Impact of Antibiotic Therapies on Resistance Genes Dynamic and Composition of the Animal Gut Microbiota
Abstract
:Simple Summary
Abstract
1. Introduction
2. Calves
2.1. Effect of Waste Milk Feeding on Calves’ GIM
2.2. Therapeutic Concentration of Antibiotics in Calves
2.2.1. Beta-Lactams
2.2.2. Original Data on the Analysis of Amoxicillin Effects on Calves’ GIM
2.2.3. Macrolides
2.2.4. Tetracyclines
2.2.5. Other Antibiotics
3. Adult Bovines
4. Pigs
4.1. Beta-Lactams
4.2. Macrolides
4.3. Tetracyclines
4.4. Other Antibiotics
5. Poultry
5.1. Beta-Lactams
5.2. Streptogramins
5.3. Tetracyclines
5.4. Fluoroquinolones
5.5. Bacitracin
5.6. Other Antibiotics
6. Horses
7. Dogs and Cats
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shin, N.-R.; Whon, T.W.; Bae, J.-W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Grenham, S.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Brain-gut-microbe communication in health and disease. Front. Physiol. 2011, 2, 94. [Google Scholar] [CrossRef] [Green Version]
- Dethlefsen, L.; Relman, D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA 2011, 108, 4554–4561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Roy, C.I.; Woodward, M.J.; Ellis, R.J.; La Ragione, R.M.; Claus, S.P. Antibiotic treatment triggers gut dysbiosis and modulates metabolism in a chicken model of gastro-intestinal infection. BMC Vet. Res. 2019, 15, 37. [Google Scholar] [CrossRef]
- Xie, G.; Duff, G.C.; Hall, L.W.; Allen, J.D.; Burrows, C.D.; Bernal-Rigoli, J.C.; Dowd, S.; Guerriero, V.; Yeoman, C.J. Alteration of digestive tract microbiome in neonatal Holstein bull calves by bacitracin methylene disalicylate treatment and scours. J. Anim. Sci. 2013, 91, 4984–4990. [Google Scholar] [CrossRef] [PubMed]
- Dobrzanska, D.A.; Lamaudière, M.T.F.; Rollason, J.; Acton, L.; Duncan, M.; Compton, S.; Simms, J.; Weedall, G.D.; Morozov, I.Y. Preventive antibiotic treatment of calves: Emergence of dysbiosis causing propagation of obese state-associated and mobile multidrug resistance-carrying bacteria. Microb. Biotechnol. 2020, 13, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.C.; Stämpfli, H.R.; Arroyo, L.G.; Allen-Vercoe, E.; Gomes, R.G.; Weese, J.S. Changes in the equine fecal microbiota associated with the use of systemic antimicrobial drugs. BMC Vet. Res. 2015, 11, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaz-Moreira, I.; Nunes, O.; Manaia, C.M. Bacterial diversity and antibiotic resistance in water habitats: Searching the links with the human microbiome. FEMS Microbiol. Rev. 2014, 38, 761–778. [Google Scholar] [CrossRef]
- Verraes, C.; Van Boxstael, S.; Van Meervenne, E.; Van Coillie, E.; Butaye, P.; Catry, B.; De Schaetzen, M.-A.; Van Huffel, X.; Imberechts, H.; Dierick, K.; et al. Antimicrobial resistance in the food chain: A review. Int. J. Environ. Res. Public Health 2013, 10, 2643–2669. [Google Scholar] [CrossRef] [Green Version]
- Forsberg, K.J.; Patel, S.; Gibson, M.K.; Lauber, C.L.; Knight, R.; Fierer, N.; Dantas, G. Bacterial phylogeny structures soil resistomes across habitats. Nature 2014, 509, 612–616. [Google Scholar] [CrossRef] [Green Version]
- Moore, A.M.; Patel, S.; Forsberg, K.J.; Wang, B.; Bentley, G.; Razia, Y.; Qin, X.; Tarr, P.I.; Dantas, G. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes. PLoS ONE 2013, 8, e78822. [Google Scholar] [CrossRef] [Green Version]
- Perry, J.; Waglechner, N.; Wright, G. The prehistory of antibiotic resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025197. [Google Scholar] [CrossRef]
- Thames, C.H.; Pruden, A.; James, R.E.; Ray, P.P.; Knowlton, K. Excretion of antibiotic resistance genes by dairy calves fed milk replacers with varying doses of antibiotics. Front. Microbiol. 2012, 3, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monger, X.C.; Gilbert, A.-A.; Saucier, L.; Vincent, A.T. Antibiotic resistance: From pig to meat. Antibiotics 2021, 10, 1209. [Google Scholar] [CrossRef] [PubMed]
- De Smet, J.; Boyen, F.; Croubels, S.; Rasschaert, G.; Haesebrouck, F.; Temmerman, R.; Rutjens, S.; De Backer, P.; Devreese, M. The impact of therapeutic-dose induced intestinal enrofloxacin concentrations in healthy pigs on fecal Escherichia coli populations. BMC Vet. Res. 2020, 16, 382. [Google Scholar] [CrossRef]
- Ricker, N.; Trachsel, J.; Colgan, P.; Jones, J.; Choi, J.; Lee, J.; Coetzee, J.F.; Howe, A.; Brockmeier, S.L.; Loving, C.L.; et al. Toward antibiotic stewardship: Route of antibiotic administration impacts the microbiota and resistance gene diversity in swine feces. Front. Vet. Sci. 2020, 7, 255. [Google Scholar] [CrossRef] [PubMed]
- OIE. OIE Annual Report on Antimicrobial Agents Intended for Use in Animals: Better Understanding of the Global Situation; Fifth Report; World Organization for Animal Health: Paris, France, 2021. [Google Scholar]
- European Medicines Agency. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2018; Tenth Report; European Medicines Agency: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Durbán, A.; Abellan-Andres, J.J.; Hernández, N.J.; Ponce, M.; Ponce, J.; Sala, T.; D’Auria, G.; Latorre, A.; Moya, A. Assessing gut microbial diversity from feces and rectal mucosa. Microb. Ecol. 2011, 61, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.; Ley, R. The human gut microbiome: Ecology and recent evolutionary changes. Annu. Rev. Microbiol. 2011, 65, 411–429. [Google Scholar] [CrossRef] [Green Version]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef] [Green Version]
- Kuczynski, J.; Lauber, C.L.; Walters, W.A.; Parfrey, L.W.; Clemente, J.C.; Gevers, D.; Knight, R. Experimental and analytical tools for studying the human microbiome. Nat. Rev. Genet. 2011, 13, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, J.; Yaron, J.R.; Zhang, L.; Lucas, A. Next-generation sequencing library preparation for 16S rRNA microbiome analysis after serpin treatment. Methods Mol. Biol. 2018, 1826, 213–221. [Google Scholar]
