Effect of Essential Oil of Thyme (Thymus vulgaris L.) or Increasing Levels of a Commercial Prebiotic (TechnoMOS®) on Growth Performance and Carcass Characteristics of Male Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing, and Experimental Design
2.2. Experimental Diets
2.3. Growth Performance, Feed Intake and Carcass Characteristics
2.4. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Weekly Feed Intake
3.3. Weekly Feed Conversion
3.4. Carcass Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- McLeod, A.; Thieme, O.; MacK, S.D. Structural changes in the poultry sector: Will there be smallholder poultry development in 2030? Worlds Poult. Sci. J. 2009, 65, 191–199. [Google Scholar] [CrossRef]
- Kiczorowska, B.; Samolińska, W.; Al-Yasiry, A.R.M.; Kiczorowski, P.; Winiarska-Mieczan, A. The natural feed additives as immunostimulants in monogastric animal nutrition—A review. Ann. Anim. Sci. 2017, 17, 605–625. [Google Scholar] [CrossRef] [Green Version]
- Rowe; Dawkins; Gebhardt-Henrich A Systematic Review of Precision Livestock Farming in the Poultry Sector: Is Technology Focussed on Improving Bird Welfare? Animals 2019, 9, 614. [CrossRef] [PubMed] [Green Version]
- Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. Worlds Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Aminov, R.I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010, 1, 134. [Google Scholar] [CrossRef] [Green Version]
- European Parliament and of the Council. Regulation No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additivies for use in animal nutrition. Off. J. Eur. Union 2003, L268, 29–43. [Google Scholar]
- Franz, C.; Baser, K.H.C.; Windisch, W. Essential oils and aromatic plants in animal feeding—A European perspective. A review. Flavour Fragr. J. 2010, 25, 327–340. [Google Scholar] [CrossRef]
- Ferronato, G.; Prandini, A. Dietary supplementation of inorganic, organic, and fatty acids in pig: A review. Animals 2020, 10, 1740. [Google Scholar] [CrossRef]
- Tiwari, U.P.; Fleming, S.A.; Rasheed, M.S.A.; Jha, R.; Dilger, R.N. The role of oligosaccharides and polysaccharides of xylan and mannan in gut health of monogastric animals. J. Nutr. Sci. 2020, 9, E21. [Google Scholar] [CrossRef]
- Aziz Mousavi, S.M.A.; Hosseini, H.M.; Mirhosseini, S.A. A review of dietary probiotics in poultry. J. Appl. Biotechnol. Rep. 2018, 5, 48–54. [Google Scholar] [CrossRef]
- Steiner, T. (Ed.) Phytogenics in Animal Nutrition: Natural Concepts to Optimize Gut Health and Performance; Nottingham University Press: Nottingham, UK, 2009; p. 181. ISBN 9781904761716. [Google Scholar]
- Windisch, W.; Rohrer, E.; Schedle, K. Phytogenic Feed Additives to Young Piglets and Poultry: Mechanisms and Application. In Phytogenics in Animal Nutrition; Steiner, T., Ed.; Nottingham University Press: Nottingham, UK, 2012; pp. 19–38. [Google Scholar]
- Woyengo, T.A.; Bogota, K.J.; Noll, S.L.; Wilson, J. Enhancing nutrient utilization of broiler chickens through supplemental enzymes. Poult. Sci. 2019, 98, 1302–1309. [Google Scholar] [CrossRef] [PubMed]
- Dibaji, S.M.; Seidavi, A.; Asadpour, L.; Da Silva, F.M. Effect of a synbiotic on the intestinal microflora of chickens. J. Appl. Poult. Res. 2014, 23, 1–6. [Google Scholar] [CrossRef]
- Mousavi, S.M.A.A.; Seidavi, A.; Dadashbeiki, M.; Kilonzo-Nthenge, A.; Nahashon, S.N.; Laudadio, V.; Tufarelli, V. Einfluss eines synbiotikums (Biomin®IMBO) auf die mastleistung von broilern. Eur. Poult. Sci. 2015, 79, 78. [Google Scholar] [CrossRef]
- Dev, K.; Mir, N.A.; Biswas, A.; Kannoujia, J.; Begum, J.; Kant, R.; Mandal, A. Dietary synbiotic supplementation improves the growth performance, body antioxidant pool, serum biochemistry, meat quality, and lipid oxidative stability in broiler chickens. Anim. Nutr. 2020, 6, 325–332. [Google Scholar] [CrossRef]
