Effects of Sex Class, a Combined Androgen and Estrogen Implant, and Pasture Supplementation on Growth and Carcass Performance and Meat Quality of Zebu-Type Grass-Fed Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location, Animal Handling, and Experiment Conditions
2.2. Carcass Evaluation and Fabrication
2.3. Cookery, Panel Sensory and Texture Tests
2.4. Statistical Analysis
3. Results and Discussion
3.1. Growth Performance
3.1.1. The Main Effects of Castration
3.1.2. Main Effects of Supplementation
3.2. Carcass Performance
3.2.1. Main Effects of Castration
3.2.2. Main Effects of Supplementation
3.2.3. Main Effects of Implant
3.3. Effects on Yields of Beef Subprimals and Coproducts
3.3.1. Main Effects of Sex Class
3.3.2. Main Effects of Implant and Supplementation
3.4. Effects on Cookery and Meat Quality Traits
3.4.1. Main Effects of Sex Class
3.4.2. Main Effects of Implant
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarmiento, G.; Pinillos, M.; Pereira Da Silva, M.; Acevedo, D. Effects of soil water regime and grazing on vegetation diversity and production in a hyperseasonal savanna in the Apure’s Llanos, Venezuela. J. Trop. Ecol. 2004, 20, 209–220. [Google Scholar] [CrossRef]
- Smith, J.K.; Chacón-Moreno, E.J.; Jongman, R.H.G.; Wenting, P.P.; Loedeman, J.H. Effect of Dike Construction on Water Dynamics in the Flooding Savannahs of Venezuela. Earth Surf. Proc. Land. 2006, 31, 81–96. [Google Scholar] [CrossRef] [Green Version]
- Lascano, C.E. Harry Stobbs Memorial Lecture: Managing the grazing resource for animal production in tropical America. Trop. Grassl. 1991, 25, 66–72. [Google Scholar]
- Rodríguez, J.; Unruh, J.; Villarreal, M.; Murillo, O.; Rojas, S.; Camacho, J.; Reinhardt, C. Carcass and meat quality characteristics of Brahman cross bulls and steers finished on tropical pastures in Costa Rica. Meat Sci. 2014, 96, 1340–1344. [Google Scholar] [CrossRef]
- Rodas González, A.; Huerta-Leidenz, N.; Jerez-Timaure, N. Benchmarking Venezuelan quality grades for grass-fed cattle carcasses. Meat Muscle Biol. 2017, 1. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Lozano, M.S.; Ngapo, T.M.; Huerta-Leidenz, N. Tropical Beef: Is There an Axiomatic Basis to Define the Concept? Foods 2021, 10, 1025. [Google Scholar] [CrossRef]
- Aricett, J.A.; Rotta, P.P.; do Prato, R.M.; Perotto, D.; Moletta, J.L.; Matsushita, M.; do Prado, I.N. Carcass characteristics, chemical composition and fatty acid profile of Longissimus muscle of bulls and steers finished in a pasture system bulls and steers finished in pasture systems. Asian-Australas J. Anim. Sci. 2008, 21, 14411–14448. [Google Scholar] [CrossRef]
- Lean, I.J.; Golder, H.M.; Lees, N.M.; Mc Gilchris, P.; Santos, J.E. Effects of hormonal growth promotants on beef quality: A meta-analysis. J. Anim. Sci. 2018, 96, 675–2697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, Z.K.; Johnson, B.J. Mechanisms of steroidal implants to improve beef cattle growth: A review. J. Appl. Anim. Res. 2020, 48, 133–141. [Google Scholar] [CrossRef]
- Arias, R.; Santa-Cruz, C.; Velásquez, A. Effect of High Potency Growth Implants on Average Daily Gain of Grass-Fattened Steers. Animals 2019, 9, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenwood, P.L. Review: An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal 2021, 100295. [Google Scholar] [CrossRef]
- Tobia, C.; Vargas, E.; Rojas, A.; Soto, H. Uso de las excretas de pollos de engorde (pollinaza) en la alimentacion animal. II. Rendimiento productivo de toretes de engorde. Agron. Costarric. 2001, 25, 35–43. [Google Scholar]
- Gebru, G.; Tekle, D.; Redae, M.; Birhanie, M.; Zenebe, M.; Hagos, H. Effect of supplementation of poultry litter-based diet on body weight gain of cattle. Livest. Res. Rural. Dev. 2019, 31. Available online: http://www.lrrd.org/lrrd31/4/desta31062.html (accessed on 30 September 2021).
