Fatty Acid Profile of Blood Plasma at Mating and Early Gestation in Rabbit
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Animals and Design
2.2. Blood Sampling
2.3. Reproductive Traits
2.4. Fatty Acid Analyses
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Groebner, A.E.; Rubio-Aliaga, I.; Schulke, K.; Reichenbach, H.D.; Daniel, H.; Wolf, E.; Meyer, H.H.D.; Ulbrich, S.E. Increase of essential amino acids in the bovine uterine lumen during preimplantation development. Reproduction 2011, 141, 685–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.; Wu, G.; Spencer, T.E.; Johnson, G.A.; Li, X.; Bazer, F.W. Select nutrients in the ovine uterine lumen. I. Amino acids, glucose, and ions in uterine lumenal flushings of cyclic and pregnant ewes. Biol. Reprod. 2009, 80, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, S.E.; Gopichandran, N.; Picton, H.M.; Leese, H.J.; Orsi, N. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology 2005, 64, 992–1006. [Google Scholar] [CrossRef] [PubMed]
- Drews, B.; Milojevic, V.; Giller, K.; Ulbrich, S. Fatty acid profile of blood plasma and oviduct and uterine fluid during early and late luteal phase in the horse. Theriogenology 2018, 114, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Iritani, A.; Sato, E.; Nishikawa, Y. Secretion rates and chemical composition of oviduct and uterine fluids in sows. J. Anim. Sci. 1974, 39, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Beier, H.M. Oviductal and uterine fluids. J. Reprod. Fertil. 1974, 37, 221–237. [Google Scholar] [CrossRef] [Green Version]
- Oliphant, G.; Reynolds, A.B.; Smith, P.F.; Ross, P.R.; Marta, J.S. Immunocytochemical localization and determination of hormone-induced synthesis of the sulfated oviductal glycoproteins. Biol. Reprod. 1984, 31, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, J.; Reyley, M. The uterine tubal fluid: Secretion, composition and biological effects. Anim. Reprod. 2005, 2, 91–105. [Google Scholar]
- Sturmey, R.; Reis, A.; Leese, H.; McEvoy, T. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod. Domest. Anim. 2009, 44, 50–58. [Google Scholar] [CrossRef]
- Kane, M. Fatty acids as energy sources for culture of one-cell rabbit ova to viable morulae. Biol. Reprod. 1979, 20, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Stubbs, C.D.; Smith, A.D. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim. Biophys. Acta BBA Rev. Biomembr. 1984, 779, 89–137. [Google Scholar] [CrossRef]
- Warzych, E.; Lipinska, P. Energy metabolism of follicular environment during oocyte growth and maturation. J. Reprod. Dev. 2020, 66, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterman, R.A.; Wall, R.J. Lipid interactions with in vitro development of mammalian zygotes. Gamete Res. 1988, 21, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, C.J.; Toma, L.M.; Hunter, M.G. Nutritional effects on oocyte and embryo development in mammals: Implications for reproductive efficiency and environmental sustainability. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3351–3361. [Google Scholar] [CrossRef]
- Rodríguez, M.; García-García, R.; Arias-Álvarez, M.; Millán, P.; Febrel, N.; Formoso-Rafferty, N.; López-Tello, J.; Lorenzo, P.; Rebollar, P. Improvements in the conception rate, milk composition and embryo quality of rabbit does after dietary enrichment with n-3 polyunsaturated fatty acids. Animal 2018, 12, 2080–2088. [Google Scholar] [CrossRef] [Green Version]
- García, M.-L.; Argente, M.-J. The genetic improvement in meat rabbits. Lagomorpha Charact. Work. Title 2020, 5, 1–18. [Google Scholar] [CrossRef]