- Cosentino, S.; Tuberoso, C.I.G.; Pisano, B.; Satta, M.; Mascia, V.; Arzedi, E.; Palmas, F. In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett. Appl. Microbiol. 1999, 29, 130–135. [Google Scholar] [CrossRef]
- Rota, M.C.; Herrera, A.; Martínez, R.M.; Sotomayor, J.A.; Jordán, M.J. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 2008, 19, 681–687. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Jafarikukhdan, A.; Hosseini, A.; Armand, R. The Application of Medicinal Plants in Traditional and Modern Medicine: A Review of Thymus vulgaris. Int. J. Clin. Med. 2015, 6, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Moghtader, M. In vitro antifungal effects of the essential oil of Mentha piperita L. and its comparison with synthetic menthol on Aspergillus niger. Afr. J. Plant Sci. 2013, 7, 521–527. [Google Scholar] [CrossRef] [Green Version]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Dauqan, E.M.A.; Abdullah, A. Medicinal and Functional Values of Thyme (Thymus vulgaris L.) Herb. J. Appl. Biol. Biotechnol. 2017, 5, 17–022. [Google Scholar] [CrossRef] [Green Version]
- Saki, A.A.; Kalantar, M.; Khoramabadi, V. Effects of Drinking Thyme Essence (Thymus vulgaris L.) on Growth Performance, Immune Response and Intestinal Selected Bacterial Population in Broiler Chickens Effects of Drinking Thyme Essence (Thymus vulgaris L.) on Growth. Poult. Sci. J. 2014, 2, 113–123. [Google Scholar]
- Lee, K.W.; Everts, H.; Kappert, H.J.; Frehner, M.; Losa, R.; Beynen, A.C. Effects of dietary essential oil components on growth performance, digestive enzymes and lipid metabolism in female broiler chickens. Br. Poult. Sci. 2003, 44, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, S. Supplementation of prebiotics, probiotics and acids on immunity in poultry feed: A brief review. Worlds Poult. Sci. J. 2013, 69, 639–648. [Google Scholar] [CrossRef]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Ferket, P.R.; Parks, C.W.; Grimes, J.L. Benefits of Dietary Antibiotic and Mannanoligosaccharide Supplementation for Poultry; University of Illinois: Champaign, IL, USA, 2002. [Google Scholar]
- Mahdavi, S.; Zakeri, A.; Mehmannavaz, Y.; Nobakht, A. Comparative study of probiotic, acidifier, antibiotic growth promoters and prebiotic on activity of humoral immune and performance parameters of broiler chickens. Iran. J. Appl. Anim. Sci. 2013, 3, 295–299. [Google Scholar]
- Al-Khalaifa, H.; Al-Nasser, A.; Al-Surayee, T.; Al-Kandari, S.; Al-Enzi, N.; Al-Sharrah, T.; Ragheb, G.; Al-Qalaf, S.; Mohammed, A. Effect of dietary probiotics and prebiotics on the performance of broiler chickens. Poult. Sci. 2019, 98, 4465–4479. [Google Scholar] [CrossRef]
- Biswas, A.; Mohan, N.; Raza, M.; Mir, N.A.; Mandal, A. Production performance, immune response and blood biochemical parameters in broiler chickens fed diet incorporated with prebiotics. J. Anim. Physiol. Anim. Nutr. 2019, 103, 493–500. [Google Scholar] [CrossRef]
- Froebel, L.K.; Jalukar, S.; Lavergne, T.A.; Lee, J.T.; Duong, T. Administration of dietary prebiotics improves growth performance and reduces pathogen colonization in broiler chickens. Poult. Sci. 2019, 98, 6668–6676. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.Y.; Kim, W.K. Review: Roles of prebiotics in intestinal ecosystem of broilers. Front. Vet. Sci. 2018, 5, 245. [Google Scholar] [CrossRef]
- Yalçinkaya, l.; Güngör, T.; BAfiALAN, M.; Erdem, E. Mannan Oligosaccharides (MOS) from Saccharomyces cerevisiae in Broilers: Effects on Performance and Blood Biochemistry*; The Scientific and Technological Research Council of Turkey: Ankara, Turkey, 2008; Volume 32.