- Bharti, R.; Grimm, D.G. Current challenges and best-practice protocols for microbiome analysis. Brief. Bioinform. 2021, 22, 178–193. [Google Scholar] [CrossRef] [Green Version]
- Suau, A.; Bonnet, R.; Sutren, M.; Godon, J.-J.; Gibson, G.R.; Collins, M.D.; Doré, J. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 1999, 65, 4799–4807. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, Y.; Komiya, S.; Yasumizu, Y.; Yasuoka, Y.; Mizushima, K.; Takagi, T.; Kryukov, K.; Fukuda, A.; Morimoto, Y.; Naito, Y.; et al. Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinIONTM nanopore sequencing confers species-level resolution. BMC Microbiol. 2021, 21, 35. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef] [Green Version]
- Callahan, B.J.; McMurdie, P.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calle, M.L. Statistical analysis of metagenomics data. Genom. Inform. 2019, 17, e6. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.R.; Pop, M.; Deboy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggwet, C.M.; Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science 2006, 312, 1355–1359. [Google Scholar] [CrossRef] [Green Version]
- Lupo, A.; Papp-Wallace, K.M.; Sendi, P.; Bonomo, R.A.; Endimiani, A. Non-phenotypic tests to detect and characterize antibiotic resistance mechanisms in Enterobacteriaceae. Diagn. Microbiol. Infect. Dis. 2013, 77, 179–194. [Google Scholar] [CrossRef] [Green Version]
- Roesch, L.F.; Casella, G.; Simell, O.; Krischer, J.; Wasserfall, C.H.; Schatz, D.; Atkinson, M.A.; Neu, J.; Triplett, E.W. Influence of fecal sample storage on bacterial community diversity. Open Microbiol. J. 2009, 3, 40. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, H.; Poly, F.; Van, V.T.; Lombard, N.; Nalin, R.; Vogel, T.M.; Simonet, P. High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction. J. Microbiol. Methods 2005, 62, 1–11. [Google Scholar] [CrossRef]
- Liles, M.R.; Williamson, L.L.; Rodbumrer, J.; Torsvik, V.; Goodman, R.M.; Handelsman, J. Recovery, purification, and cloning of high-molecular-weight DNA from soil microorganisms. Appl. Environ. Microbiol. 2008, 74, 3302–3305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardona, S.; Eck, A.; Cassellas, M.; Gallart, M.; Alastrue, C.; Dore, J.; Azpiroz, F.; Roca, J.; Guarner, F.; Manichanh, C. Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC Microbiol. 2012, 12, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santiago, A.; Panda, S.; Mengels, G.; Martinez, X.; Azpiroz, F.; Dore, J.; Guarner, F.; Manichanh, C. Processing faecal samples: A step forward for standards in microbial community analysis. BMC Microbiol. 2014, 14, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, S.A.; Nzakizwanayo, J.; Rodgers, A.M.; Zhao, L.; Weiser, R.; Tekko, I.A.; McCarthy, H.O.; Ingram, R.J.; Jones, B.V.; Donnelly, R.F.; et al. Antibiotic therapy and the gut microbiome: Investigating the effect of delivery route on gut pathogens. ACS Infect. Dis. 2021, 7, 1283–1296. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.; O’Neill, F.J.; Wilcox, M.H. Effects of cefotaxime and desacetylcefotaxime upon Clostridioides difficile proliferation and toxin production in a triple-stage chemostat model of the human gut. J. Antimicrob. Chemother. 2003, 52, 96–102. [Google Scholar] [CrossRef]
- Luo, W.; Chen, D.; Wu, M.; Li, Z.; Tao, Y.; Liu, Q.; Pan, Y.; Qu, W.; Yuan, Z.; Xie, S. Pharmacokinetics/Pharmacodynamics models of veterinary antimicrobial agents. J. Vet. Sci. 2019, 20, e40. [Google Scholar] [CrossRef]
- Levast, B.; Benech, N.; Gasc, C.; Batailler, C.; Senneville, E.; Lustig, S.; Pouderoux, C.; Boutoille, D.; Boucinha, L.; Dauchy, F.-A.; et al. Impact on the gut microbiota of intensive and prolonged antimicrobial therapy in patients with bone and joint infection. Front. Med. (Lausanne) 2021, 8, 586875. [Google Scholar] [CrossRef]
- Liu, J.; Taft, D.; Maldonado-Gomez, M.X.; Johnson, D.; Treiber, M.L.; Lemay, D.G.; Depeters, E.J.; Mills, D.A. The fecal resistome of dairy cattle is associated with diet during nursing. Nat. Commun. 2019, 10, 4406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oikonomou, G.; Teixeira, A.G.V.; Foditsch, C.; Bicalho, M.L.; Machado, V.S.; Bicalho, R.C. Fecal microbial diversity in pre-weaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA. Associations of Faecalibacterium species with health and growth. PLoS ONE 2013, 8, e63157. [Google Scholar] [CrossRef]
- Fan, P.; Nelson, C.D.; Driver, J.D.; Elzo, M.A.; Jeong, K.C. Animal breed composition is associated with the hindgut microbiota structure and beta-lactam resistance in the multibreed Angus-Brahman herd. Front. Microbiol. 2019, 10, 1846. [Google Scholar] [CrossRef] [Green Version]
- Markland, S.; Weppelmann, T.A.; Ma, Z.; Lee, S.; Mir, R.A.; Teng, L.; Ginn, A.; Lee, C.; Ukhanova, M.; Galindo, S.; et al. High prevalence of cefotaxime resistant bacteria in grazing beef cattle: A cross sectional study. Front. Microbiol. 2019, 10, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penati, M.; Sala, G.; Biscarini, F.; Boccardo, A.; Bronzo, V.; Castiglioni, B.; Cremonesi, P.; Moroni, P.; Pravettoni, D.; Addis, M.F. Feeding pre-weaned calves with waste milk containing antibiotic residues is related to a higher incidence of diarrhea and alterations in the fecal microbiota. Front. Vet. Sci. 2021, 8, 650150. [Google Scholar] [CrossRef] [PubMed]
- Dupouy, V.; Madec, J.-Y.; Wucher, J.; Arpaillange, N.; Métayer, V.; Roques, B.; Bousquet-Mélou, A.; Haenni, M. Selection of ESBL-producing Escherichia coli in the gut of calves experimentally fed with milk containing antibiotic residues. Vet. Microbiol. 2021, 257, 109049. [Google Scholar] [CrossRef] [PubMed]