- Jeremiah, L.E.; Gibson, L.L. The effect of dietary poultry litter supplementation on beef chemical, cooking, and palatability properties and consumer acceptance. Int. Food Res. J. 2003, 36, 943–948. [Google Scholar] [CrossRef]
- Jerez-Timaure, N.; Huerta-Leidenz, N. Effects of breed type and supplementation during grazing on carcass traits and meat quality of bulls fattened on improved savannah. Livest. Sci. 2009, 121, 219–226. [Google Scholar] [CrossRef]
- Fondo Nacional de Ciencia, Tecnología e Innovación (MCT-FONACIT). Código de Bioética y Bioseguridad, 2nd ed.; Ministerio del Poder Popular para Ciencia, Tecnología e Industrias Intermedias y el Fondo Nacional de Ciencia, Tecnología e Innovación: Caracas, Venezuela, 2002; pp. 1–35. Available online: https://cupdf.com/download/bioetica-fonacit (accessed on 30 September 2021).
- Plasse, D.; Fossi, H.; Hoogesteijn, R.; Verde, O.; Rodríguez, C.M.; Rodríguez, R.; Bastidas, P. Growth of F1 Bos taurus × Bos indicus versus Bos indicus beef cattle in Venezuela. II. Initial, final, and carcass weight of bulls, and breeding weight of heifers. J. Anim. Breed. Genet. 1995, 112, 1331–1345. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine (NASEM). Nutrient Requirements of Beef Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2016; p. 494. [Google Scholar]
- Venezuela, Decreto Presidencial No. 181. Gaceta Oficial de la República de Venezuela No. 4737; Congreso de la Republica de Venezuela: Caracas, Venezuela, 1994.
- Comisión Venezolana de Normas Industriales (COVENIN). Norma Venezolana 792-82: Carne de Bovino. Definición e Identificación de las Piezas de Una Canal; FONDONORMA: Caracas, Venezuela, 1982; pp. 1–10. [Google Scholar]
- Comisión Venezolana de Normas Industriales. Norma Venezolana 2072-83. Ganado Bovino. Inspección Postmortem; FONDONORMA: Caracas, Venezuela, 1983; pp. 1–10. Available online: http://www.sencamer.gob.ve/sencamer/normas/2072-83.pdf (accessed on 25 February 2021).
- Huerta-Leidenz, N.; Jerez-Timaure, N.; Rodas-González, A. Desempeño en Canal de Vacas, Vaquillas y Toros Engordados a Pastizal en Ecosistema Sabana. Nacameh 2020, 4, 41–60. Available online: http://nacameh.cbsuami.org/volumenes/v14n1/Nacameh_v14n1p41_HuertaLeidenz_etal.pdf (accessed on 10 May 2021). [CrossRef]
- Huerta-Leidenz, N.; Ruiz-Flores, A.; Valerio-Hernandez, J.; Jerez-Timaure, N.; Rodas-Gonzalez, A. Bullock carcass performance trends in Brahman and F1 crosses fattened on tropical pastures. Nacameh 2020, 14, 16–30. Available online: http://nacameh.cbsuami.org/volumenes/v14n1/Nacameh_v14n1p16_HuertaLeidenz_etal.pdf (accessed on 27 May 2021). [CrossRef]
- Riera-Sigala, T.; Huerta-Leidenz, N.; Jerez-Timaure, N.; Rodas-González, A.; Ordoñez-Vela, J.; Moya, A. Preliminary observations on carcass traits and meat yield of five types of Brahman-influenced grass-fed bulls. Arch. Latinoam. Prod. Anim. 2021, 29, 67–77. [Google Scholar] [CrossRef]
- Huerta Leidenz, N.; Alvarado, E.; Martínez, L.; Rincón, E. Conformación, acabado y características biométricas de la canal de diferentes clases de bovinos sacrificados en el Estado Zulia. Rev. Fac. Agron. 1979, 5, 522–536. Available online: https://produccioncientificaluz.org/index.php/agronomia/article/view/25841 (accessed on 25 January 2021).
