The Source Matters–Effects of High Phosphate Intake from Eight Different Sources in Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Feeding
2.3. Sample Collection and Handling
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MacKay, E.M.; Oliver, J. Renal damage following the ingestion of a diet containing an excess of inorganic phosphate. J. Exp. Med. 1935, 61, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Haut, L.L.; Alfrey, A.C.; Guggenheim, S.; Buddington, B.; Schrier, N. Renal toxicity of phosphate in rats. Kidney Int. 1980, 17722–17731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, P.; Müller-Peddinghaus, R.; Pappritz, G.; Trieb, G.; Trautwein, G.; Ueberberg, H. Potassium hydrogen phosphate indused nephropathy in the dog. Vet. Pathol. 1980, 7, 720–737. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.; Pappritz, G.; Müller-Peddinghaus, R.; Bauer, M.; Lehmann, H.; Ueberberg, H.; Trautwein, G. Die Kaliumhydrogenphosphat-induzierte Nephropathie des Hundes. I. Pathogenese der Tubulusatrophie [Potassium Hydrogen Phosphate Induced Nephropathy in the Dog. I. Pathogenesis of Tubular Atrophy]. Vet. Pathol. 1980, 17, 699–719. [Google Scholar] [CrossRef] [Green Version]
- Pastoor, F.J.H.; Klooster, A.; Mathot, J.N.J.J.; Beynen, A.C. Increasing phosphorus intake reduces urinary concentrations of magnesium and calcium in adult ovariectomized cats fed purified diets. J. Nutr. 1995, 125, 1334. [Google Scholar]
- Sage, A.P.; Lu, J.; Tintut, Y.; Demer, L.L. Hyperphosphatemia-induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 2011, 79, 414–422. [Google Scholar] [CrossRef] [Green Version]
- Calvo, M.S.; Uribarri, J. Public health impact of dietary phosphorus excess on bone and cardiovascular health in the general population. Am. J. Clin. Nutr. 2013, 98, 6–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo, M.S.; Moshfegh, A.J.; Tucker, K.L. Assessing the health impact of phosphorus in the food supply: Issues and considerations. Adv. Nutr. 2014, 5, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Takeda, E.; Yamamoto, H.; Taketani, Y. Effects of natural and added phosphorus compunds in foods in health and disease. In Clinical Aspects of Natural and Added Phosphorus in Foods; Guitérrez, O.M., Lakanrar-Zadeh, K., Mehrotra, R., Eds.; Springer: New York, NY, USA, 2017; pp. 111–121. [Google Scholar]
- Dobenecker, B.; Webel, A.; Reese, S.; Kienzle, E. Effect of a high phosphorus diet on indicators of renal health in cats. J. Feline Med. Surg. 2017, 20, 339–343. [Google Scholar] [CrossRef]
- Böswald, L.F.; Kienzle, E.; Dobenecker, B. Observation about phosphorus and protein supply in cats and dogs prior to the diagnosis of chronic kidney disease. J. Anim. Physiol. Anim. Nutr. 2018, 102, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Dobenecker, B.; Hertel-Böhnke, P.; Webel, A.; Kienzle, E. Renal phosphorus excretion in adult healthy cats after the intake of high phosphorus diets with either calcium monophosphate or sodium monophosphate. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1759–1765. [Google Scholar] [CrossRef] [PubMed]
- Geddes, R.F.; Finch, N.C.; Syme, H.M.; Elliott, J. The role of phosphorus in the pathophysiology of chronic kidney disease. J. Vet. Emerg. Crit. Care 2013, 23, 122–133. [Google Scholar] [CrossRef]
- Fliser, D.; Kollerits, B.; Neyer, U.; Ankerst, D.P.; Lhotta, K.; Lingenhel, A.; Kronenberg, F. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: The Mild to Moderate Kidney Disease (MMKD) Study. J. Am. Soc. Nephrol. 2007, 18, 2600–2608. [Google Scholar] [CrossRef] [PubMed]
- Giachelli, C.M. Vascular calcification: In vitro evidence for the role of inorganic phosphate. J. Am. Soc. Nephrol. 2003, 14, S300–S304. [Google Scholar] [CrossRef] [Green Version]
- Shroff, R.; Quinlan, C.; Mitsnefes, M. Uraemic vasculopathy in children with chronic kidney disease: Prevention or damage limitation? Pediatr. Nephrol. 2011, 26, 853–865. [Google Scholar] [CrossRef]
