.E.; Kook, P.H. Agreement of serum feline pancreas-specific lipase and colorimetric lipase assays with pancreatic ultrasonographic findings in cats with suspicion of pancreatitis: 161 cases (2008–2012). J. Am. Vet. Med. Assoc. 2014, 244, 1060–1065. [Google Scholar] [CrossRef] [Green Version]
- Oppliger, S.; Hilbe, M.; Hartnack, S.; Zini, E.; Reusch, C.E.; Kook, P.H. Comparison of Serum Spec fPL(TM) and 1,2-o-Dilauryl-Rac-Glycero-3-Glutaric Acid-(6′-Methylresorufin) Ester Assay in 60 Cats Using Standardized Assessment of Pancreatic Histology. J. Vet. Intern. Med. 2016, 30, 764–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bua, A.S.; Grimes, C.; Beauchamp, G.; Dunn, M.E. Evaluation of 1,2-o-dilauryl-rac-glycero-3-glutaric acid-(6′-methylresorufin) ester lipase concentrations in cats with kidney disease and with normal SNAP fPL. Can. Vet. J. 2020, 61, 743–748. [Google Scholar]
- Everson, E.; Abrams-Oggs, A.; Kocmarek, H.; Ruotsalo, K. Effect of serum creatinine on feline serum DGGR-lipase and serum pancreatic lipase immunoreactivity [Abstract]. J. Vet. Intern. Med. 2016, 30, 1463. [Google Scholar]
- O’Brien, P.J.; Papakonstantinou, S.; McGrath, C. Pancreatic, DGGR-lipase, enzymatic assay is a highly sensitive, specific and inexpensive biomarker of pancreatitis in cats and dogs. In Proceedings of the European Society of Veterinary Clinical Pathology (ESVCP)/European College of Veterinary Clinical Pathology (ECVCP) 15th Annual Congress, Berlin, Germany, 6–9 November 2013. [Google Scholar]
- Winnicka, A. Reference Values for Basic Laboratory Measurements in Veterinary, 7th ed.; Warsaw University of Life Sciences–SGGW Press: Warsaw, Poland, 2021; p. 120. (In Polish) [Google Scholar]
- Bonnett, D.G.; Wright, T.A. Sample size requirements for estimating Pearson, Kendall, and Spearman correlations. Psychometrika 2000, 65, 23–28. [Google Scholar] [CrossRef]
- Gwet, K.L. Computing inter-rater reliability and its variance in the presence of high agreement. Br. J. Math. Stat. Psychol. 2008, 61, 29–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwet, K.L. Testing the Difference of Correlated Agreement Coefficients for Statistical Significance. Educ. Psychol. Meas. 2016, 76, 609–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Altman, D.G. Practical Statistics for Medical Research, 1st ed.; Chapman and Hall/CRC: London, UK, 1990. [Google Scholar]
- Ricós, C.; Alvarez, V.; Cava, F.; García-Lario, J.V.; Hernández, A.; Jiménez, C.V.; Minchinela, J.; Perich, C.; Simón, M. Current databases on biological variation: Pros, cons and progress. Scand. J. Clin. Lab. Investig. 1999, 59, 491–500. [Google Scholar]
- Graca, R.; Messick, J.; McCullough, S.; Barger, A.; Hoffmann, W. Validation and diagnostic efficacy of a lipase assay using the substrate 1,2-o-dilauryl-rac-glycero glutaric acid-(6′ methyl resorufin)-ester for the diagnosis of acute pancreatitis in dogs. Vet. Clin. Pathol. 2005, 34, 39–43. [Google Scholar] [CrossRef]
- Kook, P.H.; Kohler, N.; Hartnack, S.; Riond, B.; Reusch, C.E. Agreement of serum Spec cPL with the 1,2-o-dilauryl-rac-glycero glutaric acid-(6′-methylresorufin) ester (DGGR) lipase assay and with pancreatic ultrasonography in dogs with suspected pancreatitis. J. Vet. Intern. Med. 2014, 28, 863–870. [Google Scholar] [CrossRef]
