Phytogenic Feed Additives in Poultry: Achievements, Prospective and Challenges
Abstract
:Simple Summary
Abstract
1. Introduction
2. Gastrointestinal Health and Functionality
3. Phytogenics as an Alternative to Antimicrobials in Poultry Feeding
4. Effects of Phytogenic Feed Additives on Chickens
4.1. Effects of Dietary PFA Supplementation on Growth Performance
4.1.1. Chickens Maintained under Non-Challenging Conditions
4.1.2. Chickens Maintained under Challenging Conditions
Feed Additive | Major Components | Dose, (mg/kg Diet) | Diet | Age | Treatment Effects (%, Compared to Control) | References | ||
---|---|---|---|---|---|---|---|---|
BW | ADFI/FI | FCR | ||||||
Olea europaea extract | Triterpenes (10%) polyphenols (2%) | 750 | Wheat-soybean meal based diet | 21–42 d | NM | NS | −7.9 | [62] |
Achyranthes japonica extract | Flavonoid (1.15 mg/g), polyphenol (4.26 mg/g) and saponin (0.47 mg/g) | 1000 | Corn-soybean meal based diet | 0–35 d | 3.5 | −2.4 | −6.2 | [60] |
EOs | Carvacrol (20%) and thymol (25%) | 200 | Corn-soybean meal based diet | 29–42 d | NS | −9.6 | −11.8 | [43] |
EOs | Carvacrol (5%), cinnamaldehyde (3%), and capsicum oleoresin (2%) | 100 | Corn-soybean or wheat -soybean meal based diet | 16.4 | 6.1 | −9.4 | [86] | |
Aerva lanata, Cynodon dactylon, Piper nigrum and Piper betle | Phenolic acid contents (10,176.8 μg/g), flavonoids (53.0 μg/g), other (220.2 μg/g) | 10,000 | Corn-soybean meal based diet | 0–42 d | 14.1 | NS | −14.0 | [58] |
Pulicaria gnaphalodes powder | Phenolic compounds, alkaloids, terpenoids, and triterpene saponins | 3000 | Corn-soybean meal based diet | 0–42 d | 4.3 | NS | −3.0 | [59] |
Standardized lipophilic turmeric extract | 3.1% of curcuminoids content and terpenes (turmerones) | 10,000 | NM | 0–42 d | 9.0 | 1.6 | −7.7 | [57] |
EOs | Carvacrol (63.5%), thymol (3.4%) and paracymene (13.1%) | 400 μL | Corn-wheat-soybean meal based diet | 28–43 d | 4.2 | NS | −3.9 | [40] |
Thyme powder | Major EO (thymol (50.48%), γ-terpinene (11.03%), P-cymene (9.77%), and carvacrol (4.30%)), phenolic acids (salicylic acid (2450.03 ppm), ellagic acid (1240.42 ppm)) and flavonoid compounds | 5000 | Corn-soybean meal-based diet | 0–42 d | 4.6 | 3.3 | NS | [87] |
EOs (oregano, anise, and citrus peel; CBP) | Carvacrol: 102 g of the chemical component/kg of CBP | 150 | Corn-soybean meal-based diet | 0–42 d | NS | -5.3 | NS | [88] |
Combination of herbs, spices, EOs and extracts | Mainly EOs from mint, star anise and cloves | 100 | Corn-soybean meal-based diet | 0–42 d | 7.0 | NS | NS | [39] |
EO (powdered and matrix-encapsulated form) | -Powdered: menthol and anethole -Encapsulaed: carvacrol, thymol, and limonene | 150 100 | Corn-wheat-soybean meal based diet | 0–42 d | NS 2.4 | NS NS | NS NS | [44] |
EOs | Oregano containing carvacrol (26.4 mg/kg) or thymol (13 mg/kg) | 300 600 | Corn-soybean meal-based diet | 0–42 d | 7.8 9.6 | 4 8 | NS NS | [41] |
Spices: Nigella sativa seeds | Thymoquinone, dithymo- quinone, thymohydroquinone, nigellone, melanthin, nigilline, nigelamine, damascenone, p-cymene and pinene | 10,000 20,000 | Corn-soybean meal-based diet | 0–35 d | 3 | NS | 5.6 | [52] |
Feed Additive | Major Components | Dose (mg/kg Diet) | Diet | Line and Age | Main Findings | References |
---|---|---|---|---|---|---|
Non-Challenging Conditions | ||||||
Mentha arvensis (MA) and Geranium thunbergii (GT) extracts | MA: menthol, isomenthol, neomenthol, p-cymene, d-menthone, eugenol, and cineol GT: citronellol, isomenthone, and geraniin | 100, 500 and 1000 | Corn-wheat- soybean meal based diet | Hy-Line Brown layers (28–44 weeks) | ↑ FI, egg production and egg weight | [89] |
Fermented pine (Pinus densiflora) needle extract | α-pinene, caryophyllene, beta-pinene and bisbenzene, camphene, borneol, phellandrene, quercetin, kaempferol, and terpene | 2.5 and 5 | Corn-soybean meal-based diet | Hy-Line Brown laying hens (40–46 weeks) | ↑ FI, egg production and egg mass | [90] |