- Belsey, J.; Epstein, O.; Heresbach, D. Systematic review: Adverse event reports for oral sodium phosphate and polyethylene glycol. Aliment. Pharmacol. Ther. 2009, 29, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Osuka, S.; Razzaque, M.S. Can features of phosphate toxicity appear in normophosphatemia? J. Bone Miner. Metab. 2012, 30, 10–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, T.; Nisbeth, U.L.F.; Ljunggren, Ö.; Jüppner, H.; Jonsson, K.B. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease. but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int. 2003, 64, 2272–2279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markowitz, G.S.; Nasr, S.H.; Klein, P.; Anderson, H.; Stack, J.I.; Alterman, L.; Price, B.; Radhakrishnan, J.; D’agati, D.V. Renal failure due to acute nephrocalcinosis following oral sodium phosphate bowel cleansing. Hum. Pathol. 2004, 35, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, G.S.; Perazella, M.A. Acute phosphate nephropathy. Kidney Int. 2009, 76, 1027–1034. [Google Scholar] [CrossRef] [Green Version]
- Eller, P.; Eller, K.; Kirsch, A.H.; Patsch, J.J.; Wolf, A.M.; Tagwerker, A.; Stanzl, U.; Kaindl, R.; Kahlenberg, V.; Mayer, G.; et al. A murine model of phosphate nephropathy. Am. J. Pathol. 2011, 178, 1999–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razzaque, M.S. Phosphate toxicity: New insights into an old problem. Clin. Sci. 2011, 120, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Giachelli, C.M. The emerging role of phosphate in vascular calcification. Kidney Int. 2009, 75, 890–897. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.L.; Joannides, A.J.; Skepper, J.N.; McNair, R.; Schurgers, L.J.; Proudfoot, D.; Jahnen-Dechent, W.; Weissberg, P.L.; Shanahan, C.M. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: A potential mechanism for accelerated vascular calcification in ESRD. J. Am. Soc. Nephrol. 2004, 15, 2857–2867. [Google Scholar] [CrossRef] [Green Version]
- Lau, W.L.; Pai, A.; Moe, S.M.; Giachelli, C.M. Direct effects of phosphate on vascular cell function. Adv. Chronic Kidney Dis. 2011, 18, 105–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuzaki, H.; Uehara, M.; Suzuki, K.; Liu, Q.L.; Sato, S.; Kanke, Y.; GOTO, S. High phosphorus diet rapidly induces nephrocalcinosis and proximal tubular injury in rats. J. Nutr. Sci. Vitaminol. 1997, 43, 627–641. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, D.G.; Elliott, J.; Church, D.B.; McGreevy, P.D.; Thomson, P.C.; Brodbelt, D.C. Chronic kidney disease in dogs in UK veterinary practices: Prevalence, risk factors, and survival. J. Vet. Intern. Med. 2013, 27, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Lulich, J.P.; Osborne, C.A.; O’Brien, T.D.; Polzin, D.J. Feline renal failure, questions, answers, questions. Comp. Cont. Educ. Pract. Vet. 1992, 14, 127–153. [Google Scholar]
- Lefebvre, S. Literature Review–Epidemiology of Feline Chronic Kidney Disease; Banfield Applied Research & Knowledge Team: Portland, OR, USA; pp. 1–11.
- Marino, C.L.; Lascelles, B.D.X.; Vaden, S.L.; Gruen, M.E.; Marks, S.L. Prevalence and classification of chronic kidney disease in cats randomly selected from four age groups and in cats recruited for degenerative joint disease studies. J. Feline Med. Surg. 2014, 16, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Grauer, G. Early detection of renal damage and disease in dogs and cats. Vet. Clin. N. Am. Small Anim. Pract. 2005, 35, 581–596. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.; Barber, P.J. Feline chronic renal failure: Clinical findings in 80 cases diagnosed between 1992 and 1995. J. Small Anim. Pract. 1998, 39, 78–85. [Google Scholar] [CrossRef]
- Kichura, T.S.; Horst, R.L.; Beitz, D.C.; Littledike, E.T. Relationships between prepartal dietary calcium and phosphorus, vitamin D metabolism, and parturient paresis in dairy cows. J. Nutr. 1982, 112, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Felsenfeld, A.J.; Rodriguez, M. Phosphorus, regulation of plasma calcium, and secondary hyperparathyroidism: A hypothesis to integrate a historical and modern perspective. J. Am. Soc. Nephrol. 1999, 10, 878–890. [Google Scholar] [CrossRef]
- Brown, A.J.; Ritter, C.S.; Finch, J.L.; Slatopolsky, E.A. Decreased calcium-sensing receptor expression in hyperplastic parathyroid glands of uremic rats: Role of dietary phosphate. Kidney Int. 1999, 55, 1284–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobenecker, B.; Reese, S.; Herbst, S. Effects of dietary phosphates from organic and inorganic sources on parameters of phosphorus homeostasis in healthy adult dogs. PLoS ONE 2021, 16, e0246950. [Google Scholar] [CrossRef]
- FEDIAF. Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs (Fédération Européenne de l’Industrie des Aliments pour Animaux Familiers). 2015. Available online: https://www.fediaf.org/self-regulation/nutrition.html#guidelines (accessed on 1 December 2021).