- Venezuela. Decreto Presidencial No. 1896. Gaceta Oficial de la República de Venezuela No. 36.242; Congreso de la Republica de Venezuela: Caracas, Venezuela, 1997. [Google Scholar]
- United States Department of Agriculture (USDA). Official United States Standards for Grades of Carcass Beef; Agricultural Marketing Service: Washington, DC, USA, 2017. Available online: https://www.ams.usda.gov/grades-standards/carcass-beef-grades-and-standards (accessed on 30 September 2021).
- Montero, A.; Huerta Leidenz, N.; Rodas González, A.; Arenas de Moreno, L. Fabrication and variation of the cutout yield of beef carcasses in Venezuela: Anatomical description of the process and equivalency of cut nomenclature to North American counterparts. Nacameh 2014, 8, 1–22. [Google Scholar] [CrossRef]
- Huerta-Leidenz, N. International Nomenclature Guide of Beef Cuts for the U.S.A. and Other Countries Targeted by the U.S. Meat Export Federation; U. S. Meat Export Federation: Denver, CO, USA, 2013; Available online: https://www.usmef.org/export-resources/intl-innovative-cuts/international-beef-cuts-nomenclature-guide/ (accessed on 13 September 2021).
- American Meat Science Association. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat, 2nd ed.; Version 1.02; American Meat Science Association: Champaign, IL, USA, 2016. [Google Scholar]
- Huerta-Leidenz, N.; Jerez-Timaure, N.; Morón-Fuenmayor, O.; Rincón, E.; Caro, R. Experiencias en el entrenamiento de un panel de degustación de carne vacuna a nivel de un matadero frigorífico industrial. Arch. Latinoamer. Nutr. 1996, 46, 47–53. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org (accessed on 10 January 2021).
- Shapiro, S.; Wilk, M. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Steel, D.; Torrie, H. Bioestadística: Principios y Procedimientos, 2nd ed.; McGraw Hill: New York, NY, USA, 1985; Available online: http://www.repositorio.cenpat-conicet.gob.ar/bitstream/handle/123456789/1206/bioestad-steel.pdf?sequence=1 (accessed on 10 May 2021).
- Lee, C.Y.; Hendrick, D.M.; Skelle, G.C.; Grimes, L.W. Growth and hormonal response of intact and castrate male cattle to trenbolone acetate and estradiol. J. Anim. Sci. 1990, 68, 2682–2689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, D.W.; Henricks, D.M.; Skelley, G.C.; Grimes, L.W. Use of trenbolone acetate and estradiol in intact and castrate male cattle: Effects on growth, serum hormones, and carcass characteristics. J. Anim. Sci. 1991, 69, 2452–2462. [Google Scholar] [CrossRef] [Green Version]
- Araujo-Febres, O.; Pietrosemoli, E. Hormonal and non-hormonal implants on commercial steers on pasture with supplementation. Rev. Fac. Agron. 1991, 8, 209–217. Available online: https://www.revfacagronluz.org.ve/v08_3/0803z050.html (accessed on 10 May 2021).
- Moron Fuenmayor, O.; Araujo Febres, O.; Brillembourg, D. Efecto de la condición sexual y del implante con ATB+l7β-estradiol sobre el crecimiento de animales mestizos Santa Gertrudis. Rev. Fac. Agron. 1994, 11, 81–87. [Google Scholar]
- Shahin, K.A.; Berg, R.T.; Price, M.A. The effect of breed type and castration on bone growth and distribution in cattle. Reprod. Nutr. Dev. 1992, 32, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.J.M. The effect of castration and age on the development of the Shetland sheep skeleton and a metric comparison between bones of males, females and castrates. J. Archeol. Sci. 2000, 27, 3733–3790. [Google Scholar] [CrossRef]
- Seideman, S.C.; Cross, H.R.; Oltjen, R.R.; Schanbacher, B.D. Utilization of the intact male for red meat production: A review. J. Anim. Sci. 1982, 55, 826–840. [Google Scholar] [CrossRef] [Green Version]
- Huerta-Leidenz, N.; Ríos-Fuenmayor, G. La castración del bovino a diferentes estadios de su crecimiento. II Efectos sobre las características de la canal. Una revisión. Rev. Fac. Agron. 1993, 10, 1631–1687. [Google Scholar]
- Venkata Reddy, B.; Sivakumar, A.S.; Jeong, D.W.; Woo, Y.-B.; Park, S.J.; Lee, S.-Y.; Byun, J.-Y.; Kim, C.-H.; Cho, S.-H.; Hwang, I. Beef quality traits of heifer in comparison with steer, bull, and cow at various feeding environments. Anim. Sci. J. 2014, 86, 11–16. [Google Scholar] [CrossRef]
- Poppi, D.P.; McLennan, S.R. Nutritional research to meet future challenges. Anim. Prod. Sci. 2010, 50, 329–338. [Google Scholar] [CrossRef]
- Preston, T.R.; Leng, R.A. Matching Ruminant Production Systems with Available Resources in the Tropics and Sub-Tropics; Penambul Books: Armidale, Australia, 1987. [Google Scholar]
- Mac Loughlin, R.J. Requerimientos de Proteína y Formulación de Raciones en Bovinos Para Carne. Sitio Argentino de Producción Animal, Produccion Bovina de Carne, Recria e Invernada o Engorde en General. No. 42. 2010, 6p. Available online: https://www.produccion-animal.com.ar (accessed on 30 September 2021).