Fermented Schisandra chinensis pomace (SC), fermented Pinus densiflora (PD) needle extract, and Allium tuberosum (AT) powder | SC: lignin PD: phenolics, flavonoids, and tannins AT: organosulfur compounds, polyphenols, and saponins | 1000 and 3000 | Corn-soybean meal-based diet | Hy-line brown laying hens (48–54 weeks) | -=Egg production, daily egg mass and FCR. -↑ FI | [91] |
Dry leaf extract of peppermint (Mentha piperita L.) | Menthol | 0, 74, 148, 222, and 296 | Corn-soybean meal-based diet | Bovans Brown laying hens (32–44 weeks) | ↑ FI, egg production, egg weight and egg mass | [48] |
Citrullus lanatus EOs | Phenolics (1.57 mg/100 g) Sterols (600.56 mg/100 g) Flavonoids (163.5 mg RE/kg) | 1000 and 2000 | Corn-soybean meal-based diet | White Leghorn laying hens (18–26 weeks) | ↑ Weight gain, ADFI, ADG and egg mass; ↓ FCR | [46] |
Tea tree (Melaleuca alternifolia) EO | Terpinen-4-ol (40.0%), γ-Terpinene (23.0%) and α-Terpinene (10.4%) | 40 and 80 | NM | Lohmann Brown hens (55–58 weeks) | ↑ Daily egg production and ↓ FCR | [47] |
Thyme (Thymbra spicata) and Rosemary (Rosemarinus officinalis) | -Thyme: Carvacrol (87.81%), thymol (9.58%), L-Linalool (0.86%), borneol (0.74%) -Rosemary: 1.8 cineole (34.08%), camphor (27.95%), alpha-Pinene (14.50%), borneol l(8.65%), alpha-Terpineol (7.39%), alpha-Thujone (1.09%), camphene (0.55%) | 1000 for each source | Corn-soybean meal-based diet | Bovans-White (48–56 weeks) | -No effects on FCR -↓ Egg production and egg weight | [92] |
Cumin (Cuminum cyminum L.) seed oil | Cuminol, cuminique alcohol, cuminaldehyde, cymine, phellandrene, carvone, cymol, terpenes, α-pinene… | 500 | Corn-soybean meal-based diet | Boven hens (24–30 weeks) | =Egg production rate, egg mass and FI ↓ FCR and ↑ egg weight | [93] |
Eucalyptus leaves | Polyphenols | 500, 800 and 1200 | Corn-soybean meal-based diet | Yueqinhuang laying hens (35–44 weeks) | ↑ Egg production and egg mass | [94] |
Fennel seeds (F), black cumin (BC) seeds and hot red pepper (RP) | F: trans-anethole BC: thymoquinone, anethole, carvacrol and 4-terpinol RP: Capsaicin | 5000 for each | Corn-soybean meal-based diet | Lohmann Brown Lite laying hens (32–40 weeks) | ↑ Egg weight, egg production, egg mass and ↓ FCR by F and RP | [53] |
Green tea | Polyphenols | 200 | Corn-soybean meal-based diet | Hy-line Brown (65–74 weeks) | ↑ Egg production and ↓ FCR | [95] |
EOs | Thymol (13.5%) and cinnamaldehyde (4.5%) | 50, 100 and 150 | Corn-wheat-soybean meal based diet | Lohmann White (54–65 weeks) | =Egg production, egg weight, egg quality, FI and FCR | [65] |
Echinacea purpurea powder | Caffeic acid and alkamids, phenolic acids, polyacetylenes | 2500, 5000, 7500 and 10,000 | Corn-soybean meal-based diet | Leghorn laying hens (43–53 weeks) | ↑ Egg production and egg mass | [96] |
Peppermint EO Thyme EO | -Menthol and menthone -Thymol, γ-Terpinen and ρ-Cymene | 1000 | Corn-soybean meal-based diet | Lohmann LSL-lite (40–48 weeks) | ↑ Egg production and egg mass ↓ FCR | [97] |
Dried grape pomace | Polyphenols | 40,000 and 60,000 | Corn-soybean meal-based diet | Bovans laying hens (80–92 weeks) | =Live weight, feed intake, egg production and feed efficiency | [98] |
Fennel (F) and thyme (T) extracts | F: anethole, limonene T:-Thymol, γ-Terpinen and ρ-Cymene | 40 | Corn-soybean meal-based diet | Hy-Line White (26–38 weeks) | ↑ Egg weight and egg mass | [99] |
Cold stress + Escherichia coli | ||||||
Curcuma longa | Curcumin | 200 | Corn-soybean meal-based diet | Hy-Line Brown laying hens (84–90) | =Egg production, egg mass, feed intake and FCR | [100] |
Cold stress | ||||||
Oregano EO | Carvacrol and thymol | 50, 100, 150 and 200 | Corn-soybean meal-based diet | Semi-heavy laying hens (59–71 weeks) | =FCR, egg production and egg mass | [73] |