- Argente, M.J.; García, M.L.; Zbyňovská, K.; Petruška, P.; Capcarova, M.; Blasco, A. Correlated response to selection for litter size environmental variability in rabbits’ resilience. Animal 2019, 13, 2348–2355. [Google Scholar] [CrossRef]
- Beloumi, D.; Blasco, A.; Muelas, R.; Santacreu, M.A.; García, M.D.L.L.; Argente, M.-J. Inflammatory correlated response in two lines of rabbit selected divergently for litter size environmental variability. Animals 2020, 10, 1540. [Google Scholar] [CrossRef] [PubMed]
- Blasco, A. Bayesian Data Analysis for Animal Scientists; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-54273-7. [Google Scholar]
- Khandoker, M.A.M.Y.; Tsujii, H.; Karasawa, D. A kinetics study of fatty acid composition of embryos, oviductal and uterine fluids in the rabbit. Asian-Australas. J. Anim. Sci. 1998, 11, 60–64. [Google Scholar] [CrossRef]
- Kehl, S.J.; Carlson, J.C. Assessment of the luteolytic potency of various prostaglandins in the pseudopregnant rabbit. Reproduction 1981, 62, 117–122. [Google Scholar] [CrossRef] [Green Version]
- García, M.L. Embryo manipulation techniques in the rabbit. In New Insights into Theriogenology, 1st ed.; Payan-Carreira, R., Ed.; IntechOpen: London, UK, 2018; pp. 113–133. [Google Scholar] [CrossRef] [Green Version]
- Schindler, M.; Pendzialek, S.M.; Grybel, K.; Seeling, T.; Santos, A.N. Metabolic profiling in blastocoel fluid and blood plasma of diabetic rabbits. Int. J. Mol. Sci. 2020, 21, 919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarezadeh, R.; Mehdizadeh, A.; Leroy, J.L.; Nouri, M.; Fayezi, S.; Darabi, M. Action mechanisms of n-3 polyunsaturated fatty acids on the oocyte maturation and developmental competence: Potential advantages and disadvantages. J. Cell. Physiol. 2019, 234, 1016–1029. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kinoshita, M.; Ohnishi, M.; Fukui, Y. Lipid and fatty acid analysis of fresh and frozen-thawed immature and in vitro matured bovine oocytes. Reproduction 2001, 122, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Khandoker, M.A.M.Y.; Tsujii, H.; Karasawa, D. Fatty acid composition of blood serum, oocytes, embryos and reproductive tract fluids of rat and comparison with BSA. Anim. Sci. Technol. 1997, 68, 1070–1074. [Google Scholar] [CrossRef] [Green Version]
- Tsujii, H.; Matsuoka, Y.; Obata, R.; Hossain, M.S.; Takagi, Y. Fatty acid composition of lipids in day 7—13 blastocysts, serum and uterine fluid of rabbits. Reprod. Med. Biol. 2009, 8, 107–112. [Google Scholar] [CrossRef]
- Murakami, K.; Chan, S.Y.; Routtenberg, A. Protein kinase C activation by cis-fatty acid in the absence of Ca2+ and phospholipids. J. Biol. Chem. 1986, 261, 15424–15429. [Google Scholar] [CrossRef]
- Nishizuka, Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 1988, 334, 661–665. [Google Scholar] [CrossRef]
- Rodríguez, M.; Rebollar, P.G.; Mattioli, S.; Castellini, C. n-3 PUFA sources (precursor/products): A review of current knowledge on rabbit. Animals 2019, 9, 806. [Google Scholar] [CrossRef] [Green Version]
- Rebollar, P.; García-García, R.; Arias-Álvarez, M.; Millán, P.; Rey, A.; Rodríguez, M.; Formoso-Rafferty, N.; de la Riva, S.; Masdeu, M.; Lorenzo, P. Reproductive long-term effects, endocrine response and fatty acid profile of rabbit does fed diets supplemented with n-3 fatty acids. Anim. Reprod. Sci. 2014, 146, 202–209. [Google Scholar] [CrossRef] [Green Version]
- García, M.; Blasco, A.; Argente, M. Embryologic changes in rabbit lines selected for litter size variability. Theriogenology 2016, 86, 1247–1250. [Google Scholar] [CrossRef]