- Saddy, J.; Combellas, J.; Tesorero, M.; Gabaldón, L. Comparación de dos sistemas de alimentación con cama de pollos sobre la ganancia de peso en bovinos. Zootec. Trop. 2002, 20, 111–119. Available online: https://hdl.handle.net/1807/1636 (accessed on 10 May 2021).
- Arias, A.; Combellas, J. Influencia de la suplementación con cama de pollos sobre la respuesta productiva de novillas pastoreando Brachiaria humidicola. Arch. Latinoam. Prod. Anim. 1997, 5 (Suppl. 1), 190–192. Available online: http://www.avpa.ula.ve/congresos/ALPA97/NR31.pdf (accessed on 20 May 2020).
- Duarte, V.; Magaña, C.; Rodríguez, G. Respuesta de toretes en engorde a la adición de 3 niveles de pollinaza a dietas integrales. Livest. Res. Rural. Dev. 1996, 8. Available online: http://www.lrrd.org/lrrd8/2/duarte1.htm (accessed on 30 September 2021).
- Zamora-Bonilla, L.N. Evaluación de tres dietas con base en una mezcla tamo de arroz-pollinaza en toretes cebú comercial en el trópico bajo del Valle del Alto Magdalena, Colombia. Rev. Colomb. Cienc. Anim. 2008, 1, 2227. [Google Scholar]
- Lanyasunya, T.P.; Rong, W.H.; Abdulrazak, S.A.; Kaburu, P.K.; Makori, J.; Onyango, O.T.A.; Mwangi, D.M. Factors limiting use of poultry manure as protein supplement for dairy cattle on smallholder farms in Kenya. Int. J. Poult. Sci. 2006, 5, 75–80. [Google Scholar]
- Huerta-Leidenz, N.; Ríos-Fuenmayor, G. La castración del bovino a diferentes estadios de su crecimiento. I. Efectos sobre el comportamiento productivo. Una revisión. Rev. Fac. Agron. 1993, 10, 87–115. [Google Scholar]
- Wang, Y.; Tang, K.; Zhang, W.; Guo, W.; Wang, Y.; Zan, L.; Yang, W. Fatty acid-binding protein 1 increases steer fat deposition by facilitating the synthesis and secretion of triacylglycerol in liver. PLoS ONE 2019, 14, e0214144. [Google Scholar] [CrossRef]
- Dayton, W.R.; White, M.E. Mechanisms of anabolic steroid action in bovine skeletal muscle. In Evaluating Veterinary Pharmaceutical Behavior in the Environment; Cobb, G.P., Smith, P.N., Eds.; American Chemical Society: Washington, DC, USA, 2013; Volume 1126, pp. 1–12. [Google Scholar] [CrossRef]
- Jacinto-Valderrama, R.A.; Lopes Sampaio, G.S.; Pereira Lima, M.L.; dos Santos Gonçalves Cyrillo, J.N.; Pflanzer, S.B. Immunocastration on performance and meat quality of Bos indicus (Nellore) cattle under different nutritional systems. Sci. Agric. 2021, 78, 10. Available online: http://dx.doi.org/10.1590/1678-992X-2019-0136 (accessed on 30 September 2021). [CrossRef]
- Huerta-Leidenz, N.; Jerez-Timaure, N.; Godoy, S.; Rodríguez-Matos, C.; Araujo-Febres, O. Fattening performance and carcass traits of implanted and supplemented grass-fed bulls. Rev. Científica Fac. Cienc. Vet. 2021, 31, 53–60. [Google Scholar] [CrossRef]