Heat stress | ||||||
Grape pomace flour | Polyphenols | 10,000, 20,000 and 30,000 | Corn-soybean meal-based diet | Hy-Line lineage (74–79 weeks) | ↑ FI | [101] |
Feed Additive | Major Components | Dose (mg/kg Diet) | Diet | Line and Age | Main Findings | References |
---|---|---|---|---|---|---|
Grape seed extract | Polyphenols | 100 and 200 | Corn-soybean meal-based diet | Duckling (Pekin- female; 0–6 weeks) | ↑ ADG, and final body weight with ↓ FCR | [102] |
Oregano EO | Carvacrol and thymol (85%) | 100 | Corn-soybean meal-based diet | Duckling (Cherry valley; 0–5 weeks) | =ADG, FCR | [103] |
Eucalyptus (Eucalyptus camaldulensis) | p-cymene, 1, 8-cineole, b-phellandrene, spathulenol, cryptone aldehydes, cuminal, phellandral, and a-phellandrene | 100 and 200 | NM | Laying Japanese quails | =Productive traits | [104] |
Oregano EO | Thymol (5%) and carvacrol (65%) | 150 and 300 | Corn-soybean meal-based diet | Duckling (Cherry valley; 11–42 days) | =Final body weight, ADG, FI, and FCR | [105] |
NM | Thymol | 2000, 4000 and 6250 | NM | Quail (Coturnix japonica; 85–128 days) | =BWG, FI, egg production, and egg weight | [106] |
Leaves of Astragalus membranaceus | Polyphenols (saponins, flavonoids) | 10,000, 30,000 and 50,000 | Corn-soybean meal-based diet | Japanese quail (0–35 days) | ↑ FI, and weight gain | [107] |
Mentha piperita (peppermint) | Phenolic compounds | 10,000, 20,000, 30,000 and 40,000 | Corn-soybean meal-based diet | Quail | =FI and ADG | [108] |
Feed Additive | Major Components | Dose, (mg/kg Diet) | Diet | Age | Treatment Effects (%, Compared to Control) | References | ||
---|---|---|---|---|---|---|---|---|
BW | ADFI/FI | FCR | ||||||
Clostridium perfringens | ||||||||
Herb: Macleaya cordata plant | Four specific alkaloids mainly sanguinarine and protopine | 120 | Corn-soybean meal-based diet | 15–35 d | 12.7 | NS | −14.8 | [109] |
Plant: Macleaya cordata Plant extracts EOs | Benzo [c]phenanthridine alkaloids Carvacrol (4.95 g/100 g), cinnamaldehyde (2.97 g/100 g), and capsaicin (1.98 g/100 g) Thyme and anise, oregano, carvacol, yucca extract and cinnamaldehyde | NM NM NM | Corn-soybean meal-based diet | 15–21 d | NS NS NS | NS NS NS | −8.9 −10.0 −11.6 | [74] |
EO | Thymol (25%) and carvacrol (25%) as active components | 60, 120 and 240 | Wheat-soybean meal-based diet | 14–28 d | NS | NS | NS | [76] |
Eimeria | ||||||||
Herb: Curcuma longa | Curcumin | 100 and 200 | Corn-soybean meal-based diet | 12–20 d | NS | NS | NS | [81] |
EOs: cashew nut shell liquid and castor oil | Cardanol, cardol, and anacardic acid Ricinoleic acid | 1500 | Corn-soybean meal-based diet | 0–42 d | 2.3 | NS | NS | [77] |
Escherichia coli | ||||||||
Resveratrol | Polyphenols | 600 | Corn-soybean meal-based diet | 0–42 d | 6.1 | 2.2 | −3.9 | [84] |
Salmonella typhimurium | ||||||||
Plant: Macleaya cordata | Benzo [c]phenanthridine alkaloids | 5000 | Corn-soybean meal-based diet | 8–15 d | NS | NS | −11.0 | [85] |
Heat-Stress | ||||||||
Plant: Turmeric | Curcumin | 100 | Corn-soybean meal-based diet | 21–42 d | NS | NS | −2.8 | [71] |
Herb: Zingiber officinale | Gingerdiol, gingerol, gingerdione, and shogaols | 2000 | Corn-based diet | 0–42 d | 3.3 | NS | 3.0 | [70] |
Herb: Artemisia annua | Phenolics (44.24 mg GAE/g) and flavonoids (27.8 mg RE/g) | 1000 | NM | 21–42 d | 8.2 | 4.1 | NS | [69] |
Turmeric rhizome powder | Phenolic compounds: curcuminoids | 2000 | Corn-soybean meal-based diet | 0–42 d | 10.6 | NS | 6.9 | [68] |
4.2. Effects of Dietary PFA Supplementation on Digestibility
4.3. Effects of Dietary PFA Supplementation on Intestinal Microbiota
Feed Additive | Major Components | Dose | Duration of Supplementation | Site and Age of Sampling | Main Effects on Microbiota | References |
---|---|---|---|---|---|---|