- Sohail, M.U.; Hume, M.E.; Byrd, J.A.; Nisbet, D.J.; Ijaz, A.; Sohail, A.; Shabbir, M.Z.; Rehman, H. Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult. Sci. 2012, 91, 2235–2240. [Google Scholar] [CrossRef] [PubMed]
- Tarabees, R.; Gafar, K.M.; EL-Sayed, M.S.; Shehata, A.A.; Ahmed, M. Effects of Dietary Supplementation of Probiotic Mix and Prebiotic on Growth Performance, Cecal Microbiota Composition, and Protection Against Escherichia coli O78 in Broiler Chickens. Probiotics Antimicrob. Proteins 2019, 11, 981–989. [Google Scholar] [CrossRef] [PubMed]
- El-Shall, N.A.; Awad, A.M.; El-Hack, M.E.A.; Naiel, M.A.E.; Othman, S.I.; Allam, A.A.; Sedeik, M.E. The simultaneous administration of a probiotic or prebiotic with live Salmonella vaccine improves growth performance and reduces fecal shedding of the bacterium in Salmonella-challenged broilers. Animals 2020, 10, 70. [Google Scholar] [CrossRef] [Green Version]
- Kridtayopas, C.; Rakangtong, C.; Bunchasak, C.; Loongyai, W. Effect of prebiotic and synbiotic supplementation in diet on growth performance, small intestinal morphology, stress, and bacterial population under high stocking density condition of broiler chickens. Poult. Sci. 2019, 98, 4595–4605. [Google Scholar] [CrossRef]
- Hooge, D.M. Meta-analysis of broiler chicken pen trials evaluating dietary mannan oligosaccharide, 1993–2003. Int. J. Poult. Sci. 2004, 3, 163–174. [Google Scholar]
- Oliveira, M.C.; Rodrigues, E.A.; Marques, R.H.; Gravena, R.A.; Guandolini, G.C.; Moraes, V.M.B. Performance and morphology of intestinal mucosa of broilers fed mannan-oligosaccharides and enzymes. Arq. Bras. Med. Vet. Zootec. 2008, 60, 442–448. [Google Scholar] [CrossRef] [Green Version]
- Stefaniak, T.; Madej, J.P.; Graczyk, S.; Siwek, M.; Łukaszewicz, E.; Kowalczyk, A.; Sieńczyk, M.; Bednarczyk, M. Selected prebiotics and synbiotics administered in ovo can modify innate immunity in chicken broilers. BMC Vet. Res. 2019, 15, 105. [Google Scholar] [CrossRef]
- Stefaniak, T.; Madej, J.P.; Graczyk, S.; Siwek, M.; Łukaszewicz, E.; Kowalczyk, A.; Sieńczyk, M.; Maiorano, G.; Bednarczyk, M. Impact of prebiotics and synbiotics administered in ovo on the immune response against experimental antigens in chicken broilers. Animals 2020, 10, 643. [Google Scholar] [CrossRef] [Green Version]
- Asem-Hiablie, S.; Battagliese, T.; Stackhouse-Lawson, K.R.; Alan Rotz, C. A life cycle assessment of the environmental impacts of a beef system in the USA. Int. J. Life Cycle Assess. 2019, 24, 441–455. [Google Scholar] [CrossRef] [Green Version]
- Craig, A.D.; Bedford, M.R.; Hastie, P.; Khattak, F.; Olukosi, O.A. The effect of carbohydrases or prebiotic oligosaccharides on growth performance, nutrient utilisation and development of small intestine and immune organs in broilers fed nutrient-adequate diets based on either wheat or barley. J. Sci. Food Agric. 2019, 99, 3246–3254. [Google Scholar] [CrossRef]
- Yang, Y.; Iji, P.A.; Choct, M. Effects of Different Dietary Levels of Mannanoligosaccharide on Growth Performance and Gut Development of Broiler Chickens. Asian-Australas. J. Anim. Sci. 2007, 20, 1084–1091. [Google Scholar] [CrossRef]
- Slawinska, A.; Dunislawska, A.; Plowiec, A.; Radomska, M.; Lachmanska, J.; Siwek, M.; Tavaniello, S.; Maiorano, G. Modulation of microbial communities and mucosal gene expression in chicken intestines after galactooligosaccharides delivery In Ovo. PLoS ONE 2019, 14, e0212318. [Google Scholar] [CrossRef] [PubMed]
- Soumeh, E.A.; Mohebodini, H.; Toghyani, M.; Shabani, A.; Ashayerizadeh, A.; Jazi, V. Synergistic effects of fermented soybean meal and mannan-oligosaccharide on growth performance, digestive functions, and hepatic gene expression in broiler chickens. Poult. Sci. 2019, 98, 6797–6807. [Google Scholar] [CrossRef] [PubMed]
- Ross, A. Ross Broiler Management Handbook; 2014; Available online: https://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-BroilerHandbook2018-EN.pdf (accessed on 4 May 2021).