- Maynou, G.; Chester-Jones, H.; Bach, A.; Terré, M. Feeding pasteurized waste milk to preweaned dairy calves changes fecal and upper respiratory tract microbiota. Front. Vet. Sci. 2019, 6, 159. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.V.V.; Carroll, L.; Lima, S.; Foditsch, C.; Siler, J.D.; Bicalho, R.C.; Warnick, L.D. Impacts of feeding preweaned calves milk containing drug residues on the functional profile of the fecal microbiota. Sci. Rep. 2018, 8, 554. [Google Scholar] [CrossRef] [Green Version]
- Van Vleck Pereira, R.; Lima, S.; Siler, J.D.; Foditsch, C.; Warnick, L.D.; Bicalho, R.C. Ingestion of milk containing very low concentration of antimicrobials: Longitudinal effect on fecal microbiota composition in preweaned calves. PLoS ONE 2016, 11, e0147525. [Google Scholar] [CrossRef] [Green Version]
- Grønvold, A.-M.R.; Mao, Y.; L’Abée-Lund, T.M.; Sørum, H.; Sivertsen, T.; Yannarell, A.C.; Mackie, R.I. Fecal microbiota of calves in the clinical setting: Effect of penicillin treatment. Vet. Microbiol. 2011, 153, 354–360. [Google Scholar] [CrossRef]
- Ma, T.; Villot, C.; Renaud, D.; Skidmore, A.; Chevaux, E.; Steele, M.; Guan, L.L. Linking perturbations to temporal changes in diversity, stability, and compositions of neonatal calf gut microbiota: Prediction of diarrhea. ISME J. 2020, 14, 2223–2235. [Google Scholar] [CrossRef] [PubMed]
- Jarrige, N.; Cazeau, G.; Bosquet, G.; Bastien, J.; Benoit, F.; Gay, E. Effects of antimicrobial exposure on the antimicrobial resistance of Escherichia coli in the digestive flora of dairy calves. Prev. Vet. Med. 2020, 185, 105177. [Google Scholar] [CrossRef] [PubMed]
- Rochegüe, T.; Haenni, M.; Cazeau, G.; Metayer, V.; Madec, J.-Y.; Ferry, T.; Lupo, A. An inventory of 44 qPCR assays using hydrolysis probes operating with a unique amplification condition for the detection and quantification of antibiotic resistance genes. Diagn. Microbiol. Infect. Dis. 2021, 100, 115328. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.C.; Baccili, C.C.; Avila-Campos, M.J.; Hurley, D.J.; Gomes, V. Effect of prophylactic use of tulathromycin on gut bacterial populations, inflammatory profile and diarrhea in newborn Holstein calves. Res. Vet. Sci. 2021, 136, 268–276. [Google Scholar] [CrossRef]
- Hagiya, H.; Kimura, K.; Nishi, I.; Yamamoto, N.; Yoshida, H.; Akeda, Y.; Tomono, K. Desulfovibrio desulfuricans bacteremia: A case report and literature review. Anaerobe 2018, 49, 112–115. [Google Scholar] [CrossRef]
- Foditsch, C.; Pereira, R.; Siler, J.D.; Altier, C.; Warnick, L.D. Effects of treatment with enrofloxacin or tulathromycin on fecal microbiota composition and genetic function of dairy calves. PLoS ONE 2019, 14, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bringhenti, L.; Pallu, M.; Silva, J.; Tomazi, T.; Tomazi, A.C.; Rodrigues, M.X.; Duarte, L.M.; Bilby, T.R.; Bicalho, R.C. Effect of metaphylactic administration of tildipirosin on the incidence of pneumonia and otitis and on the upper respiratory tract and fecal microbiome of preweaning Holstein calves. J. Dairy Sci. 2021, 104, 6020–6038. [Google Scholar] [CrossRef] [PubMed]
- Massot, M.; Haenni, M.; Nguyen, T.T.; Madec, J.-Y.; Mentré, F.; Denamur, E. Temporal dynamics of the fecal microbiota in veal calves in a 6-month field trial. Anim. Microbiome 2020, 2, 32. [Google Scholar] [CrossRef]
- Keijser, B.J.F.; Agamennone, V.; Broek, T.J.V.D.; Caspers, M.; Van De Braak, A.; Bomers, R.; Havekes, M.; Schoen, E.; Van Baak, M.; Mioch, D.; et al. Dose-dependent impact of oxytetracycline on the veal calf microbiome and resistome. BMC Genom. 2019, 20, 65. [Google Scholar] [CrossRef] [Green Version]
- Oultram, J.; Phipps, E.; Teixeira, A.G.V.; Foditsch, C.; Bicalho, M.L.; Machado, V.S.; Bicalho, R.C.; Oikonomou, G. Effects of antibiotics (oxytetracycline, florfenicol or tulathromycin) on neonatal calves’ faecal microbial diversity. Vet. Rec. 2015, 177, 598. [Google Scholar] [CrossRef] [PubMed]
- Lhermie, G.; Dupouy, V.; El Garch, F.; Ravinet, N.; Toutain, P.L.; Bousquet-Mélou, A.; Seegers, H.; Assié, S. Impact of low and high doses of marbofloxacin on the selection of resistant Enterobacteriaceae in the commensal gut flora of young cattle: Discussion of data from 2 study populations. Foodborne Pathog. Dis. 2017, 14, 152–159. [Google Scholar] [CrossRef]
- Wang, W.; Wei, X.; Wu, L.; Shang, X.; Cheng, F.; Li, B.; Zhou, X.; Zhang, J. The occurrence of antibiotic resistance genes in the microbiota of yak, beef and dairy cattle characterized by a metagenomic approach. J. Antibiot. (Tokyo) 2021, 74, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Holman, D.; Yang, W.; Alexander, T.W. Antibiotic treatment in feedlot cattle: A longitudinal study of the effect of oxytetracycline and tulathromycin on the fecal and nasopharyngeal microbiota. Microbiome 2019, 7, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Résapath. Réseau d’Épidémiosurveillance de l’Antibiorésistance des Bactéries Pathogènes Animales, Bilan; ANSES: Lyon et Ploufragan-Plouzané-Niort, France, 2019. [Google Scholar]
- Xiao, L.; Estellé, J.; Kiilerich, P.; Ramayo-Caldas, Y.; Xia, Z.; Feng, Q.; Liang, S.; Pedersen, A.Ø.; Kjeldsen, N.J.; Liu, C.; et al. A reference gene catalogue of the pig gut microbiome. Nat. Microbiol. 2016, 1, 16161. [Google Scholar] [CrossRef] [PubMed]
- Joyce, A.; McCarthy, C.G.P.; Murphy, S.; Walsh, F. Antibiotic resistomes of healthy pig faecal metagenomes. Microb. Genom. 2019, 5, e000272. [Google Scholar] [CrossRef]
- Skarżyńska, M.; Leekitcharoenphon, P.; Hendriksen, R.S.; Aarestrup, F.M.; Wasyl, D.A. A metagenomic glimpse into the gut of wild and domestic animals: Quantification of antimicrobial resistance and more. PLoS ONE 2020, 15, e0242987. [Google Scholar] [CrossRef]