Green tea leaves (Camellia sinensis) and pomegranate rinds (Punica granatum) | Green tea: catechins Pomegranate: tannins and flavonoids | 2 mL/L in drinking water | From 0 to 4 days, 10, 11, 20, and 21. | Cecum Day 50 | Family: ↑ Lactobacillaceae and Peptococcaceae Genus: ↑ Roseburia and ↓ Shuttleworthia | [123] |
Aerva lanata, Cynodon dactylon, and Piper nigrum (2 kg from each) and Piper betle (2 L.) | Phenolic acid contents (10,176.8 μg/g), Flavonoids (53.0 μg/g), others (220.2 μg/g) | 1 and 2% in the feed | 42 days | Cecum 42 days | ↑ Bifidobacterium | [58] |
EOs | Carvacrol (102 g/kg PFA) | 115 g/kg in the feed | 42 days | Ileum and cecum 42 days | ↑ Cecal Bacteroides, Clostridium cluster IV, and Clostridium cluster XIVa | [124] |
EOs | Carvacrol (20%) and thymol (25%) | 200 (LPE) and 400 (HPE) g/mg in the feed | 42 days | Duodenum, ileum, and cecum 14 and 28 days | -Day 14: ↑ Firmicutes, Bacteroidetes and Thermi in the ileal microbiota of the HPE group ↓ Proteobacteria and Tenericutes, and 10 genera (e.g., Ruminococcus, Faecalibacterium) -Day 28: ↑ Bacteroidetes and Cyanobacteria and three genera (e.g., Alistipes) in the cecal microbiota of the HPE group ↓ Actinobacteria and two genera (Lactobacillus and unclassified Coriobacteriaceae). | [43] |
-Oregano essential oil (OEO) -Commercial blend of phytogenic (CBP) | 5% essential oil of Origanum vulgare subsp. Hirtum plants -Carvacrol (102 g/kg CBP) | 300 and 500 ppm 150 ppm in the feed | 42 days | Ileum 21 days | ↓ Escherichia coli for both OEO and CBP groups compared to the NC. =Lactobacillus | [137] |
EOs | Thymol, eugenol and piperine (29%) | 0.03% in the feed | 35 days | Ileum 35 days | ↑ Lactobacillus counts ↓ Escherichia coli counts | [121] |
Tea polyphenols (TP) | Caffeine (69.8 mg), (–)-EGCG (495 mg), (–)-epicatechin gallate (112 mg), (–)-epicatechin (100 mg), (–)-epigallocatechin (78 mg) and (–)-gallocatechin gallate (96 mg/1000 mg TP) | 0.03, 0.06 and 0.09 kg−1 BW in the feed | 56 days | Ileum mixed with cecum 56 days | ↑ Species of Lactobacillus reuteri, uncultured Bacteroides sp. and L. crispatus | [135] |
EOs | Thymol (25%) and carvacrol (25%) | 120 mg/kg in the feed | 21 days | Ileum 21 days | ↑ Lactobacillus crispatus and Lactobacillus agilis abundance ↓ Lactobacillus salivarius and Lactobacillus johnsonii abundance | [131] |
EOs | Equal mixture of thymol plus carvacrol | 100 and 200 mg/kg in the feed | 42 days | Duodenum, jejunum, and ileum; 24 days | ↑ Lactobacilli counts ↓ Escherichia coli and Clostridium perfringens counts with 200 mg/kg | [120] |
EOs | Thymol (25%) and carvacrol (25%) | 60, 120, and 240 mg/kg in the feed | 28 days | Ileum and cecum; 21 and 28 days | Ileum: ↓ Escherichia populations Cecum: ↓ numbers of total bacteria and Escherichia on day 28 | [130] |
4.4. Effects of Dietary PFA Supplementation on Immunity
4.5. Effects of Dietary PFA Supplementation on Blood Biochemical Parameters and Oxidant Status
4.6. Effects of Dietary PFA Supplementation on Meat, Internal and External Egg Quality
5. Challenges and Prospective of Using PFAs in Animal Nutrition
5.1. Challenges of Using PFAs in Animal Nutrition
5.2. Prospective of PFAs in Animal Nutrition: Combination of EOs with OAs
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ricke, S.C.; Dittoe, D.K.; Richardson, K.E. Formic acid as an antimicrobial for poultry production: A review. Front. Vet. Sci. 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Zhai, H.; Liu, H.; Wang, S.; Wu, J.; Kluenter, A.M. Potential of essential oils for poultry and pigs. Anim. Nutr. 2018, 4, 179–186. [Google Scholar] [CrossRef]
- Al-Khalaifah, H.S. Benefits of probiotics and/or prebiotics for antibiotic-reduced poultry. Poult. Sci. 2018, 97, 3807–3815. [Google Scholar] [CrossRef]