- Chase, C.C., Jr.; Chenoweth, P.J.; Larsen, R.E.; Hammond, A.C.; Olson, T.A.; West, R.L.; Johnson, D.D. Growth, puberty, and carcass characteristics of Brahman, Senepol, and Tuli-sired F1 Angus bulls. J. Anim. Sci. 2001, 89, 2006–2015. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Mendoza, O.V.; Aranda-Osorio, G.; Huerta-Bravo, M.; Kholif, A.E.; Elghandour, M.M.Y.; Salem, A.Z.M.; Maldonado-Simán, E. Carcass and meat properties of six genotypes of young bulls finished under feedlot tropical conditions of Mexico. Anim. Prod. Sci. 2017, 57, 1186–1192. [Google Scholar] [CrossRef]
- Foutz, C.P.; Dolezal, H.G.; Gardner, T.L.; Gill, D.R.; Hensley, J.L.; Morgan, J.B. Anabolic implant effects on steer performance, carcass traits, subprimal yields, and Longissimus muscle properties. J. Anim. Sci. 1997, 75, 1256–1265. [Google Scholar] [CrossRef]
- Rodas González, A.; Huerta-Leidenz, N.; Jerez- Timaure, N.; Miller, M.F. Establishing tenderness thresholds of Venezuelan beef steaks using consumer and trained sensory panels. Meat Sci. 2009, 83, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.H.P.; Assis, D.E.F.; Estrada, M.M.; Assis, G.J.F.; Zamudio, G.D.R.; Carneiro, G.B.; Valadares Filho, S.C.; Paulino, M.F.; Chizzotti, M.L. Carcass and meat quality traits of Nellore young bulls and steers throughout fattening. Livest. Sci. 2019, 229, 283–286. [Google Scholar] [CrossRef]
- Huerta-Leidenz, N.; Jerez Timaure, N. Eating quality of meat from bovines in Venezuela: A review. Rev. Fac. Agron. 2020, 37, 169–206. [Google Scholar]
- Ribeiro, E.L.; Hernandez, J.A.; Zanella, E.L.; Shimokomaki, M.; Prudencio-Ferreira, S.H.; Youssef, E.; Ribeiro, H.J.S.S.; Bogden, R.; Reeves, J.J. Growth and carcass characteristics of pasture-fedof LHRH immunocastrated, castrated and intact Bos indicus bulls. Meat Sci. 2004, 68, 285–290. [Google Scholar] [CrossRef]
Sex Class | Implanted b | Non-Implanted | ||
---|---|---|---|---|
Supplemented c | Non-Supplemented | Supplemented c | Non-Supplemented | |
Bull | 5 | 6 | 6 | 6 |
Steer | 6 | 6 | 6 | 6 |
Variables | Sex Class | Supplementation (SUPPL) | Implant | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
Steer (n = 24) | Bull (n = 23) | NON-SUPPL a (n = 24) | SUPPL b (n = 23) | NON-IMPL c (n = 24) | IMPL d (n = 23) | Sex Class | SUPPL | Implant | ||
Hip height, cm | 137.7 | 135.9 | 136.7 | 136.9 | 136.2 | 137.4 | 0.48 | 0.03 | 0.55 | 0.28 |
Muscle score e | 3.79 | 3.73 | 3.79 | 3.73 | 3.75 | 3.78 | 0.06 | 0.37 | 0.38 | 0.37 |
Frame-size score f | 2.58 | 2.91 | 2.75 | 2.74 | 2.66 | 2.82 | 0.07 | 0.21 | 0.54 | 0.09 |
Chronological age, mo | 30.90 | 30.43 | 31.85 | 29.44 | 30.75 | 30.59 | 0.23 | 0.79 | <0.01 | 0.20 |