- Madec, F.; Bridoux, N.; Bounaix, S.; Cariolet, R.; Duval-Iflah, Y.; Hampson, D.J.; Jestin, A. Experimental models of porcine post-weaning colibacillosis and their relationship to post-weaning diarrhoea and digestive disorders as encountered in the field. Vet. Microbiol. 2000, 72, 295–310. [Google Scholar] [CrossRef]
- Muyzer, G.; Smalla, K. Application of Denaturing Gradient Gel Electrophoresis (DGGE) and Temperature Gradient Gel Electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 1998, 73, 127–141. [Google Scholar] [CrossRef]
- Janczyk, P.; Pieper, R.; Souffrant, W.B.; Bimczok, D.; Rothkötter, H.-J.; Smidt, H.; Rothk, H.-J. Parenteral long-acting amoxicillin reduces intestinal bacterial community diversity in piglets even 5 weeks after the administration. ISME J. 2007, 1, 180–183. [Google Scholar] [CrossRef]
- Bosi, P.; Merialdi, G.; Scandurra, S.; Messori, S.; Bardasi, L.; Nisi, I.; Russo, D.; Casini, L.; Trevisi, P. Feed supplemented with 3 different antibiotics improved food intake and decreased the activation of the humoral immune response in healthy weaned pigs but had differing effects on intestinal microbiota. J. Anim. Sci 2011, 89, 4043–4053. [Google Scholar] [CrossRef] [Green Version]
- Fouhse, J.M.; Yang, K.; More-Bayona, J.; Gao, Y.; Goruk, S.; Plastow, G.; Field, C.; Barreda, D.R.; Willing, B.P. Neonatal exposure to amoxicillin alters long-term immune response despite transient effects on gut-microbiota in piglets. Front. Immunol. 2019, 10, 2059. [Google Scholar] [CrossRef] [Green Version]
- Massacci, F.R.; Tofani, S.; Forte, C.; Bertocchi, M.; Lovito, C.; Orsini, S.; Tentellini, M.; Marchi, L.; Lemonnier, G.; Luise, D.; et al. Host genotype and amoxicillin administration affect the incidence of diarrhoea and faecal microbiota of weaned piglets during a natural multiresistant ETEC infection. J. Anim. Breed. Genet. 2020, 137, 60–72. [Google Scholar] [CrossRef]
- Bibbal, D.; Dupouy, V.; Ferré, J.P.; Toutain, P.L.; Fayet, O.; Prère, M.F.; Bousquet-Mélou, A. Impact of three ampicillin dosage regimens on selection of ampicillin resistance in Enterobacteriaceae and excretion of blaTEM genes in swine feces. Appl. Environ. Microbiol. 2007, 73, 4785–4790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connelly, S.; Subramanian, P.; Hasan, N.A.; Colwell, R.R.; Kaleko, M. Distinct consequences of amoxicillin and ertapenem exposure in the porcine gut microbiome. Anaerobe 2018, 53, 82–93. [Google Scholar] [CrossRef]
- Kouadio, I.K.; Guessennd, N.; Dadié, A.; Koffi, E.; Dosso, M. Comparative study of the impact of the administration of amoxicillin and Algo-Bio® alternative substance to antibiotics, on the level of selection of resistant Enterobacteriaceae in the digestive flora of piglets. J. Glob. Antimicrob. Resist. 2018, 13, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Chen, K.; Xie, M.; Ye, L.; Chan, E.W.-C.; Chen, S. Effect of ceftiofur and enrofloxacin on E. coli sub-population in pig gastrointestinal tract. J. Glob. Antimicrob. Resist. 2017, 10, 126–130. [Google Scholar] [CrossRef]
- Yun, J.; Olkkola, S.; Hänninen, M.-L.; Oliviero, C.; Heinonen, M. The effects of amoxicillin treatment of newborn piglets on the prevalence of hernias and abscesses, growth and ampicillin resistance of intestinal coliform bacteria in weaned pigs. PLoS ONE 2017, 12, e0172150. [Google Scholar] [CrossRef] [PubMed]
- Zeineldin, M.; Megahed, A.; Blair, B.; Burton, B.; Aldridge, B.; Lowe, J. Negligible impact of perinatal tulathromycin metaphylaxis on the developmental dynamics of fecal microbiota and their accompanying antimicrobial resistome in piglets. Front. Microbiol. 2019, 10, 726. [Google Scholar] [CrossRef] [Green Version]
- Jo, H.E.; Kwon, M.-S.; Whon, T.W.; Kim, D.W.; Yun, M.; Lee, J.; Shin, M.-Y.; Kim, S.-H.; Choi, H.-J. Alteration of gut microbiota after antibiotic exposure in finishing swine. Front. Microbiol. 2021, 12, 596002. [Google Scholar] [CrossRef]
- Ghanbari, M.; Klose, V.; Crispie, F.; Cotter, P.D. The dynamics of the antibiotic resistome in the feces of freshly weaned pigs following therapeutic administration of oxytetracycline. Sci. Rep. 2019, 9, 4062. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Yang, Z.; Xu, T.; Qian, M.; Jiang, X.; Zhan, X.; Han, X. Chlortetracycline alters microbiota of gut or faeces in pigs and leads to accumulation and migration of antibiotic resistance genes. Sci. Total Environ. 2021, 796, 148976. [Google Scholar] [CrossRef]
- Holman, D.B.; Bearson, B.L.; Allen, H.K.; Shippy, D.C.; Loving, C.L.; Kerr, B.J.; Bearson, S.M.D.; Brunelle, B.W. Chlortetracycline enhances tonsil colonization and fecal shedding of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 without major alterations to the porcine tonsillar and intestinal microbiota. Appl. Environ. Microbiol. 2019, 85, e02354-18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Ji, H.; Liu, H.; Wang, S.; Wang, J.; Wang, Y. Changes in the diversity and composition of gut microbiota of weaned piglets after oral administration of Lactobacillus or an antibiotic. Appl. Microbiol. Biotechnol. 2016, 100, 10081–10093. [Google Scholar] [CrossRef] [PubMed]
- Zeineldin, M.; Aldridge, B.; Blair, B.; Kancer, K.; Lowe, J. Impact of parenteral antimicrobial administration on the structure and diversity of the fecal microbiota of growing pigs. Microb. Pathog. 2018, 118, 220–229. [Google Scholar] [CrossRef]
- Rhouma, M.; Braley, C.; Thériault, W.; Thibodeau, A.; Quessy, S.; Fravalo, P. Evolution of pig fecal microbiota composition and diversity in response to enterotoxigenic Escherichia coli infection and colistin treatment in weaned piglets. Microorganisms 2021, 9, 1459. [Google Scholar] [CrossRef] [PubMed]
- Fleury, M.; Jouy, E.; Eono, F.; Cariolet, R.; Couet, W.; Gobin, P.; Le Goff, O.; Blanquet-Diot, S.; Alric, M.; Kempf, I. Impact of two different colistin dosing strategies on healthy piglet fecal microbiota. Res. Vet. Sci. 2016, 107, 152–160. [Google Scholar] [CrossRef]