- Amouei, H.; Qotbi, A.; Bouyeh, M.; Seidavi, A. Effect of different levels of thyme essential oil and thechnomos prebiotic on some blood metabolites of broilers. Int. J. Biol. Pharm. Allied Sci. 2015, 4, 4843–4849. [Google Scholar]
- El-Ghousein, S.S.; Al-Beitawi, N.A. The Effect of Feeding of Crushed Thyme (Thymus valgaris L) on Growth, Blood Constituents, Gastrointestinal Tract and Carcass Characteristics of Broiler Chickens. J. Poult. Sci. 2009, 46, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Cross, D.E.; Svoboda, K.; Mcdevitt, R.M.; Acamovic, T. The performance of chickens fed diets with and without thyme oil and enzymes. Br. Poult. Sci. 2003, 44, 18–19. [Google Scholar] [CrossRef]
- Placha, I.; Takacova, J.; Ryzner, M.; Cobanova, K.; Laukova, A.; Strompfova, V.; Venglovska, K.; Faix, S. Effect of thyme essential oil and selenium on intestine integrity and antioxidant status of broilers. Br. Poult. Sci. 2014, 55, 105–114. [Google Scholar] [CrossRef]
- Haselmeyer, A.; Zentek, J.; Chizzola, R. Effects of thyme as a feed additive in broiler chickens on thymol in gut contents, blood plasma, liver and muscle. J. Sci. Food Agric. 2015, 95, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Alipour, F.; Hassanabadi, A.; Golian, A.; Nassiri-Moghaddam, H. Effect of plant extracts derived from thyme on male broiler performance. Poult. Sci. 2015, 94, 2630–2634. [Google Scholar] [CrossRef]
- Amouei, H.; Qotbi, A.; Bouyeh, M.; Seidavi, A. Thymus vulgaris and TechnoMOS decrease Eschericia coli and increase lactobacillus in broiler ileum and cecum. Int. J. Biol. Pharm. Allied Sci. 2015, 4, 4857–4863. [Google Scholar]
- Attia, Y.A.; Bakhashwain, A.A.; Bertu, N.K. Thyme oil (Thyme vulgaris L.) as a natural growth promoter for broiler chickens reared under hot climate. Ital. J. Anim. Sci. 2017, 16, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Attia, Y.A.; Bakhashwain, A.A.; Bertu, N.K. Utilisation of thyme powder (Thyme vulgaris L.) as a growth promoter alternative to antibiotics for broiler chickens raised in a hot climate. Eur. Poult. Sci. 2018, 82. [Google Scholar] [CrossRef]
- Placha, I.; Ocelova, V.; Chizzola, R.; Battelli, G.; Gai, F.; Bacova, K.; Faix, S. Effect of thymol on the broiler chicken antioxidative defence system after sustained dietary thyme oil application. Br. Poult. Sci. 2019, 60, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Khafar, K.R.; Mojtahedin, A.; Rastegar, N.; Neytali, M.K.; Olfati, A. Dietary inclusion of thyme essential oil alleviative effects of heat stress on growth performance and immune system of broiler chicks. Iran. J. Appl. Anim. Sci. 2020, 9, 509–517. [Google Scholar] [CrossRef]
- Sigolo, S.; Milis, C.; Dousti, M.; Jahandideh, E.; Jalali, A.; Mirzaei, N.; Rasouli, B.; Seidavi, A.; Gallo, A.; Ferronato, G.; et al. Effects of different plant extracts at various dietary levels on growth performance, carcass traits, blood serum parameters, immune response and ileal microflora of Ross broiler chickens. Ital. J. Anim. Sci. 2021, 20, 359–371. [Google Scholar] [CrossRef]
- Abudabos, A.M.; Al-Batshan, H.A.; Murshed, M.A. Effects of prebiotics and probiotics on the performance and bacterial colonization of broiler chickens. S. Afr. J. Anim. Sci. 2015, 45, 419–428. [Google Scholar] [CrossRef]