BW at the end of SUPPL period, kg. | 446.0 | 461.4 | 433.0 | 473.7 | 448.2 | 458.5 | 4.06 | 0.74 | 0.02 | 0.26 |
Final BW at shipping d g, kg | 470.3 | 483.1 | 464.1 | 479.1 | 469.1 | 484.3 | 4.08 | 0.32 | 0.34 | 0.31 |
Time to reach endpoint, d | 210.4 | 211.4 | 246.75 | 173.5 | 212.3 | 209.4 | 6.68 | 0.39 | <0.01 | 0.21 |
ADG1 (d 0—d 163), g | 705.5 | 701.6 | 616.2 | 791.1 | 648.2 | 759.1 | 24.37 | 0.12 | <0.01 | <0.01 |
ADG2 (d 0—d of shipping), g | 684.4 | 664.1 | 574.0 | 779.2 | 610.8 | 740.9 | 25.60 | 0.27 | <0.01 | <0.01 |
Adjusted BW, kg h | 451.4 | 463.8 | 455.2 | 459.9 | 450.3 | 464.9 | 4.34 | 0.32 | 0.34 | 0.31 |
Adjusted ADG2, g i | 590.7 | 568.4 | 495.3 | 667.9 | 518.4 | 643.9 | 23.47 | 0.26 | <0.01 | 0.03 |
Variables | Sex Class | Supplementation (SUPPL) | Implant | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
Steer (n = 24) | Bull (n = 23) | NON-SUPPL a (n = 24) | SUPPL b (n = 23) | NON-IMPL c (n = 24) | IMPL d (n = 23) | Sex Class | SUPPL | Implant | ||
Hot carcass weight, kg | 266.1 | 274.0 | 265.6 | 274.6 | 266.1 | 274.1 | 2.43 | 0.08 | 0.53 | 0.19 |
Hot carcass dressing, % | 56.60 | 56.67 | 56.06 | 57.33 | 56.71 | 56.66 | 0.40 | 0.68 | 0.56 | 0.61 |
Cold carcass weight, kg | 259.3 | 266.8 | 258.8 | 267.2 | 259.3 | 266.8 | 2.38 | 0.84 | 0.07 | 0.62 |
Cold carcass dressing, % | 55.15 | 55.28 | 54.65 | 55.80 | 55.27 | 55.16 | 0.86 | 0.27 | 0.74 | 0.51 |
Conformation score e | 3.08 | 3.22 | 3.37 | 2.91 | 3.08 | 3.21 | 0.07 | 0.11 | 0.22 | 0.84 |
Finish score f | 2.95 | 3.39 | 3.17 | 3.18 | 3.12 | 3.21 | 0.09 | 0.02 | 0.65 | 0.35 |
KPH, % | 2.62 | 2.17 | 2.07 | 2.74 | 2.44 | 2.35 | 0.16 | 0.53 | <0.01 | 0.56 |
Skeletal maturity g | 189.5 | 198.7 | 206.7 | 180.7 | 192.5 | 195.7 | 2.97 | 0.02 | <0.01 | 0.25 |
Lean maturity g | 172.1 | 184.8 | 187.5 | 168.7 | 172.9 | 183.9 | 2.92 | 0.02 | 0.03 | 0.06 |
Overall maturity g | 181.5 | 191.5 | 189.3 | 183.5 | 183.5 | 189.3 | 2.58 | <0.01 | 0.35 | 0.07 |
Adipose maturity h | 2.70 | 2.61 | 2.58 | 2.64 | 2.67 | 2.65 | 0.04 | 0.68 | 0.36 | 0.68 |
Ribeye area, cm2 | 67.80 | 71.81 | 69.11 | 70.43 | 68.52 | 71.05 | 0.52 | 0.06 | 0.85 | 0.25 |
12th rib fat thickness, mm | 2.58 | 1.65 | 1.87 | 2.39 | 2.20 | 2.04 | 1.04 | <0.01 | 0.16 | 0.28 |
Marbling score i | 4.66 | 4.95 | 4.95 | 4.65 | 4.70 | 4.91 | 0.17 | 0.87 | 0.01 | 0.09 |
Thigh width, cm | 58.83 | 57.43 | 58.95 | 57.30 | 57.29 | 59.04 | 0.55 | 0.64 | 0.91 | 0.81 |
Pelvic limb length, cm | 72.63 | 70.36 | 71.67 | 71.37 | 71.59 | 71.45 | 0.68 | 0.03 | 0.74 | 0.23 |
Carcass length, cm | 128.1 | 130.2 | 129.2 | 129.1 | 128.6 | 129.7 | 0.33 | 0.31 | 0.77 | 0.78 |