- Rhouma, M.; Beaudry, F.; Thériault, W.; Letellier, A. Colistin in pig production: Chemistry, mechanism of antibacterial action, microbial resistance emergence, and One Health perspectives. Front. Microbiol. 2016, 7, 1789. [Google Scholar] [CrossRef] [PubMed]
- Pissetti, C.; Kich, J.D.; Allen, H.K.; Navarrete, C.; Costa, E.D.F.; Morés, N.; Cardoso, M. Antimicrobial resistance in commensal Escherichia coli and Enterococcus spp. isolated from pigs subjected to different antimicrobial administration protocols. Res. Vet. Sci. 2021, 137, 174–185. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Y.; Wei, H.; Chen, Y.; Shang, H. Study on the diversity and function of gut microbiota in pigs following long-term antibiotic and antibiotic-free breeding. Curr. Microbiol. 2020, 77, 4114–4128. [Google Scholar] [CrossRef]
- Yan, H.; Yu, B.; Degroote, J.; Spranghers, T.; Van Noten, N.; Majdeddin, M.; Van Poucke, M.; Peelman, L.; De Vrieze, J.; Boon, N.; et al. Antibiotic affects the gut microbiota composition and expression of genes related to lipid metabolism and myofiber types in skeletal muscle of piglets. BMC Vet. Res. 2020, 16, 392. [Google Scholar] [CrossRef]
- Videnska, P.; Faldynova, M.; Juricova, H.; Babak, V.; Sisak, F.; Havlickova, H.; Rychlik, I. Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin. BMC Vet. Res. 2013, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Mancabelli, L.; Ferrario, C.; Milani, C.; Mangifesta, M.; Turroni, F.; Duranti, S.; Lugli, G.A.; Viappiani, A.; Ossiprandi, M.C.; Van Sinderen, D.; et al. Insights into the biodiversity of the gut microbiota of broiler chickens. Environ. Microbiol. 2016, 18, 4727–4738. [Google Scholar] [CrossRef]
- Johnson, T.A.; Sylte, M.J.; Looft, T. In-feed bacitracin methylene disalicylate modulates the turkey microbiota and metabolome in a dose-dependent manner. Sci. Rep. 2019, 9, 8212. [Google Scholar] [CrossRef]
- Singh, P.; Karimi, A.; Devendra, K.; Waldroup, P.W.; Cho, K.K.; Kwon, Y.M. Influence of penicillin on microbial diversity of the cecal microbiota in broiler chickens. Poult. Sci. 2013, 92, 272–276. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Zhang, L.; Wu, Z.; Huang, Y.; Yan, H.; Zhong, J.; Wang, L.-J.; Abdullah, H.M.; Wang, H.H. Antibiotic administration routes and oral exposure to antibiotic resistant bacteria as key drivers for gut microbiota disruption and resistome in poultry. Front. Microbiol. 2020, 11, 1319. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, J.; Yu, L.; Xu, T.; Zhu, N. Microbiota and metabolome responses in the cecum and serum of broiler chickens fed with plant essential oils or virginiamycin. Sci. Rep. 2020, 10, 5382. [Google Scholar] [CrossRef] [PubMed]
- Dumonceaux, T.J.; Hill, J.E.; Hemmingsen, S.M.; Van Kessel, A.G. Characterization of intestinal microbiota and response to dietary virginiamycin supplementation in the broiler chicken. Appl. Environ. Microbiol. 2006, 72, 2815–2823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danzeisen, J.L.; Kim, H.B.; Isaacson, R.E.; Jin Tu, Z.; Johnson, T.J. Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS ONE 2011, 6, e27949. [Google Scholar] [CrossRef] [PubMed]
- She, Y.; Cai, H.; Liu, G. Effects of antibiotic on microflora in ileum and cecum for broilers by 16S rRNA sequence analysis. Anim. Sci. J. 2018, 89, 1680–1691. [Google Scholar] [CrossRef]
- Banerjee, S.; Sar, A.; Misra, A.; Pal, S.; Chakraborty, A.; Dam, B. Increased productivity in poultry birds by sub-lethal dose of antibiotics is arbitrated by selective enrichment of gut microbiota, particularly short-chain fatty acid producers. Microbiology 2018, 164, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Mei, X.; Lei, C.; Li, C.; Gao, Y.; Kong, L.; Zhai, X.; Wang, H. Enrofloxacin shifts intestinal microbiota and metabolic profiling and hinders recovery from Salmonella enterica subsp. enterica serovar Typhimurium infection in neonatal chickens. mSphere 2020, 5. [Google Scholar] [CrossRef]
- Li, J.; Hao, H.; Cheng, G.; Liu, C.; Ahmed, S.; Shabbir, M.A.B.; Hussain, H.; Dai, M.; Yuan, Z. Microbial shifts in the intestinal microbiota of Salmonella infected chickens in response to enrofloxacin. Front. Microbiol. 2017, 8, 1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisselink, H.J.; Cornelissen, J.B.W.J.; Mevius, D.; Smits, M.A.; Smidt, H.; Rebel, J.M.J. Antibiotics in 16-day-old broilers temporarily affect microbial and immune parameters in the gut. Poult. Sci. 2017, 96, 3068–3078. [Google Scholar] [CrossRef] [PubMed]
- Elokil, A.A.; Abouelezz, K.F.; Ahmad, H.I.; Pan, Y.; Li, S. Investigation of the impacts of antibiotic exposure on the diversity of the gut microbiota in chicks. Animals 2020, 10, 896. [Google Scholar] [CrossRef] [PubMed]
- Díaz Carrasco, J.M.; Redondo, E.A.; Pin Viso, N.D.; Redondo, L.M.; Farber, M.D.; Miyakawa, M.E.F. Tannins and bacitracin differentially modulate gut microbiota of broiler chickens. Biomed. Res. Int. 2018, 2018, 1879168. [Google Scholar] [CrossRef]
- Proctor, A.; Phillips, G.J. Differential effects of Bacitracin Methylene Disalicylate (BMD) on the distal colon and cecal microbiota of young broiler chickens. Front. Vet. Sci. 2019, 6, 114. [Google Scholar] [CrossRef]
- Choi, J.-H.; Lee, K.; Kim, D.-W.; Kil, D.Y.; Kim, G.-B.; Cha, C.-J. Influence of dietary avilamycin on ileal and cecal microbiota in broiler chickens. Poult. Sci. 2018, 97, 970–979. [Google Scholar] [CrossRef]
- Cuccato, M.; Rubiola, S.; Giannuzzi, D.; Grego, E.; Pregel, P.; Divari, S.; Cannizzo, F.T. 16S rRNA sequencing analysis of the gut microbiota in broiler chickens prophylactically administered with antimicrobial agents. Antibiotics 2021, 10, 146. [Google Scholar] [CrossRef]