- Murshed, M.A.; Abudabos, A.M. Effects of the dietary inclusion of a probiotic, a prebiotic or their combinations on the growth performance of broiler chickens. Rev. Bras. Cienc. Avic. 2015, 17, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Omerovic, I.; Milosevic, B.; Ciric, S.; Spasic, Z.; Lalic, N.; Samardzic, S. Effect of prebiotic on performance and slaughter traits of broiler chickens fed lower protein diets. J. Livest. Sci. 2016, 7, 168–171. [Google Scholar]
- Iji, P.A.; Saki, A.; Tivey, D.R. Body and intestinal growth of broiler chicks on a commercial starter diet. 2. Development and characteristics of intestinal enzymes. Br. Poult. Sci. 2001, 42, 514–522. [Google Scholar] [CrossRef]
- Jiménez-Moreno, E.; González-Alvarado, J.M.; González-Serrano, A.; Lázaro, R.; Mateos, G.G. Effect of dietary fiber and fat on performance and digestive traits of broilers from one to twenty-one days of age. Poult. Sci. 2009, 88, 2562–2574. [Google Scholar] [CrossRef] [PubMed]
- Sojoudi, M.R.; Dadashbeiki, M.; Bouyeh, M. Effect of Different Levels of Prebiotics TechnoMos on Carcass. J. Basic. Appl. Sci. Res. 2012, 2, 6778–6794. [Google Scholar]
- Sojoudi, M.R.; Dadashbeiki, M.; Bouyeh, M. Effects of Different Levels of Symbiotic, Technomos on Broilers Performance. Available online: https://www.cabdirect.org/cabdirect/abstract/20133085645 (accessed on 4 May 2021).
- Zhu, X.; Liu, W.; Yuan, S.; Chen, H. The effect of different dietary levels of thyme essential oil on serum biochemical indices in mahua broiler chickens. Ital. J. Anim. Sci. 2014, 13, 576–581. [Google Scholar] [CrossRef] [Green Version]
- Wade, M.R.; Manwar, S.J.; Kuralkar, S.V.; Waghmare, S.P.; Ingle, V.C. Effect of thyme essential oil on performance of broiler chicken. J. Entomol. Zool. Stud. 2018, 6, 25–28. [Google Scholar]
- Oakley, B.B.; Buhr, R.J.; Ritz, C.W.; Kiepper, B.H.; Berrang, M.E.; Seal, B.S.; Cox, N.A. Successional changes in the chicken cecal microbiome during 42 days of growth are independent of organic acid feed additives. BMC Vet. Res. 2014, 10, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kogut, M.H.; Arsenault, R.J. Editorial: Gut health: The new paradigm in food animal production. Front. Vet. Sci. 2016, 3, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oakley, B.B.; Lillehoj, H.S.; Kogut, M.H.; Kim, W.K.; Maurer, J.J.; Pedroso, A.; Lee, M.D.; Collett, S.R.; Johnson, T.J.; Cox, N.A. The chicken gastrointestinal microbiome. FEMS Microbiol. Lett. 2014, 360, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Ballou, A.L.; Ali, R.A.; Mendoza, M.A.; Ellis, J.C.; Hassan, H.M.; Croom, W.J.; Koci, M.D. Development of the chick microbiome: How early exposure influences future microbial diversity. Front. Vet. Sci. 2016, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Dai, R.; Yang, L.; He, C.; Xu, K.; Liu, S.; Zhao, W.; Xiao, L.; Luo, L.; Zhang, Y.; et al. Inheritance and establishment of gut microbiota in chickens. Front. Microbiol. 2017, 8, 1967. [Google Scholar] [CrossRef]