- Goodband, E.L.; Serrano, G.; Constantino-Casas, F.; Archer, J.; Watson, P.J.; Williams, T.L. Validation of a commercial 1,2-o-dilauryl-rac-glycero glutaric acid-(6′-methylresorufin) ester lipase assay for diagnosis of canine pancreatitis. Vet. Rec. Open. 2018, 5, e000270. [Google Scholar] [CrossRef] [Green Version]
- Lucibello, T.J.; McGrath, C.; Papakonstantinou, S.; O’Brien, P.J. Novel lipase assay for a rapid, inexpensive, and reliable diagnosis of pancreatitis in dogs and cats. In Proceedings of the 29th Annual Meeting of the British Society of Toxicological Pathology and Association of Comparative Clinical Pathology, Cheshire, UK, 12–14 November 2014. [Google Scholar]
- Hope, A.; Bailen, E.L.; Shiel, R.E.; Mooney, C.T. Retrospective study evaluation of DGGR lipase for diagnosis, agreement with pancreatic lipase and prognosis in dogs with suspected acute pancreatitis. J. Small Anim. Pract. 2021. [Google Scholar] [CrossRef]
- Feinstein, A.R.; Cicchetti, D.V. High agreement but low kappa: I. The problems of two paradoxes. J. Clin. Epidemiol. 1990, 43, 543–549. [Google Scholar] [CrossRef]
- Byrt, T.; Bishop, J.; Carlin, J.B. Bias, prevalence and kappa. J. Clin. Epidemiol. 1993, 46, 423–429. [Google Scholar] [CrossRef]
- Zec, S.; Soriani, N.; Comoretto, R.; Baldi, I. High Agreement and High Prevalence: The Paradox of Cohen’s Kappa. Open Nurs. J. 2017, 11, 211–218. [Google Scholar] [CrossRef]
- Wongpakaran, N.; Wongpakaran, T.; Wedding, D.; Gwet, K.L. A comparison of Cohen’s Kappa and Gwet’s AC1 when calculating inter-rater reliability coefficients: A study conducted with personality disorder samples. BMC Med. Res. Methodol. 2013, 13, 61. [Google Scholar] [CrossRef] [Green Version]
- Delgado, R.; Tibau, X.A. Why Cohen’s Kappa should be avoided as performance measure in classification. PLoS ONE 2019, 14, e0222916. [Google Scholar] [CrossRef] [Green Version]
- Giammarino, M.; Mattiello, S.; Battini, M.; Quatto, P.; Battaglini, L.M.; Vieira, A.C.L.; Stilwell, G.; Renna, M. Evaluation of Inter-Observer Reliability of Animal Welfare Indicators: Which Is the Best Index to Use? Animals 2021, 11, 1445. [Google Scholar] [CrossRef]
- Czopowicz, M.; Szaluś-Jordanow, O.; Mickiewicz, M.; Moroz, A.; Witkowski, L.; Markowska-Daniel, I.; Bagnicka, E.; Kaba, J. Influence of true within-herd prevalence of small ruminant lentivirus infection in goats on agreement between serological immunoenzymatic tests. Prev. Vet. Med. 2017, 144, 75–80. [Google Scholar] [CrossRef]
- Yang, D.A.; Laven, R.A. Inter-observer agreement between two observers for bovine digital dermatitis identification in New Zealand using digital photographs. N. Z. Vet. J. 2019, 67, 143–147. [Google Scholar] [CrossRef]
- Vanhoudt, A.; Yang, D.A.; Armstrong, T.; Huxley, J.N.; Laven, R.A.; Manning, A.D.; Newsome, R.F.; Nielen, M.; van Werven, T.; Bell, N.J. Interobserver agreement of digital dermatitis M-scores for photographs of the hind feet of standing dairy cattle. J. Dairy Sci. 2019, 102, 5466–5474. [Google Scholar] [CrossRef]
- Kotwa, J.D.; Jardine, C.M.; Pearl, D.L.; Berke, O.; Mercer, N.J.; Peregrine, A.S. Evaluation of the SNAP® 4Dx® plus test for the detection of Dirofilaria immitis antigen and characterization of exposure to tick-borne pathogens in wild canids in southern Ontario. Vet. Parasitol. 2020, 283, 109176. [Google Scholar] [CrossRef]
- Berman, J.; Francoz, D.; Abdallah, A.; Dufour, S.; Buczinski, S. Evaluation of inter-rater agreement of the clinical signs used to diagnose bovine respiratory disease in individually housed veal calves. J. Dairy Sci. 2021, 104, 12053–12065. [Google Scholar] [CrossRef]