- NRC (National Research Council). Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- VDLUFA. Verband Deutscher Landwirtschaftlicher Untersuchungs-und Forschungsanstalten. Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik (VDLUFA-Methodenbuch), Band III.; Die Chemische Untersuchung von Futtermitteln; VDLUFA-Verlag: Darmstadt, Germany, 2012. [Google Scholar]
- Gericke, S.; Kurmies, B. Die kolorimetrische Phosphorsäurebestimmung mit ammonium-vanadat-molybdat und ihre Anwendung in der Pflanzenanalyse. Z. Düngg. Pflanzenernähr. Bodenk. 1952, 59, 235–247. [Google Scholar]
- Allen, L.C.; Allen, M.J.; Breur, G.J.; Hoffmann, W.E.; Richardson, D.C. A comparison of two techniques for the determination of serum bone-specific alkaline phosphatase activity in dogs. Res. Vet. Sci. 2000, 68, 231–235. [Google Scholar] [CrossRef]
- Kraft, W.; Dürr, U.M. Klinische Labordiagnostik in der Tiermedizin; Auflage 7; Schattauer Verlag: Stuttgart, Germany, 2013. [Google Scholar]
- Block, G.A.; Hulbert-Shearon, T.E.; Levin, N.W.; Port, F.K. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: A national study. Am. J. Kidney Dis. 1998, 31, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Dobenecker, B. Phosphataufnahme durch auf dem deutschen Markt befindliche Alleinfutter und Nierendiäten für Hunde und Katzen. Tierarztl. Prax. Ausg. K Kleintiere Heimtiere 2021, 49, 247–254. [Google Scholar] [CrossRef]
- Mack, J.K.; Alexander, L.G.; Morris, P.J.; Dobenecker, B.; Kienzle, E. Demonstration of uniformity of calcium absorption in adult dogs and cats. J. Anim. Physiol. Anim. Nutr. 2015, 99, 801–809. [Google Scholar] [CrossRef]
- Uribarri, J.; Calvo, M.S. Hidden sources of phosphorus in the typical American diet: Does it matter in nephrology? In Seminars in Dialysis; Blackwell Science Inc.: Malden, MA, USA, 2003; Volume 16, p. 186. [Google Scholar]
- Macholz, R.; Benz, H.; Lewerenz, H.J. Lebensmitteltoxikologie. In Taschenbuch für Lebensmittelchemiker; Frede, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1167–1182. [Google Scholar]
- Elmadfa, I.; Leitzmann, C. Ernährung des Menschen, 5th ed.; Ulmer: Stuttgart, Germany, 2015. [Google Scholar]
- Hu, M.C.; Shi, M.; Cho, H.J.; Zhang, J.; Pavlenco, A.; Liu, S.; Sidhu, S.; Huang, L.J.; Moe, O.W. The erythropoietin receptor is a downstream effector of Klotho-induced cytoprotection. Kidney Int. 2013, 84, 468–481. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.C.; Shi, M.; Cho, H.J.; Adams-Huet, B.; Paek, J.; Hill, K.; Shelton, J.; Amaral, A.P.; Faul, C.; Taniguchi, M.; et al. Klotho and phosphate are modulators of pathologic uremic cardiac remodeling. J. Am. Soc. Nephrol. 2015, 26, 1290–1302. [Google Scholar] [CrossRef] [Green Version]