- Pan, D.; Yu, Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 2013, 5, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Oakley, B.B.; Kogut, M.H. Spatial and temporal changes in the broiler chicken cecal and fecal microbiomes and correlations of bacterial taxa with cytokine gene expression. Front. Vet. Sci. 2016, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Kakebaveh, M.; Taheri, H.R.; Harki Nejad, T. Effects of Dietary Supplementation with Probiotics, Prebiotic and Synbiotic on Performance and Intestinal Microbial Population of Broiler Chickens. Res. Anim. Prod. Vol. 2014, 5, 44–56. [Google Scholar]
- Sadeghi, A.A.; Mohammadi, A.; Shawrang, P.; Aminafshar, M. Immune responses to dietary inclusion of prebiotic-based mannan-oligosaccharide and β-glucan in broiler chicks challenged with Salmonella enteritidis. Turkish J. Vet. Anim. Sci. 2013, 37, 206–213. [Google Scholar] [CrossRef]
- Al-Baadani, H.H.; Abudabos, A.M.; Al-Mufarrej, S.I.; Alzawqari, M. Effects of dietary inclusion of probiotics, prebiotics and synbiotics on intestinal histological changes in challenged broiler chickens. S. Afr. J. Anim. Sci. 2016, 46, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Salehimanesh, A.; Mohammadi, M.; Roostaei-Ali Mehr, M. Effect of dietary probiotic, prebiotic and synbiotic supplementation on performance, immune responses, intestinal morphology and bacterial populations in broilers. J. Anim. Physiol. Anim. Nutr. 2016, 100, 694–700. [Google Scholar] [CrossRef] [PubMed]
- De Souza, L.F.A.; Araújo, D.N.; Stefani, L.M.; Giometti, I.C.; Cruz-Polycarpo, V.C.; Polycarpo, G.; Burbarelli, M.F. Probiotics on performance, intestinal morphology and carcass characteristics of broiler chickens raised with lower or higher environmental challenge. Austral. J. Vet. Sci. 2018, 50, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Tayeri, V.; Seidavi, A.; Asadpour, L.; Phillips, C.J.C. A comparison of the effects of antibiotics, probiotics, synbiotics and prebiotics on the performance and carcass characteristics of broilers. Vet. Res. Commun. 2018, 42, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Ahmadian, A.; Seidavi, A.; Phillips, C.J.C. Growth, carcass composition, haematology and immunity of broilers supplemented with sumac berries (Rhus coriaria L.) and thyme (Thymus vulgaris). Animals 2020, 10, 513. [Google Scholar] [CrossRef] [Green Version]
Ingredient (%, Fresh Weight Basis) | Starter Period (1–21 Days of Age) | Finisher Period (22–42 Days of Age) |
---|---|---|
Corn | 54.32 | 58.69 |
Soybean Meal | 39.43 | 31.87 |
Corn oil | 2.16 | 5.83 |
Mineral oysters | 0.90 | 0.79 |
Dicalcium phosphate dihydrate | 2.05 | 1.68 |
NaCl | 0.37 | 0.37 |
DL-Methionine | 0.20 | 0.22 |
Lysine-HCl | 0.07 | 0.05 |
Vitamin and mineral premix # | 0.50 | 0.50 |
Total | 100 | 100 |
Nutrient Analysis # | Starter Period (1–21 Days of Age) | Finisher Period (22–42 Days of Age) |
---|---|---|
Metabolizable Energy (ME, kcal/kg) | 2900 | 3200 |
Metabolizable Energy (ME, MJ/kg) | 12.13 | 13.38 |
Crude protein (%) | 22.16 | 19.20 |
Calcium (%) | 1.00 | 0.85 |
Available Phosphorus (%) | 0.50 | 0.42 |
DCAB (mEq/kg) § | 236 | 202 |
Lysine (%) | 1.15 | 0.96 |
Methionine (%) | 0.50 | 0.48 |
Methionine + Cysteine (%) | 0.83 | 0.78 |
Threonine (%) | 0.79 | 0.71 |