- Clouthier, S.C.; McClure, C.; Schroeder, T.; Aldous, S.; Allen, J.; Collette-Belliveau, C.; Li, S.; Lindsay, M.; Anderson, E.D. Measures of diagnostic precision (repeatability and reproducibility) for three test methods designed to detect spring viremia of carp virus. Prev. Vet. Med. 2021, 188, 105288. [Google Scholar] [CrossRef]
- Myczka, A.W.; Steiner-Bogdaszewska, Ż.; Filip-Hutsch, K.; Oloś, G.; Czopowicz, M.; Laskowski, Z. Detection of Anaplasma phagocytophilum in Wild and Farmed Cervids in Poland. Pathogens 2021, 10, 1190. [Google Scholar] [CrossRef]
- Hall, J.A.; Yerramilli, M.; Obare, E.; Yerramilli, M.; Jewell, D.E. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in cats with chronic kidney disease. J. Vet. Intern. Med. 2014, 28, 1676–1683. [Google Scholar] [CrossRef] [Green Version]
DGGR-Lipase Assay Cut-Off Value [U/L] | fPLI | |||
---|---|---|---|---|
>3.5 μg/L | >5.3 μg/L | |||
Observed Agreement | AC1 (CI 95%) | Observed Agreement | AC1 (CI 95%) | |
26 a | 0.580 | 0.247 (0.002, 0.492) | 0.500 | 0.063 (−0.196, 0.323) |
45 b | 0.780 | 0.562 (0.333, 0.790) | 0.700 | 0.400 (0.146, 0.654) |
60 c | 0.820 | 0.651 (0.445, 0.858) | 0.820 | 0.663 (0.463, 0.862) |
Optimal d | 0.860 | 0.725 (0.537, 0.914) | 0.860 | 0.749 (0.577, 0.921) |
Subpopulation of Cats | No. of Cats | fPLI > 3.5 μg/L and DGGR-Lipase Assay > 55 U/L | fPLI > 5.3 μg/L and DGGR-Lipase Assay > 70 U/L | ||
---|---|---|---|---|---|
Observed Agreement | AC1 (CI 95%) | Observed Agreement | AC1 (CI 95%) | ||
Creatinine | |||||
Normal (≤1.8 mg/dL) | 35 | 0.886 | 0.807 (0.629, 0.985) | 0.857 | 0.795 (0.629, 0.961) |
Elevated (>1.8 mg/dL) | 15 | 0.800 | 0.689 (0.373, 1.00) | 0.867 | 0.760 (0.450, 1.00) |
Cholesterol | |||||
Normal (≤200 mg/dL) | 25 | 0.840 | 0.748 (0.522, 0.974) | 0.840 | 0.765 (0.553, 0.976) |
Elevated (>200 mg/dL) | 25 | 0.880 | 0.773 (0.532, 1.00) | 0.880 | 0.762 (0.508, 1.00) |
Triglycerides | |||||
Normal (≤160 mg/dL) | 40 | 0.850 | 0.703 (0.484, 0.922) | 0.850 | 0.725 (0.522, 0.928) |
Elevated (>160 mg/dL) | 10 | 0.900 | 0.817 (0.475, 1.00) | 0.900 | 0.840 (0.542, 1.00) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasztel, M.M.; Czopowicz, M.; Szaluś-Jordanow, O.; Moroz, A.; Mickiewicz, M.; Kaba, J. The Agreement between Feline Pancreatic Lipase Immunoreactivity and DGGR-Lipase Assay in Cats—Preliminary Results. Animals 2021, 11, 3172. https://doi.org/10.3390/ani11113172
Krasztel MM, Czopowicz M, Szaluś-Jordanow O, Moroz A, Mickiewicz M, Kaba J. The Agreement between Feline Pancreatic Lipase Immunoreactivity and DGGR-Lipase Assay in Cats—Preliminary Results. Animals. 2021; 11(11):3172. https://doi.org/10.3390/ani11113172
Chicago/Turabian StyleKrasztel, Magdalena Maria, Michał Czopowicz, Olga Szaluś-Jordanow, Agata Moroz, Marcin Mickiewicz, and Jarosław Kaba. 2021. "The Agreement between Feline Pancreatic Lipase Immunoreactivity and DGGR-Lipase Assay in Cats—Preliminary Results" Animals 11, no. 11: 3172. https://doi.org/10.3390/ani11113172
APA StyleKrasztel, M. M., Czopowicz, M., Szaluś-Jordanow, O., Moroz, A., Mickiewicz, M., & Kaba, J. (2021). The Agreement between Feline Pancreatic Lipase Immunoreactivity and DGGR-Lipase Assay in Cats—Preliminary Results. Animals, 11(11), 3172. https://doi.org/10.3390/ani11113172