Leg perimeter, cm | 114.3 | 113.7 | 114.2 | 113.7 | 113.7 | 114.3 | 0.28 | 0.52 | 0.26 | 0.32 |
Thoracic depth, cm | 36.70 | 36.26 | 35.12 | 37.91 | 36.50 | 36.47 | 0.37 | 0.16 | <0.01 | 0.88 |
Variables a | Sex Class | Supplementation (SUPPL) | Implant | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
Steer (n = 24) | Bull (n = 23) | NON-SUPPL b (n = 24) | SUPPL c (n = 23) | NON-IMPL d (n = 24) | IMPL e (n = 23) | Sex Class | SUPPL | Implant | ||
Tenderloin | 2.19 | 2.09 | 2.19 | 2.10 | 2.16 | 2.12 | 0.04 | 0.02 | 0.47 | 0.52 |
Rib-eye roll and Strip-loin | 8.49 | 8.19 | 8.26 | 8.43 | 1.35 | 1.84 | 0.28 | 0.48 | 0.46 | 0.25 |
Knuckle | 3.83 | 3.58 | 3.80 | 3.61 | 3.77 | 3.64 | 0.10 | <0.01 | 0.20 | 0.53 |
Center cut sirloin | 3.11 | 2.96 | 3.09 | 2.97 | 3.04 | 3.01 | 0.08 | 0.33 | 0.83 | 0.11 |
Bottom (outside) round | 3.65 | 3.36 | 3.54 | 3.47 | 3.48 | 3.53 | 0.13 | 0.16 | 0.29 | 0.97 |
Eye of round | 1.85 | 1.84 | 1.86 | 1.84 | 1.83 | 1.87 | 0.07 | 0.96 | 0.75 | 0.67 |
Top sirloin cap or rump | 1.73 | 1.64 | 1.68 | 1.67 | 1.66 | 1.69 | 0.09 | 0.37 | 0.16 | 0.58 |
Top (inside) round | 6.87 | 6.45 | 6.81 | 6.52 | 6.65 | 6.68 | 0.14 | <0.01 | 0.15 | 0.56 |
Shoulder clod with top blade | 8.32 | 8.48 | 8.59 | 8.19 | 8.32 | 8.47 | 0.24 | 0.16 | 0.25 | 0.14 |
Chuck (mock) tender | 1.03 | 1.05 | 1.07 | 1.01 | 1.00 | 1.01 | 0.04 | 0.35 | 0.55 | 0.92 |
Tri-tip | 0.96 | 0.92 | 0.98 | 0.90 | 0.93 | 0.95 | 0.04 | 0.08 | 0.36 | 0.13 |
Chuck roll | 12.12 | 15.46 | 14.16 | 13.33 | 13.45 | 14.07 | 0.63 | <0.01 | 0.48 | 0.47 |
Heel of round | 1.43 | 1.39 | 1.42 | 1.39 | 1.39 | 1.43 | 0.05 | 0.09 | 0.17 | <0.01 |
Inside skirt, flank, rose meat | 2.95 | 2.88 | 2.85 | 2.95 | 2.91 | 2.93 | 0.18 | 0.31 | 0.33 | 0.85 |
Rib plate | 8.85 | 8.67 | 8.69 | 8.85 | 8.84 | 8.69 | 0.25 | 0.10 | 0.18 | 0.20 |
Bone-in brisket | 5.95 | 5.93 | 5.85 | 6.03 | 6.13 | 5.74 | 0.24 | 0.24 | 0.12 | 0.13 |
Bone-in fore shank | 1.78 | 1.73 | 1.70 | 1.81 | 1.75 | 1.76 | 0.08 | 0.46 | 0.95 | 0.48 |
Bone-in hind shank | 2.76 | 2.59 | 2.70 | 2.66 | 2.70 | 2.66 | 0.12 | 0.79 | 0.31 | 0.42 |
Variables a | Sex Class | Supplementation (SUPPL) | Implant | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
Steer (n = 24) | Bull (n = 23) | NON-SUPPL b (n = 24) | SUPPL c (n = 23) | NON-IMPL d (n = 24) | IMPL e (n = 23) | Sex Class | SUPPL | Implant | ||
High-value boneless cuts f | 32.69 | 31.05 | 32.22 | 31.53 | 31.90 | 31.87 | 0.19 | <0.01 | 0.70 | 0.52 |
Medium-value boneless cuts g | 22.91 | 26.38 | 25.25 | 23.93 | 24.22 | 25.01 | 0.34 | <0.01 | 0.37 | 0.18 |
Low-value cuts h | 22.31 | 21.82 | 21.84 | 22.31 | 22.33 | 21.79 | 0.12 | 0.58 | 0.10 | 0.05 |
Total cuts i | 77.91 | 79.26 | 79.32 | 77.78 | 78.46 | 78.68 | 0.27 | 0.04 | 0.42 | 0.79 |