- Jowsey, J.; Reiss, E.; Canterbury, J. Long-term effects of high phosphorus intake on parathyroid hormone levels and bone metabolism. Acta. Orthop. 1974, 45, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Bartges, J.W. Chronic kidney disease in dogs and cats. Vet. Clin. J. Small Anim. Pract. 2012, 42, 669–692. [Google Scholar] [CrossRef] [PubMed]
- Cortadellas, O.; Fernández del Palacio, M.; Talavera, J.; Baýon, A. Calcium and phosphorus homeostasis in dogs with spontaneous chronic kidney disease at different stages of severity. J. Vet. Intern. Med. 2010, 24, 73–79. [Google Scholar] [CrossRef]
- Lippi, I.; Guidi, G.; Marchetti, V.; Tognetti, R.; Meucci, V. Prognostic role of the product of serum calcium and phosphorus concentrations in dogs with chronic kidney disease: 31 cases (2008–2010). J. Am. Vet. Med. Assoc. 2014, 245, 1135–1140. [Google Scholar] [CrossRef] [Green Version]
- Jackson, H.A.; Barber, P.J. Resolution of metastatic calcification in the paws of a cat with successful dietary management of renal hyperparathyroidism. J. Small Anim. Pract. 1998, 39, 495–497. [Google Scholar] [CrossRef]
- Bover, J.; Jara, A.; Trinidad, P.; Rodriguez, M.; Felsenfeld, A.J. Dynamics of skeletal resistance to parathyroid hormone in the rat: Effect of renal failure and dietary phosphorus. Bone 1999, 25, 279–285. [Google Scholar] [CrossRef]
- Nadkarni, G.; Uribarri, J. Phosphorus and the kidney: What is known and what is needed. Adv. Nutr. 2014, 5, 98–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duayer, I.F.; Duque, E.J.; Fujihara, C.K.; de Oliveira, I.B.; Dos Reis, L.M.; Machado, F.G.; Graciolli, F.G.; Jorgetti, V.; Zatz, R.; Moysés, R.M.A. The Protein-Independent Role of Phosphate in the Progression of Chronic Kidney Disease. Toxins 2021, 13, 503. [Google Scholar] [CrossRef] [PubMed]
Diet | Main Phosphorus Source | Phosphorus mg/100g DM | Calcium mg/100g DM | Ca/P |
---|---|---|---|---|
CON | Tripe, rice, casein | 443 ± 53 | 610 ± 72 | 1.4 |
mCaP | Ca (H2PO4)2 | 1826 ± 198 | 2321 ± 258 | 1.3 |
diCaP | CaHPO4 | 1821 ± 119 | 2381 ± 154 | 1.3 |
mNaP | NaH2PO4 | 1777 ± 68 | 2315 ± 82 | 1.3 |
STTP | Na5P3O10 | 1130 ± 151 | 1529 ± 215 | 1.4 |
mKP | KH2PO4 | 1871 ± 196 | 2343 ± 249 | 1.3 |
KpyrP | K4P2O7 | 1154 ± 53 | 1578 ± 74 | 1.4 |
PM | Poultry meal | 1963 ± 165 | 3405 ± 288 | 1.7 |
CBM | Cattle bone meal | 1696 ± 165 | 2953 ± 296 | 1.7 |
Apparent Digestibility Phosphorus (%) | Apparent Digestibility Calcium (%) | |
---|---|---|
CON | 38.7 (23.6/57.4) | −29.9 (−75.4/−0.8) |
mCaP | 34.6 (32.9/43.0) | 2.8 (1.4/17.6) * |
diCaP | 20.5 (13.8/26.7) * | −5.6 (−20.9/5.0) |
mNaP | 32.5 (27.5/46.0) | −4.6 (−12.5/4.2) |
STTP | 18.7 (14.7/31.4) * | −9.0 (−13.7/1.0) |
mKP | 45.2 (36.8/50.3) | 5.0 (−9.8/11.9) * |
KpyrP | 30.3 (27.2/34.3) | −14.2 (−18.3/−3.7) |