Dietary Treatments # | Effects | Contrasts | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Days | CTR | MOS025 | MOS075 | MOS125 | TEO075 | SD | p Value | L | Q | CTR v. MOS | CTR v. TEO075 | MOS075 v. TEO075 |
1–7 | 113.73 b | 108.97 ab | 108.25 ab | 109.88 ab | 107.60 a | 1.90 | 0.043 | 0.112 | 0.030 | 0.0086 | 0.0057 | 0.7373 |
8–14 | 212.12 | 208.19 | 222.06 | 210.21 | 219.57 | 8.42 | 0.421 | 0.769 | 0.311 | 0.8446 | 0.3900 | 0.7710 |
15–21 | 381.30 | 361.92 | 374.91 | 348.80 | 380.76 | 21.24 | 0.507 | 0.291 | 0.754 | 0.2803 | 0.9800 | 0.7863 |
22–28 | 539.35 | 548.93 | 518.78 | 523.87 | 500.07 | 45.60 | 0.843 | 0.610 | 0.908 | 0.8156 | 0.4023 | 0.6873 |
29–35 | 668.00 | 803.25 | 832.50 | 793.75 | 824.75 | 84.80 | 0.334 | 0.230 | 0.165 | 0.0585 | 0.0845 | 0.9284 |
36–42 | 543.50 a | 785.00 ab | 706.50 ab | 869.75 b | 747.00 ab | 94.20 | 0.040 | 0.014 | 0.684 | 0.0064 | 0.0473 | 0.6733 |
Starter | 707.15 | 679.08 | 705.23 | 668.88 | 707.93 | 20.79 | 0.236 | 0.262 | 0.599 | 0.2000 | 0.9704 | 0.8982 |
Grower | 1750.85 a | 2137.18 ab | 2057.78 ab | 2187.37 b | 2071.82 ab | 136.60 | 0.047 | 0.027 | 0.265 | 0.0042 | 0.0329 | 0.9195 |
Overall | 2458.00 | 2816.25 | 2763.00 | 2856.25 | 2779.75 | 143.10 | 0.090 | 0.045 | 0.252 | 0.0085 | 0.0400 | 0.9084 |
Dietary Treatments # | Effects | Contrasts | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Days | CTR | MOS025 | MOS075 | MOS125 | TEO075 | SD | p Value | L | Q | CTR v. MOS | CTR v. TEO075 | MOS075 v. TEO075 |
1–7 | 141.50 b | 133.00 a | 132.50 a | 130.75 a | 129.75 a | 2.28 | <0.001 | 0.002 | 0.058 | 0.0001 | 0.0001 | 0.2458 |
8–14 | 300.75 a | 349.25 b | 355.25 b | 356.25 b | 352.00 b | 7.47 | <0.001 | <0.001 | <0.001 | <0.0001 | <0.0001 | 0.6696 |
15–21 | 630.00 | 585.75 | 582.44 | 609.04 | 572.44 | 22.97 | 0.138 | 0.411 | 0.011 | 0.0634 | 0.0248 | 0.6695 |
22–28 | 922.50 bc | 787.35 a | 819.80 ab | 937.36 c | 797.40 a | 51.50 | 0.024 | 0.329 | 0.006 | 0.0975 | 0.0282 | 0.6698 |
29–35 | 1221.25 b | 953.99 a | 1160.78 ab | 1168.31 ab | 1064.41 ab | 86.10 | 0.052 | 0.513 | 0.124 | 0.0910 | 0.0884 | 0.2804 |
36–42 | 1506.25 b | 1130.75 a | 1233.30 a | 1281.84 ab | 1201.16 a | 80.30 | 0.003 | 0.097 | 0.003 | 0.0005 | 0.0017 | 0.6945 |
Starter | 1072.25 | 1068.00.0 | 1070.19 | 1096.04 | 1054.19 | 28.12 | 0.683 | 0.277 | 0.407 | 0.8032 | 0.5304 | 0.5778 |
Grower | 3650.00 b | 2872.09 a | 3213.88 ab | 3387.51 ab | 3062.98 ab | 193.40 | 0.011 | 0.873 | 0.007 | 0.0071 | 0.0083 | 0.4473 |
Overall | 4722.25 b | 3940.09 a | 4284.06 ab | 4483.55 ab | 4117.16 ab | 198.70 | 0.011 | 0.987 | 0.005 | 0.0090 | 0.0082 | 0.4141 |
Dietary Treatments # | Effects | Contrasts | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Days | CTR | MOS025 | MOS075 | MOS125 | TEO075 | SD | p Value | L | Q | CTR v. MOS | CTR v. TEO075 | MOS075 v. TEO075 |
1–7 | 0.90 | 0.87 | 0.87 | 0.852 | 0.86 | 0.02 | 0.135 | 0.028 | 0.769 | 0.0355 | 0.0372 | 0.4418 |
8–14 | 1.20 a | 1.34 b | 1.31 ab | 1.34 b | 1.30 ab | 0.04 | 0.033 | 0.026 | 0.148 | 0.0026 | 0.0339 | 0.9326 |
15–21 | 1.43 | 1.48 | 1.43 | 1.54 | 1.41 | 0.05 | 0.152 | 0.080 | 0.295 | 0.2366 | 0.6655 | 0.6486 |