- Hunter, M.; Robinson, R.; Mann, G.; Webb, R. Endocrine and paracrine control of follicular development and ovulation rate in farm species. Anim. Reprod. Sci. 2004, 82, 461–477. [Google Scholar] [CrossRef] [PubMed]
- Jeffcoat, R. The biosynthesis of unsaturated fatty acids and its control in mammalian liver. Essays Biochem. 1979, 15, 1–36. [Google Scholar] [PubMed]
Pathway | Biochemical Name | ||
---|---|---|---|
Means (ng/mL) | D (ng/mL) | ||
Short chain fatty acids | Butyric (C4:0) | 0.42 | +0.08 |
Hexanoic (C6:0) | 0.02 | +0.00 | |
Medium chain fatty acids | Octanoic (C8:0) | ND | |
Decanoic (C10:0) | 0.30 | +0.06 | |
Undecanoic (C11:0) | 0.45 | +0.09 | |
Lauric (C12:0) | 1.84 | +0.39 | |
Long chain fatty acids | Myristic (C14:0) | 12.91 | −5.57 |
Pentadecanoic (C15:0) | 12.28 | −1.04 | |
Palmitic (C16:0) | 425.01 | +4.80 | |
Heptadecanoic (C17:0) | 21.26 | +2.14 | |
Stearic (C18:0) | 238.08 | −5.19 | |
Arachidic (C20:0) | 3.50 | −0.76 | |
Heneicosanoic (C21:0) | 2.12 | −0.98 | |
Behenic (C22:0) | 5.08 | −2.05 | |
Tricosylic (C23:0) | 8.09 | −5.55 | |
Lignoceric (C24:0) | 0.85 | +0.61 | |
ΣSFA | 733.96 | −14.61 | |
Monounsaturated fatty acids | Myristoleic (C14:1c9) | 2.63 | +0.80 |
Cis-10 pentadecenoic (C15:1c10) | ND | ||
Trans-9 elaidic (C18:1t9) | 13.41 | +5.75 | |
Cis-9 oleic (C18:1c9) | 385.30 | +32.13 | |
Palmitoleic (C16:1c9) | 29.31 | +8.75 | |
Cis-10 heptadecenoic (C17:1c10) | 5.91 | +2.22 | |
Cis-11 eicosenoic (C20:1c11) | 4.04 | +0.41 | |
Erucic (C22:1c13) | 0.25 | +0.07 | |
Nervonic (C24:1c15) | 2.17 | +0.42 | |
ΣMUFA | 445.07 | +55.75 | |
Polyunsaturated fatty acids | Linolelaidic (C18:2t9t12) | 3.14 | −1.26 |
Linoleic (C18:2c9c12) | 408.00 | −21.70 | |
γ-Linolenic (C18:3c6c9c12) | 2.23 | +0.81 | |
α-Linolenic (C18:3c9c12c15) | 13.77 | −4.61 | |
Cis-11,14 eicosadienoic (C20:2) | 6.65 | −1.41 | |
Cis-11,14,17 eicosatrienoic (C20:3) | 4.14 | +0.84 | |
Arachidonic (C20:4c5c8c11c14) | 1.61 | −1.09 | |
Cis-4,7,10,13,16,19 docosahexaenoic (C22:6c4c7c10c13c16c19) | 0.77 | +0.02 | |
Adrenic (C22:4c7c10c13c16) | ND | ||
ΣPUFA | 440.76 | −30.67 |
Mating | 72 hpc | ||||||||
---|---|---|---|---|---|---|---|---|---|
MUFA | PUFA | SFA | MUFA | PUFA | OR | NE | MC | ||
Mating | SFA | 0.675 * | 0.899 * | 0.813 * | 0.808 * | 0.543 * | 0.267 | 0.268 | 0.465 + |
MUFA | 0.605 * | 0.492 + | 0.721 * | 0.342 | 0.643 * | 0.781 * | 0.169 | ||
PUFA | 0.807 * | 0.861 * | 0.740 * | 0.123 | 0.341 | 0.328 | |||
72 hpc | SFA | 0.826 * | 0.773 * | 0.092 | 0.267 | −0.123 | |||
MUFA | 0.727 * | 0.275 | 0.334 | 0.183 | |||||
PUFA | 0.108 | 0.092 | 0.050 | ||||||
OR | 0.630 * | 0.027 | |||||||
NE | 0.047 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadjadj, I.; Hankele, A.-K.; Armero, E.; Argente, M.-J.; de la Luz García, M. Fatty Acid Profile of Blood Plasma at Mating and Early Gestation in Rabbit. Animals 2021, 11, 3200. https://doi.org/10.3390/ani11113200
Hadjadj I, Hankele A-K, Armero E, Argente M-J, de la Luz García M. Fatty Acid Profile of Blood Plasma at Mating and Early Gestation in Rabbit. Animals. 2021; 11(11):3200. https://doi.org/10.3390/ani11113200
Chicago/Turabian StyleHadjadj, Imane, Anna-Katharina Hankele, Eva Armero, María-José Argente, and María de la Luz García. 2021. "Fatty Acid Profile of Blood Plasma at Mating and Early Gestation in Rabbit" Animals 11, no. 11: 3200. https://doi.org/10.3390/ani11113200
APA StyleHadjadj, I., Hankele, A. -K., Armero, E., Argente, M. -J., & de la Luz García, M. (2021). Fatty Acid Profile of Blood Plasma at Mating and Early Gestation in Rabbit. Animals, 11(11), 3200. https://doi.org/10.3390/ani11113200