- Liu, Y.; Bailey, K.E.; Dyall-Smith, M.; Marenda, S.M.; Hardefeldt, L.Y.; Browing, G.F.; Gilkerson, J.R.; Billman-Jacobe, H. Fecal microbiota and antimicrobial resistance gene profiles of healthy foals. Equine Vet. J. 2021, 53, 806–816. [Google Scholar] [CrossRef]
- De Lagarde, M.; Larrieu, C.; Praud, K.; Schouler, C.; Doublet, B.; Sallé, G.; Fairbrother, J.M.; Arsenault, J. Prevalence, risk factors, and characterization of multidrug resistant and extended spectrum beta-lactamase/AmpC beta-lactamase producing Escherichia coli in healthy horses in France in 2015. J. Vet. Intern. Med. 2019, 33, 902–911. [Google Scholar] [CrossRef] [Green Version]
- Grønvold, A.-M.R.; L’Abée-Lund, T.M.; Strand, E.; Sørum, H.; Yannarell, A.C.; Mackie, R.I. Fecal microbiota of horses in the clinical setting: Potential effects of penicillin and general anesthesia. Vet. Microbiol. 2010, 145, 366–372. [Google Scholar] [CrossRef]
- Harlow, B.E.; Lawrence, L.M.; Flythe, M.D. Diarrhea-associated pathogens, lactobacilli and cellulolytic bacteria in equine feces: Responses to antibiotic challenge. Vet. Microbiol. 2013, 166, 225–232. [Google Scholar] [CrossRef]
- Álvarez–Narváez, S.; Berghaus, L.J.; Morris, E.R.A.; Willingham-Lane, J.M.; Slovis, N.M.; Giguere, S.; Cohen, N.D. A common practice of widespread antimicrobial use in horse production promotes multi-drug resistance. Sci. Rep. 2020, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- Arnold, C.E.; Isaiah, A.; Pilla, R.; Lidbury, J.; Coverdale, J.S.; Callaway, T.R.; Lawhon, S.D.; Steiner, J.; Suchodolski, J.S. The cecal and fecal microbiomes and metabolomes of horses before and after metronidazole administration. PLoS ONE 2020, 15, e0232905. [Google Scholar] [CrossRef]
- Arnold, C.; Pilla, R.; Chaffin, K.; Lidbury, J.; Steiner, J.; Suchodolski, J. Alterations in the fecal microbiome and metabolome of horses with antimicrobial-associated diarrhea compared to antibiotic-treated and non-treated healthy case controls. Animals 2021, 11, 1807. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.P.; Kultima, J.R.; Costea, P.I.; Fournier, C.; Pan, Y.; Czarnecki-Maulden, G.; Hayward, M.R.; Forslund, S.K.; Schmidt, T.S.B.; Descombes, P.; et al. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome 2018, 6, 72. [Google Scholar] [CrossRef]
- Pilla, R.; Gaschen, F.; Barr, J.W.; Olson, E.; Honneffer, J.; Guard, B.C.; Blake, A.B.; Villanueva, D.; Khattab, M.R.; Alshawaqfeh, M.K.; et al. Effects of metronidazole on the fecal microbiome and metabolome in healthy dogs. J. Vet. Intern. Med. 2020, 34, 1853–1866. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, H.; Maeda, S.; Ohno, K.; Horigome, A.; Odamaki, T.; Tsujimoto, H. Effect of oral administration of metronidazole or prednisolone on fecal microbiota in dogs. PLoS ONE 2014, 9, e107909. [Google Scholar] [CrossRef]
- Pignataro, G.; Di Prinzio, R.; Crisi, P.; Belà, B.; Fusaro, I.; Trevisan, C.; De Acetis, L.; Gramenzi, A. Comparison of the therapeutic effect of treatment with antibiotics or nutraceuticals on clinical activity and the fecal microbiome of dogs with acute diarrhea. Animals 2021, 11, 1484. [Google Scholar] [CrossRef]
- Manchester, A.C.; Webb, C.B.; Blake, A.B.; Sarwar, F.; Lidbury, J.A.; Steiner, J.M.; Suchodolski, J.S. Long-term impact of tylosin on fecal microbiota and fecal bile acids of healthy dogs. J. Vet. Intern. Med. 2019, 33, 2605–2617. [Google Scholar] [CrossRef]
- Suchodolski, J.S.; Dowd, S.; Westermarck, E.; Steiner, J.M.; Wolcott, R.D.; Spillmann, T.; Harmoinen, J. The effect of the macrolide antibiotic tylosin on microbial diversity in the canine small intestine as demonstrated by massive parallel 16S rRNA gene sequencing. BMC Microbiol. 2009, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Grønvold, A.-M.R.; L’abée-Lund, T.M.; Sørum, H.; Skancke, E.; Yannerell, A.C.; Mackie, R.I. Changes in fecal microbiota of healthy dogs administered amoxicillin. FEMS Microbiol. Ecol. 2010, 71, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Werner, M.; Suchodolski, J.S.; Straubinger, R.K.; Wolf, G.; Steiner, J.M.; Lidbury, J.A.; Neuerer, F.; Hartmann, K.; Unterer, S. Effect of amoxicillin-clavulanic acid on clinical scores, intestinal microbiome, and amoxicillin-resistant Escherichia coli in dogs with uncomplicated acute diarrhea. J. Vet. Intern. Med. 2020, 34, 1166–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinosa-Gongora, C.; Jessen, L.R.; Kieler, I.N.; Damborg, P.; Bjornvad, C.R.; Gudeta, D.D.; Pires Dos Santos, T.; Sablier-Gallis, F.; Sayah-Janne, S.; Corbel, T.; et al. Impact of oral amoxicillin and amoxicillin/clavulanic acid treatment on bacterial diversity and beta-lactam resistance in the canine faecal microbiota. J. Antimicrob. Chemother. 2020, 75, 351–361. [Google Scholar] [CrossRef]
- Whittemore, J.C.; Stokes, J.E.; Price, J.M.; Suchodolski, J.S. Effects of a synbiotic on the fecal microbiome and metabolomic profiles of healthy research cats administered clindamycin: A randomized, controlled trial. Gut Microbes 2019, 10, 521–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szultka, M.; Krzeminski, R.; Jackowski, M.; Buszewski, B. Identification of In vitro metabolites of amoxicillin in human liver microsomes by LC-ESI/MS. Chromatographia 2014, 77, 1027–1035. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H. Gut microbiota-mediated drug-antibiotic interactions. Drug Metab. Dispos. 2015, 43, 1581. [Google Scholar] [CrossRef] [PubMed]
Antibiotic | Farm | Administration | Dose (mg/kg of Animal) | Duration (Days) | Method | Effect on GIM | Effect on ARGs | Reference |
---|---|---|---|---|---|---|---|---|
Thiamphenicol | Exp | SCI | 40 | 1 | 16S rDNA (V3–V4), shotgun, qPCR | Proteobacteria, Archaea Prevotellaceae ↑ | mcr-2, oqxB ↑ | [6] |
Neomycin | Exp | O | 10 mg/day | 50 | qPCR | ND | [13] | |