- Ricke, S.C.; Richardson, K.; Dittoe, D.K. Formaldehydes in feed and their potential interaction with the poultry gastrointestinal tract microbial community—A review. Front. Vet. Sci. 2019, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Lin, H.; Jing, Y.; Wang, J. Broad-host-range Salmonella bacteriophage STP4-a and its potential application evaluation in poultry industry. Poult. Sci. 2020, 99, 3643–3654. [Google Scholar] [CrossRef] [PubMed]
- Swain, P.S.; Rao, S.B.N.; Rajendran, D.; Dominic, G.; Selvaraju, S. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim. Nutr. 2016, 2, 134–141. [Google Scholar] [CrossRef]
- Torres-Pitarch, A.; Manzanilla, E.G.; Gardiner, G.E.; O’Doherty, J.V.; Lawlor, P.G. Systematic review and meta-analysis of the effect of feed enzymes on growth and nutrient digestibility in grow-finisher pigs: Effect of enzyme type and cereal source. Anim. Feed Sci. Technol. 2019, 251, 153–165. [Google Scholar] [CrossRef]
- Schneitz, C.; Hakkinen, M. The efficacy of a commercial competitive exclusion product on Campylobacter colonization in broiler chickens in a 5-week pilot-scale study. Poult. Sci. 2016, 95, 1125–1128. [Google Scholar] [CrossRef] [PubMed]
- Celi, P.; Cowieson, A.J.; Fru-Nji, F.; Steinert, R.E.; Kluenter, A.M.; Verlhac, V. Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Anim. Feed Sci. Technol. 2017, 234, 88–100. [Google Scholar] [CrossRef]
- Broom, L.J.; Kogut, M.H. Inflammation: Friend or foe for animal production? Poult. Sci. 2018, 97, 510–514. [Google Scholar] [CrossRef]
- Celi, P.; Verlhac, V.; Pérez Calvo, E.; Schmeisser, J.; Kluenter, A.M. Biomarkers of gastrointestinal functionality in animal nutrition and health. Anim. Feed Sci. Technol. 2019, 250, 9–31. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Qattan, S.Y.A.; Batiha, G.E.; Khafaga, A.F.; Abdel-Moneim, A.M.E.; Alagawany, M. Probiotics in poultry feed: A comprehensive review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1835–1850. [Google Scholar] [CrossRef]
- Kiarie, E.G.; Leung, H.; Akbari Moghaddam Kakhki, R.; Patterson, R.; Barta, J.R. Utility of feed enzymes and yeast derivatives in ameliorating deleterious effects of Coccidiosis on intestinal health and function in broiler chickens. Front. Vet. Sci. 2019, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.A.; Jang, M.J.; Kim, S.Y.; Yang, Y.; Pavlidis, H.O.; Ricke, S.C. Potential for prebiotics as feed additives to limit foodborne Campylobacter establishment in the poultry gastrointestinal tract. Front. Microbiol. 2019, 10, 1–12. [Google Scholar] [CrossRef]
- Hoste, H.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Mueller-Harvey, I.; Sotiraki, S.; Louvandini, H.; Thamsborg, S.M.; Terrill, T.H. Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet. Parasitol. 2015, 212, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Kumar, S.; Oakley, B.; Kim, W.K. Chicken gut microbiota: Importance and detection technology. Front. Vet. Sci. 2018, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ricke, S.C. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci. 2003, 82, 632–639. [Google Scholar] [CrossRef]
- Dibner, J.J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 2005, 84, 634–643. [Google Scholar] [CrossRef]
- Teirlynck, E.; Gussem, M.D.E.; Dewulf, J.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F. Morphometric evaluation of “dysbacteriosis” in broilers. Avian Pathol. 2011, 40, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Vighi, G.; Marcucci, F.; Sensi, L.; Di Cara, G.; Frati, F. Allergy and the gastrointestinal system. Clin. Exp. Immunol. 2008, 153, 3–6. [Google Scholar] [CrossRef]
- Yeoman, C.J.; White, B.A. Gastrointestinal tract microbiota and probiotics in production animals. Annu. Rev. Anim. Biosci. 2014, 2, 469–486. [Google Scholar] [CrossRef] [PubMed]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2008, 86, E140–E148. [Google Scholar] [CrossRef]