Trimmable fat | 8.24 | 7.01 | 6.95 | 8.04 | 7.67 | 7.60 | 0.23 | <0.01 | <0.01 | 0.38 |
Clean bone | 13.31 | 13.00 | 13.27 | 13.01 | 13.34 | 12.98 | 0.13 | 0.08 | 0.14 | 0.63 |
Variable | Sex Class | Supplementation (SUPPL) | Implant | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
Steer (n = 24) | Bull (n = 23) | NON-SUPPL a (n = 24) | SUPPL b (n = 23) | NON-IMPL c (n = 24) | IMPL d (n = 23) | Sex Class | SUPPL | Implant | ||
Juiciness e | 4.50 | 4.61 | 4.46 | 4.63 | 4.58 | 4.52 | 0.15 | 0.18 | 0.08 | 0.48 |
Amount of connective tissue f | 3.89 | 3.50 | 3.97 | 3.45 | 3.69 | 3.70 | 0.22 | <0.01 | <0.01 | 0.85 |
Muscle fiber tenderness g | 4.29 | 3.97 | 4.29 | 3.99 | 4.10 | 4.16 | 0.21 | <0.01 | 0.01 | 0.67 |
Overall tenderness g | 4.04 | 3.62 | 4.11 | 3.58 | 3.84 | 3.83 | 0.24 | <0.01 | <0.01 | 0.81 |
Flavor intensity h | 5.81 | 5.85 | 5.85 | 5.81 | 5.82 | 5.84 | 0.07 | 0.44 | 0.62 | 0.77 |
WBSF i, kg | 5.03 | 5.26 | 4.91 | 5.38 | 4.92 | 5.37 | 0.05 | 0.78 | 0.15 | 0.97 |
Cooking loss, % | 41.80 | 37.36 | 39.96 | 39.28 | 39.86 | 39.38 | 0.99 | <0.01 | 0.82 | 0.70 |
Cooking time, min. | 100.5 | 100.5 | 101.8 | 99.2 | 98.8 | 102.4 | 2.82 | 0.35 | 0.43 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huerta-Leidenz, N.; Jerez-Timaure, N.; Sarturi, J.O.; Brashears, M.M.; Miller, M.F.; Moya, A.; Godoy, S. Effects of Sex Class, a Combined Androgen and Estrogen Implant, and Pasture Supplementation on Growth and Carcass Performance and Meat Quality of Zebu-Type Grass-Fed Cattle. Animals 2021, 11, 3441. https://doi.org/10.3390/ani11123441
Huerta-Leidenz N, Jerez-Timaure N, Sarturi JO, Brashears MM, Miller MF, Moya A, Godoy S. Effects of Sex Class, a Combined Androgen and Estrogen Implant, and Pasture Supplementation on Growth and Carcass Performance and Meat Quality of Zebu-Type Grass-Fed Cattle. Animals. 2021; 11(12):3441. https://doi.org/10.3390/ani11123441
Chicago/Turabian StyleHuerta-Leidenz, Nelson, Nancy Jerez-Timaure, Jhones Onorino Sarturi, Mindy M. Brashears, Markus F. Miller, Alexis Moya, and Susmira Godoy. 2021. "Effects of Sex Class, a Combined Androgen and Estrogen Implant, and Pasture Supplementation on Growth and Carcass Performance and Meat Quality of Zebu-Type Grass-Fed Cattle" Animals 11, no. 12: 3441. https://doi.org/10.3390/ani11123441
APA StyleHuerta-Leidenz, N., Jerez-Timaure, N., Sarturi, J. O., Brashears, M. M., Miller, M. F., Moya, A., & Godoy, S. (2021). Effects of Sex Class, a Combined Androgen and Estrogen Implant, and Pasture Supplementation on Growth and Carcass Performance and Meat Quality of Zebu-Type Grass-Fed Cattle. Animals, 11(12), 3441. https://doi.org/10.3390/ani11123441