22–28 | 1.55 | 1.46 | 1.49 | 1.65 | 1.48 | 0.07 | 0.096 | 0.036 | 0.010 | 0.7492 | 0.3348 | 0.9071 |
29–35 | 1.64 b | 1.36 a | 1.46 ab | 1.58 ab | 1.41 ab | 0.09 | 0.029 | 0.827 | 0.003 | 0.0243 | 0.0184 | 0.6090 |
36–42 | 1.89 b | 1.38 a | 1.54 a | 1.55 ab | 1.47 a | 0.11 | 0.005 | 0.043 | 0.006 | 0.0006 | 0.0020 | 0.5221 |
Starter | 1.43 | 1.48 | 1.43 | 1.54 | 1.41 | 0.05 | 0.152 | 0.080 | 0.295 | 0.2366 | 0.6655 | 0.6486 |
Grower | 2.09 b | 1.35 a | 1.59 a | 1.55 a | 1.50 a | 0.15 | 0.002 | 0.017 | 0.006 | 0.0002 | 0.0010 | 0.5275 |
Overall | 1.89 b | 1.38 a | 1.54 a | 1.55 a | 1.47 a | 0.11 | 0.005 | 0.043 | 0.006 | 0.0006 | 0.0020 | 0.5221 |
Dietary Treatments # | Effects | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | CTR | MOS025 | MOS075 | MOS125 | TEO075 | SD | p Value | L | Q |
Live weight (g) | 2662.50 | 2545.00 | 2552.50 | 2573.75 | 2722.50 | 104.2 | 0.385 | 0.541 | 0.389 |
Defeathered body weight (g) | 2097.50 | 1965.5 | 2003.75 | 2031.25 | 2136.25 | 87.3 | 0.327 | 0.729 | 0.297 |
Eviscerated carcass (%) | 61.82 | 60.09 | 60.56 | 61.47 | 60.44 | 1.143 | 0.534 | 0.939 | 0.185 |
Breast weight (g) | 582.75 | 526.25 | 542.00 | 546.50 | 550.25 | 37.9 | 0.671 | 0.589 | 0.358 |
Thighs weight (g) | 488.50 | 464.50 | 438.25 | 494.50 | 478.25 | 23.98 | 0.192 | 0.891 | 0.021 |
Wings weight (g) | 153.50 | 150.50 | 156.25 | 150.00 | 150.00 | 8.30 | 0.922 | 0.875 | 0.675 |
Abdominal fat (g) | 45.75 | 52.75 | 45.0.00 | 42.00 | 61.2 | 12.16 | 0.539 | 0.491 | 0.665 |
Vertebrae (g) | 375.25 | 356.75 | 358.75 | 353.00 | 388.75 | 16.28 | 0.199 | 0.301 | 0.626 |
GIT weight (g) | 380.75 | 338.75 | 345.75 | 353.50 | 369.25 | 24.12 | 0.430 | 0.511 | 0.245 |
Liver weight (g) | 75.50 | 69.75 | 68.25 | 74.75 | 76.75 | 7.55 | 0.740 | 0.988 | 0.250 |
Heart weight (g) | 16.50 | 15.50 | 15.25 | 16.00 | 16.75 | 1.565 | 0.852 | 0.803 | 0.425 |
Pancreas weight (g) | 5.75 | 6.25 | 6.50 | 5.25 | 6.75 | 0.856 | 0.443 | 0.454 | 0.094 |
Spleen weight (g) | 3.25 | 2.75 | 3.50 | 3.25 | 3.25 | 0.447 | 0.573 | 0.534 | 0.931 |
Gizzard weight (g) | 69.25 | 68.75 | 73.00 | 74.50 | 74.00 | 5.91 | 0.792 | 0.273 | 0.995 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amouei, H.; Ferronato, G.; Qotbi, A.A.A.; Bouyeh, M.; Dunne, P.G.; Prandini, A.; Seidavi, A. Effect of Essential Oil of Thyme (Thymus vulgaris L.) or Increasing Levels of a Commercial Prebiotic (TechnoMOS®) on Growth Performance and Carcass Characteristics of Male Broilers. Animals 2021, 11, 3330. https://doi.org/10.3390/ani11113330
Amouei H, Ferronato G, Qotbi AAA, Bouyeh M, Dunne PG, Prandini A, Seidavi A. Effect of Essential Oil of Thyme (Thymus vulgaris L.) or Increasing Levels of a Commercial Prebiotic (TechnoMOS®) on Growth Performance and Carcass Characteristics of Male Broilers. Animals. 2021; 11(11):3330. https://doi.org/10.3390/ani11113330
Chicago/Turabian StyleAmouei, Hossein, Giulia Ferronato, Ali Ahmad Alaw Qotbi, Mehrdad Bouyeh, Peter G. Dunne, Aldo Prandini, and Alireza Seidavi. 2021. "Effect of Essential Oil of Thyme (Thymus vulgaris L.) or Increasing Levels of a Commercial Prebiotic (TechnoMOS®) on Growth Performance and Carcass Characteristics of Male Broilers" Animals 11, no. 11: 3330. https://doi.org/10.3390/ani11113330