- Applegate, T.J.; Klose, V.; Steiner, T.; Ganner, A.; Schatzmayr, G. Probiotics and phytogenics for poultry: Myth or reality? J. Appl. Poult. Res. 2010, 19, 194–210. [Google Scholar] [CrossRef]
- Gadde, U.; Kim, W.H.; Oh, S.T.; Lillehoj, H.S. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Anim. Health Res. Rev. 2017, 18, 26–45. [Google Scholar] [CrossRef]
- Mohammadi Gheisar, M.; Kim, I.H. Phytobiotics in poultry and swine nutrition—A review. Ital. J. Anim. Sci. 2018, 17, 92–99. [Google Scholar] [CrossRef]
- Righi, F.; Pitino, R.; Manuelian, C.L.; Simoni, M.; Quarantelli, A.; De Marchi, M.; Tsiplakou, E. Plant feed additives as natural alternatives to the use of synthetic antioxidant vitamins on poultry performances, health, and oxidative status: A review of the literature in the last 20 years. Antioxidants 2021, 10, 659. [Google Scholar] [CrossRef] [PubMed]
- Yitbarek, M.B. Phytogenics as feed additives in poultry production: A review. Int. J. Extensive Res. 2015, 3, 49–60. [Google Scholar]
- Losa, R. The use of essential oils in animal nutrition. Feed Manuf. Mediterr. Reg. Improv. Saf. Feed Food 2001, 44, 39–44. [Google Scholar]
- Miguel, M.G. Chemical variability of the leaf oil of 113 hybrids from Citrus clementina (Commun)× Citrus deliciosa (Willow leaf). Flavour Fragr. J. 2008, 23, 152–163. [Google Scholar] [CrossRef]
- Bouhaddouda, N.; Aouadi, S.; Labiod, R. Evaluation of chemical composition and biological activities of essential oil and methanolic extract of Origanum vulgare L. ssp. glandulosum (DESF.) Ietswaart from Algeria. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 104–112. [Google Scholar]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Khattak, F.; Ronchi, A.; Castelli, P.; Sparks, N. Effects of natural blend of essential oil on growth performance, blood biochemistry, cecal morphology, and carcass quality of broiler chickens. Poult. Sci. 2014, 93, 132–137. [Google Scholar] [CrossRef]
- Zhang, G.F.; Yang, Z.B.; Wang, Y.; Yang, W.R.; Jiang, S.Z.; Gai, G.S. Effects of ginger root (Zingiber officinale) processed to different particle sizes on growth performance, antioxidant status, and serum metabolites of broiler chickens. Poult. Sci. 2009, 88, 2159–2166. [Google Scholar] [CrossRef]
- Ocak, N.; Erener, G.; Burak Ak, F.; Sungu, M.; Altop, A.; Ozmen, A. Performance of broilers fed diets supplemented with dry peppermint (Mentha piperita L.) or thyme (Thymus vulgaris L.) leaves as growth promoter source. Czech J. Anim. Sci. 2008, 53, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Bozkurt, M.; Küçükyılmaz, K.; Çatlı, A.; Çınar, M. Effect of dietary mannan oligosaccharide with or without oregano essential oil and hop extract supplementation on the performance and slaughter characteristics of male broilers. S. Afr. J. Anim. Sci. 2009, 39, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Jamroz, D.; Wiliczkiewicz, A.; Wertelecki, T.; Orda, J.; Skorupińska, J. Use of active substances of plant origin in chicken diets based on maize and locally grown cereals. Br. Poult. Sci. 2005, 46, 485–493. [Google Scholar] [CrossRef]
- Amad, A.A.; Männer, K.; Wendler, K.R.; Neumann, K.; Zentek, J. Effects of a phytogenic feed additive on growth performance and ileal nutrient digestibility in broiler chickens. Poult. Sci. 2011, 90, 2811–2816. [Google Scholar] [CrossRef]
- van der Aar, P.J.; Molist, F.; van der Klis, J.D. The central role of intestinal health on the effect of feed additives on feed intake in swine and poultry. Anim. Feed Sci. Technol. 2017, 233, 64–75. [Google Scholar] [CrossRef]
- Paraskeuas, V.; Fegeros, K.; Palamidi, I.; Hunger, C.; Mountzouris, K.C. Growth performance, nutrient digestibility, antioxidant capacity, blood biochemical biomarkers and cytokines expression in broiler chickens fed different phytogenic levels. Anim. Nutr. 2017, 3, 114–120. [Google Scholar] [CrossRef]