Oxytetracycline | 1000 mg/day | 14 | tetO ↑ | |||||
Cefalexin | Comm | O | ND | 14 | 16S rDNA (V3–V4) | Chlamydiae ↑ | ND | [46] |
Cefquinome | Exp | O | 2 mg/L | 3 | Cultivation | ESBL-producing E.coli ↑ | blaCTX-M-1 ↑ | [47] |
20 mg/L | ||||||||
Beta-lactams | Exp | O | ND | 42 | 16S rDNA (V1–V3) | None | ND | [48] |
Ceftiofur | Exp | O | 0.1 mg/L | 42 | 16S rDNA (V4) | Veillonella ↓ | ND | [50] |
Penicillin | 0.005 mg/L | |||||||
Ampicillin | 0.01 mg/L | |||||||
Oxytetracycline | 0.3 mg/L | |||||||
Benzyl-penicillin | Exp | IMI | 40,000 IU | 6–14 | Cultivation, ARISA and TRFLP | None | PEN resistance ↑ | [51] |
Trimethoprim-sulfamethazole | Exp | O | 0.7 mL/10 kg | 3 | 16S rDNA (V1–V3) | Diversity ↓ Intra-individual variability ↑ | ND | [52] |
Amoxicillin | Comm | IMI | 15 | 5–26 | qPCR | Abundance ↓ | blaTEM, strA/B, tetA, intI1 ↑ | Personal data |
Ceftiofur | Exp | SCI | 0.2 mL/10 kg | 1 | qPCR | ND | [55] | |
Tulathromycin | 2.5 | Bifidobacterium↓ | ||||||
Tulathromycin | Comm | SCI | 7.5 and 12.5 | 1 | Shotgun | ermA ↑ | [57] | |
Enrofloxacin | 2.5 | Desulfovibrionales ↑ | gyrA mutation ↑ | |||||
Tildipirosin | Exp | SCI | 4 | 1 | 16S rDNA (V4), qPCR | None | ND | [58] |
Multiple | Comm | O | ND | 1–10 | 16S rDNA (V4), qPCR | Diversity, E. coli ↓ | ND | [59] |
Oxytetracycline | Exp | O | 2 g/day | 5 | 16S rDNA (V4) and shotgun | Ruminococcus, Coprobacillus, Lachnospiraceae ↓ Prevotella, Faecalibacterium, Blautia ↑ | tetM, mel and floR ↑ | [60] |
0.1–0.2 mg/day | 42 | None | ||||||
Oxytetracycline | Exp | IMI | 20 | ND | 16S rDNA (V1–V2) | Lactobacillus ↓ | ND | [61] |
Tulathromycin | SCI | 40 | None | |||||
Florfenicol | ||||||||
Marbofloxacin | Comm | IMI | 2 and 10 | 1 | Cultivation | None | FQ resistant Enterobacterales ↑ | [62] |
Oxytetracycline | Exp | IMI | 20 | 1 | 16S rDNA (V4), qPCR | Diversity, abundance ↓ | tetM, tetW ↑ | [64] * |
Tulathromycin | 2.5 | 5–14 | Dialister, Oscillospira, Roseburia, Lachnospiraceae ↓ |
Antibiotic | Farm | Administration | Dose (mg/kg of Animal) | Duration (Days) | Method | Effect on IM | Effect on ARGs | Reference |
---|---|---|---|---|---|---|---|---|
Oxytetracycline | Exp | O | 5 | 7 | 16S rDNA (V4), and qPCR | Fibrobacteres, Proteobacteria ↓ Euryarchaeota, Actinobacteria ↑ | tetW, aph2′-id ↑ | [16] |
IMI | 4 | |||||||
Amoxicillin | Exp | IMI | 15 | 1 | DGGE of 16S rDNA | Diversity, abundance ↓ | ND | [71] |
Tilmicosin | Exp | O | 400 | ND | DGGE of 16S rDNA | Abundance, Enterobacterales ↓ Lactobacilli ↑ | ND | [72] |
Amoxicillin | 600 | Lactobacilli ↓ Enterobacterales ↑ | ||||||
Doxycycline | 300 | |||||||
Amoxicillin | Exp | O | 30 | 14 | Cultivation, 16S rDNA | Diversity, Firmicutes ↓ Proteobacteria↑ | ND | [73] |
Amoxicillin | Exp | PAR | 15 | 5 | Cultivation, 16S rDNA (V3–V4) | Lactobacillus ↓ | ND | [74] |
O | 12–20 | |||||||
Ampicillin | Exp | O | 20 | 7 | qPCR | ND | blaTEM ↑ | [75] |
IMI | ||||||||
Amoxicillin | Exp | PAR | 20 | 7 | Shotgun | Lactobacillus, Faecalibacterium, Megasphaera, Oxalobacter ↓ Enterobacterales, Bacteroides, Fusobacterium ↑ | cfxA, blaTEM, aph4-1a, sat-2a, sph, strA/B, mphE, sul2, tetB, tetY ↑ | [76] |
Ertapenem | IVI | 50 | Faecalibacterium, Megasphaera, Oxalobacter ↓ Bacteroidetes, Pseudomonas, Enterococcus, Acinetobacter ↑ | blaIMP-27, aph4-1a, SAT-2a, sph, strA/B, mphE, sul2, tetB, tetY ↑ dfrA5/12 ↓ | ||||
Amoxicillin | Exp | IMI or O | ND | 5 | Cultivation | ND | AMX-resistant E. coli ↑ | [77] |
Ceftiofur | Exp | PAR | 0.5–5 | 3 | Cultivation | ND | Resistant E. coli ↑ | [78] |
O | 1–10 | 3 | ||||||
Enrofloxacin | PAR | 0.5–5 | 7 | |||||
Amoxicillin | Comm | IMI | 150 mg/ml | 1 | Cultivation | ND | None | [79] |
Tulathromycin | Exp | IMI | 2.5 | 1 | Shotgun sequencing | None | None | [80] |
Lincomycin | Comm | O | 1.000 | 7–14 | 16S rDNA (V3–V4) | Diversity, abundance, Spirochetes, Bacteroidetes ↓ Firmicutes, Actinobacteria ↑ | ND | [81] |
Oxytetracycline | Exp | O | 40 | 14 | Metagenomic shotgun sequencing | Diversity, richness, Firmicutes ↓ Bacteroidetes, Proteobacteria ↑ | Enrichment, diversity ↑ | [82] |
Chlortetracycline | Exp | O | 75 | 90 | 16S rDNA (V3–V4), and qPCR | Lactobacillus, Pseudoalteromonas ↑, Prevotella, Sphaerochaeta, Shuttleworthia ↓ | tetC, tetG, tetW and sul1↑ | [83] |
Chlortetracycline | Exp | O | 400 | 12 | 16S rDNA (V4) | Diversity, richness, Lactobacillus, Succinivibrio ↓ | ND | [84] |
Chlortetracycline | Exp | O | 100 | 10 | 16S rDNA (V3–V4) | Verrucomicrobia ↓ | ND | [85] |
Ceftiofur (FA) | Exp | IMI | 5 | ND | 16S rDNA (V1–V3) | Firmicutes/Bacteroidetes ratio: ↑ | ND | [86] |
Ceftiofur (Na) | 5 | ↑ | ||||||
Oxytetracycline | 4 | ↓ | ||||||
Penicillin | 15.000 UI/lb | ↓ | ||||||
Tulathromycin | 2.5 | ↑ | ||||||
Colistin | Exp | O | 50.000 UI/kg | 5 | 16S rDNA (V4) | E. coli, Shigella ↓ | ND | [87] |
Cocktail | Exp/Comm | O | 50.000 UI/kg | 5 | 16S rDNA (V4), qPCR, cultivation | Enterobacterales, Enterococcaceae ↑ | ND | [88] |
3.600 UI/kg | ||||||||
Cocktail | Comm | ND | Multiple doses | 1–66 | 16S rDNA (V1–V3), cultivation | Firmicutes ↑ Bacteroidetes ↓ | E.coli and Enterococcus MDR ↑ | [90] |
Flavomycin | Comm | O | 5 | 56 | 16S rDNA (V3–V4) | Proteobacteria, Fibrobacteres ↓ | ND | [91] |
Enramycin | 15 | |||||||
Tylosin | Exp | O | 100 | 39 | 16S rDNA (V3–V4) | Firmicutes/Bacteroidetes ↑ Tenericutes ↓ | ND | [92] |
Antibiotic | Farm | Administration | Dose (mg/kg of Animal) | Duration (Days) | Method | Effect on GIM | Effect on ARGs | Reference |
---|---|---|---|---|---|---|---|---|
Tetracycline | Exp | O | 60 | 7 | 16S rDNA (V3–V4), qPCR | Bifidobacteriales, Bacteroidales, Clostridiales, Desulfovibrionales, Burkholderiales, Campylobacterales ↓ Enterobacterales, Lactobacillales ↑ | ND | [93] |
Streptomycin | 15 | 2 | ||||||