PM | 8.7 (0.2/13.2) * | −5.3 (−15.9/2.1) |
CBM | 20.5 (15.5/23.8) * | −2.2 (−3.5/2.8) |
Serum Phosphorus (mmol/L) | PTH (pg/mL) | |||
---|---|---|---|---|
Preprandial | Postprandial | Preprandial | Postprandial | |
CON | 1.3 (1.1/1.4) | 1.2 (0.8/1.5) | 21.5 (19.0/23.5) | 20.0 (19.3/27.0) |
mCaP | 1.2 (0.9/1.3) | 2.0 (1.9/2.2) *** | 19.4 (18.6/21.6) | 42.5 (35.0/61.9) * |
diCaP | 1.1 (1.0/1.2) | 1.6 (1.5/1.8) ** | 18.0 (16.3/22.5) | 27.0 (19.3/35.0) |
mNaP | 1.0 (1.0/1.1) * | 3.1 (2.6/3.6) *** | 20.3 (19.4/25.8) | 89.8 (49.9/113.8) * |
STTP | 1.2 (1.0/1.3) | 1.7 (1.3/2.1) ** | 18.4 (16.8/21.0) | 43.6 (30.7/74.6) * |
mKP | 0.9 (0.8/1.0) * | 2.8 (2.4/3.1) *** | 22.0 (19.6/28.2) | 65.4 (48.7/104.4) * |
KpyrP | 1.2 (1.2/1.3) | 2.1 (1.7/2.5) *** | 16.2 (13.4/21.2) | 64.6 (47.7/100.6) * |
PM | 1.1 (0.9/1.4) | 1.2 (1.0/1.3) | 22.6 (18.7/38.1) | 26.9 (24.6/30.7) |
CBM | 1.2 (1.0/1.2) | 1.2 (1.1/1.3) | 19.9 (17.1/22.8) | 23.6 (18.8/31.9) |
Serum Calcium [mmol/L] | ||
---|---|---|
Preprandial | Postprandial | |
CON | 2.6 (2.5/2.8) | 2.7 (2.6/2.8) |
mCaP | 2.6 (2.5/2.6) * | 2.5 (2.4/2.5) *** |
diCaP | 2.6 (2.5/2.7) | 2.6 (2.5/2.6) * |
mNaP | 2.6 (2.5/2.6) | 2.5 (2.4/2.6) *** |
PM | 2.6 (2.5/2.6) * | 2.5 (2.4/2.6) *** |
STTP | 2.6 (2.5/2.7) | 2.4 (2.4/2.5) *** |
CBM | 2.6 (2.5/2.7) | 2.6 (2.5/2.6) * |
mKP | 2.6 (2.5/2.6) * | 2.6 (2.6/2.7) |
KpyrP | 2.5 (2.5/2.6) * | 2.5 (2.4/2.5) *** |
Diet | Preprandial P/Crea | Postprandial P/Crea |
---|---|---|
CON | 2.2 (1.0/2.8) | 1.8 (1.3/2.2) |
mCaP | 5.8 (5.4/6.5) * | 13.0 (9.0/17.0) *** |
diCaP | 6.0 (3.9/7.1) * | 9.3 (7.6/10.9) *** |
mNaP | 6.3 (4.3/7.5) * | 21.1 (16.4/25.9) *** |
STTP | 3.4 (3.1/4.2) | 7.0 (4.1/9.9) ** |
mKP | 6.7 (5.8/8.6) * | 21.8 (17.1/26.5) *** |
KpyrP | 3.5 (3.2/4.3) | 9.9 (6.7/13.1) *** |
PM | 4.3 (3.6/4.9) | 1.5 (0.8/2.2) |
CBM | 5.8 (4.6/6.9) * | 2.9 (1.5/4.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobenecker, B.; Kienzle, E.; Siedler, S. The Source Matters–Effects of High Phosphate Intake from Eight Different Sources in Dogs. Animals 2021, 11, 3456. https://doi.org/10.3390/ani11123456
Dobenecker B, Kienzle E, Siedler S. The Source Matters–Effects of High Phosphate Intake from Eight Different Sources in Dogs. Animals. 2021; 11(12):3456. https://doi.org/10.3390/ani11123456
Chicago/Turabian StyleDobenecker, Britta, Ellen Kienzle, and Stephanie Siedler. 2021. "The Source Matters–Effects of High Phosphate Intake from Eight Different Sources in Dogs" Animals 11, no. 12: 3456. https://doi.org/10.3390/ani11123456
APA StyleDobenecker, B., Kienzle, E., & Siedler, S. (2021). The Source Matters–Effects of High Phosphate Intake from Eight Different Sources in Dogs. Animals, 11(12), 3456. https://doi.org/10.3390/ani11123456