- Liu, S.D.; Song, M.H.; Yun, W.; Lee, J.H.; Lee, C.H.; Kwak, W.G.; Han, N.S.; Kim, H.B.; Cho, J.H. Effects of oral administration of different dosages of carvacrol essential oils on intestinal barrier function in broilers. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1257–1265. [Google Scholar] [CrossRef]
- Peng, Q.Y.; Li, J.D.; Li, Z.; Duan, Z.Y.; Wu, Y.P. Effects of dietary supplementation with oregano essential oil on growth performance, carcass traits and jejunal morphology in broiler chickens. Anim. Feed Sci. Technol. 2016, 214, 148–153. [Google Scholar] [CrossRef]
- Reis, J.H.; Gebert, R.R.; Barreta, M.; Baldissera, M.D.; dos Santos, I.D.; Wagner, R.; Campigotto, G.; Jaguezeski, A.M.; Gris, A.; de Lima, J.L.F.; et al. Effects of phytogenic feed additive based on thymol, carvacrol and cinnamic aldehyde on body weight, blood parameters and environmental bacteria in broilers chickens. Microb. Pathog. 2018, 125, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Wang, J.; Yu, L.; Zhang, Q.; Chen, K.; Liu, B. Modulation of growth performance and intestinal microbiota in chickens fed plant extracts or virginiamycin. Front. Microbiol. 2019, 10, 1–16. [Google Scholar] [CrossRef]
- Hafeez, A.; Männer, K.; Schieder, C.; Zentek, J. Effect of supplementation of phytogenic feed additives (powdered vs. encapsulated) on performance and nutrient digestibility in broiler chickens. Poult. Sci. 2016, 95, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Wei, J.; Yang, C.; Yang, Z.; Yang, W.; Jiang, S. Effects of star anise (Illicium verum Hook.f.) essential oil on laying performance and antioxidant status of laying hens. Anim. Sci. J. 2018, 90, 3957–3966. [Google Scholar] [CrossRef]
- Marume, U.; Mokagane, J.M.; Shole, C.O.; Hugo, A. Citrullus lanatus essential oils inclusion in diets elicit nutraceutical effects on egg production, egg quality, and physiological characteristics in layer hens. Poult. Sci. 2020, 99, 3038–3046. [Google Scholar] [CrossRef]
- Puvača, N.; Lika, E.; Cocoli, S.; Kika, T.S.; Bursić, V.; Vuković, G.; Simin, M.T.; Petrovic, A.; Cara, M. Use of tea tree essential oil (Melaleuca alternifolia) in laying hen’s nutrition on performance and egg fatty acid profile as a promising sustainable organic agricultural tool. Sustainability 2020, 12, 3420. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Wareth, A.A.A.; Lohakare, J.D. Productive performance, egg quality, nutrients digestibility, and physiological response of bovans brown hens fed various dietary inclusion levels of peppermint oil. Anim. Feed Sci. Technol. 2020, 145, 1–31. [Google Scholar] [CrossRef]
- Karadağoğlu, Ö.; Şahin, T.; Ölmez, M.; Ahsan, U.; Özsoy, B.; Önk, K. Fatty acid composition of liver and breast meat of quails fed diets containing black cumin (Nigella sativa L.) and/or coriander (Coriandrum sativum L.) seeds as unsaturated fatty acid sources. Livest. Sci. 2019, 223, 164–171. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Mahgoub, S.A.; Hussein, M.M.A.; Saadeldin, I.M. Improving growth performance and health status of meat-type quail by supplementing the diet with black cumin cold-pressed oil as a natural alternative for antibiotics. Environ. Sci. Pollut. Res. 2018, 25, 1157–1167. [Google Scholar] [CrossRef]
- Sokrollahi, B.; Sharifi, B. Effect of Nigella sativa seeds on growth performance, blood parameters, carcass quality and antibody production in Japanese quails. J. Livest. Sci. 2018, 9, 56–64. [Google Scholar]
- Rahman, M.M.; Kim, S.J. Effects of dietary Nigella sativa seed supplementation on broiler productive performance, oxidative status and qualitative characteristics of thighs meat. Ital. J. Anim. Sci. 2016, 15, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Abou-Elkhair, R.; Selim, S.; Hussein, E. Effect of supplementing layer hen diet with phytogenic feed additives on laying performance, egg quality, egg lipid peroxidation and blood biochemical constituents. Anim. Nutr. 2018, 4, 394–400. [Google Scholar] [CrossRef]