Bacitracin | Exp | O | 50 | 35 | 16S rDNA (V1–V3) | Diversity ↓ (caecum) | ND | [95] * |
200 | 77 | |||||||
Penicillin | Exp | O | 55 | 18 | Pyrosequencing, qPCR | Firmicutes ↑ Bacteroidetes ↓ | ND | [96] |
Ampicillin | Exp | IMI or O | 300 | 5 | qPCR, 16S rDNA, (V4–V5), shotgun | Proteobacteria ↑ | None | [97] |
Virginiamycin | Exp | O | 30 | 28 | 16S rDNA (V3–V4) | Diversity, richness, Firmicutes ↓ Bacteroidetes ↑ | ND | [98] |
Virginiamycin | Exp | O | 20 | 50 | Cultivation | Lactobacillus, Clostridioites, Globicatella, Enterococcus, Corynebacterium ↑ | ND | [99] |
Monesin | Comm | O | 110 | 14 | 16S rDNA (V3), shotgun | Firmicutes ↓ Proteobacteria ↑ | None | [100] |
Virginiamycin | 110 | |||||||
Tylosin | 15–20 | |||||||
Chlortetracycline | Comm | O | 100 | 42 | 16S rDNA (V1–V9) | Lactobacillus, Megamonas, Helicobacter ↑ Alistipes ↓ | ND | [101] |
Amoxicillin | Exp | O | 0.50 µg/kg | 42 | Cultivation, 16S rDNA (V1–V2) | Firmicutes/Bacteroidetes ↑ | ND | [102] |
Chlortetracycline | 0.1 | |||||||
Virginiamycin | 0.015 | |||||||
Enrofloxacin | Exp | O | 10 or 100 | 7 | 16S rDNA (V3–V4) | Anaerotruncus, Butyricicoccus, Ruminococcus ↓ | ND | [103] |
Enrofloxacin | Exp | O | 10 | 7 | 16S rDNA (V4) | Anaerotruncus, Blautia, Janibacter, Flavisolibacter, Parasutterella ↓ | ND | [104] |
100 | Proteobacteria,Bacillus, Lactococcus ↑ Anaerotruncus, Blautia, Janibacter, Flavisolibacter, Parasutterella ↓ | |||||||
Amoxicillin | Exp | O | 5 | 5 | 16S rDNA (V1–V9) | Diversity ↓ | ND | [105] |
Enrofloxacin | 11 | |||||||
Enrofloxacin/Diclazuril | Exp | O | 10/0.3 | 14 | 16S rDNA (V4) | Firmicutes, Actinobacteria, Thermi, Verrucomicrobia ↓ | ND | [106] |
Bacitracin | Exp | O | 1000 | 30 | 16S rDNA (V3–V4) | Richness, Firmicutes ↓ Bacteroidetes ↑ | ND | [107] |
Bacitracin | Exp | O | 200 | 7 | 16S rDNA (V3–V5) | Caecum: Clostridia ↑, Peptostreptococcaceae ↓ Distal colon: Oscillospira, Erysipelotrichaceae ↓, Lachnospiraceae ↑ | ND | [108] |
Avilamycin | Exp | O | 25 | 35 | 16S rDNA (V1–V3) | Diversity ↓ (ileum) | ND | [109] |
Amoxicillin | Exp | O | 1.430 | 22 | 16S rDNA (V3–V4) | Enterococcaceae ↑ | ND | [110] |
Thiamphenicol | 0.2 |
Host | Antibiotic | Farm | Administration | Dose (mg/kg of Animal) | Duration (Days) | Method | Effect on GIM | Effect on ARGs | Reference |
---|---|---|---|---|---|---|---|---|---|
Penicillin | ND | IMI | 20.000 UI/kg | 5 | 16S rDNA (V4) | Diversity, richness, Verrucomicrobia ↓ | ND | [7] | |
Ceftiofur | O | 2.2 | |||||||
Trimethoprim/sulfadiazine | 30 | ||||||||
Horses | Benzyl-Penicillin | ND | IMI | 20.000 UI/kg | 5 | Cultivation, DGGE-16S rDNA (V3) | Bacteroidetes, Clostridioites, Enterococcaceae ↑ | None | [113] |
Trimethoprim/sulfadiazine | ND | O | 30 | 7 | Cultivation | Lactobacillaceae, cellulolytic bacteria ↓ Salmonella, C. difficile ↑ | ND | [114] | |
Ceftiofur | IMI | 2.2 | |||||||
Erythromycin Rifampicin | ND | O | 30 | 14 | 16S rDNA (V4), shotgun, cultivation | Diversity, abundance, Rhodococcus equi ↓ | ARGs macrolides, rifampin, doxycycline ↑ | [115] | |
Metronidazole | ND | O | 30 | 3 | 16S rDNA (V4) | Diversity ↓ | ND | [116] | |
Multiple | ND | ND | Multiple | 2–14 | 16S rDNA (V4) | Fusobacteria↓ Tenericutes ↓ WPS-2 * ↓ | ND | [117] | |
Dogs | Metronidazole | ND | O | 30 | 14 | 16S rDNA (V4), qPCR | Diversity, richness, Bacteroidetes, Fusobacteria, Clostridiales ↓ Proteobacteria, Actinobacteria, Lactobacillales ↑ | ND | [119] |
Metronidazole, prednisolone | Exp | O | 25/1 | 14 | 16S rDNA (V4) | Diversity, richness, Fusobacteria Clostridiales ↓ Actinobacteria, Bacilli ↑ | ND | [120] | |
Metronidazole/spiramycin | ND | O | 12.5/7.500 UI/kg | 6 | qPCR | None | ND | [121] | |
Tylosin | ND | O | 40 | 14 | 16S rDNA (V4), qPCR | Enterococcaceae ↑ Fusobacteriaceae, Veillonellaceae, Bacteroidaceae ↓ | ND | [122] | |
Tylosin | Exp | ND | 20–22 | 14 | 16S rDNA (V4–V5) | Diversity, richness, Fusobacteria, Bacteroidales, Moraxella ↓ Enterococci, Pasteurella spp., Dietzia spp.↑ | ND | [123] | |
Amoxicillin | Exp | O | 20 | 7 | DGGE-16S rDNA (V3), qPCR | Enterobacterales ↑ | AMX-resistant E. coli ↑ | [124] | |
Amoxicillin/clavulanic acid | ND | O | 25–50 | 7 | Cultivation, qPCR | None | AMX-resistant E. coli ↑ | [125] | |
Amoxicillin | ND | O | 10–20 | 5–13 | Cultivation, 16S rDNA (V3–V4) | Diversity, richness, Firmicutes ↓ Proteobacteria ↑ | AMX-resistant Enterococci and E. coli ↑ | [126] | |
Amoxicillin/clavulanic acid | 5–14 | Dialister, Oscillospira, Roseburia, Lachnospiraceae ↓ | |||||||
Cats | Clindamycin | Exp | O | 12.1–22.7 | 21 | 16S rDNA (V4), qPCR | Actinobacteria,Bacteroidetes,Ruminococcaceae,Veillonellaceae,Erysipelotrichaceae↓Clostridiaceae,Proteobacteria ↑ | ND | [127] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rochegüe, T.; Haenni, M.; Mondot, S.; Astruc, C.; Cazeau, G.; Ferry, T.; Madec, J.-Y.; Lupo, A. Impact of Antibiotic Therapies on Resistance Genes Dynamic and Composition of the Animal Gut Microbiota. Animals 2021, 11, 3280. https://doi.org/10.3390/ani11113280
Rochegüe T, Haenni M, Mondot S, Astruc C, Cazeau G, Ferry T, Madec J-Y, Lupo A. Impact of Antibiotic Therapies on Resistance Genes Dynamic and Composition of the Animal Gut Microbiota. Animals. 2021; 11(11):3280. https://doi.org/10.3390/ani11113280
Chicago/Turabian StyleRochegüe, Tony, Marisa Haenni, Stanislas Mondot, Chloé Astruc, Géraldine Cazeau, Tristan Ferry, Jean-Yves Madec, and Agnese Lupo. 2021. "Impact of Antibiotic Therapies on Resistance Genes Dynamic and Composition of the Animal Gut Microbiota" Animals 11, no. 11: 3280. https://doi.org/10.3390/ani11113280
APA StyleRochegüe, T., Haenni, M., Mondot, S., Astruc, C., Cazeau, G., Ferry, T., Madec, J. -Y., & Lupo, A. (2021). Impact of Antibiotic Therapies on Resistance Genes Dynamic and Composition of the Animal Gut Microbiota. Animals, 11(11), 3280. https://doi.org/10.3390/ani11113280