- Saleh, A.A.; Gawish, E.; Mahmoud, S.F.; Amber, K.; Awad, W.; Alzawqari, M.H.; Shukry, M.; Abdel-Moneim, A.M.E. Effect of natural and chemical colorant supplementation on performance, egg-quality characteristics, yolk fatty-acid profile, and blood constituents in laying hens. Sustainability 2021, 13, 4503. [Google Scholar] [CrossRef]
- Kumar, P.; Patra, A.K. Beneficial uses of black cumin (Nigella sativa L.) seeds as a feed additive in poultry nutrition. Worlds. Poult. Sci. J. 2017, 73, 872–885. [Google Scholar] [CrossRef]
- Hang, T.T.T.; Molee, W.; Khempaka, S.; Paraksa, N. Supplementation with curcuminoids and tuna oil influenced skin yellowness, carcass composition, oxidation status, and meat fatty acids of slow-growing chickens. Poult. Sci. 2018, 97, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Johannah, N.M.; Joseph, A.; Maliakel, B.; Krishnakumar, I.M. Dietary addition of a standardized extract of turmeric (TurmaFEED TM) improves growth performance and carcass quality of broilers. J. Anim. Sci. Technol. 2018, 60, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Oso, A.O.; Suganthi, R.U.; Reddy, G.B.M.; Malik, P.K.; Thirumalaisamy, G.; Awachat, V.B.; Selvaraju, S.; Arangasamy, A.; Bhatta, R. Effect of dietary supplementation with phytogenic blend on growth performance, apparent ileal digestibility of nutrients, intestinal morphology, and cecal microflora of broiler chickens. Poult. Sci. 2019, 98, 4755–4766. [Google Scholar] [CrossRef] [PubMed]
- Shirani, V.; Jazi, V.; Toghyani, M.; Ashayerizadeh, A.; Sharifi, F.; Barekatain, R. Pulicaria gnaphalodes powder in broiler diets: Consequences for performance, gut health, antioxidant enzyme activity, and fatty acid profile. Poult. Sci. 2019, 98, 2577–2587. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kim, I.H. Effects of dietary Achyranthes japonica extract supplementation on the growth performance, total tract digestibility, cecal microflora, excreta noxious gas emission, and meat quality of broiler chickens. Poult. Sci. 2019, 99, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.H.; Attia, A.I.; Reda, F.M.; Abd El-Hack, M.E.; Ismail, I.E. Impacts of dietary supplementation of Boswellia serrata on growth, nutrients digestibility, immunity, antioxidant status, carcase traits and caecum microbiota of broilers. Ital. J. Anim. Sci. 2021, 20, 205–214. [Google Scholar] [CrossRef]
- Herrero-Encinas, J.; Blanch, M.; Pastor, J.J.; Mereu, A.; Ipharraguerre, I.R.; Menoyo, D. Effects of a bioactive olive pomace extract from Olea europaea on growth performance, gut function, and intestinal microbiota in broiler chickens. Poult. Sci. 2020, 99, 2–10. [Google Scholar] [CrossRef]
- Sharma, M.K.; Dinh, T.; Adhikari, P.A. Production performance, egg quality, and small intestine histomorphology of the laying hens supplemented with phytogenic feed additive. J. Appl. Poult. Res. 2020, 29, 362–371. [Google Scholar] [CrossRef]
- Zhang, J.; Na, T.; Jin, Y.; Zhang, X.; Qu, H.; Zhang, Q. Thicker shell eggs with enriched N-3 polyunsaturated fatty acids and lower yolk cholesterol contents, as affected by dietary Nettle (Urtica cannabina) supplementation in laying hens. Animals 2020, 10, 1994. [Google Scholar] [CrossRef]
- Ding, X.; Yu, Y.; Su, Z.; Zhang, K. Effects of essential oils on performance, egg quality, nutrient digestibility and yolk fatty acid profile in laying hens. Anim. Nutr. 2017, 3, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Uerlings, J.; Song, Z.G.; Hu, X.Y.; Wang, S.K.; Lin, H.; Buyse, J.; Everaert, N. Heat exposure affects jejunal tight junction remodeling independently of adenosine monophosphate-activated protein kinase in 9-day-old broiler chicks. Poult. Sci. 2018, 97, 3681–3690. [Google Scholar] [CrossRef] [PubMed]
- Goo, D.; Kim, J.H.; Park, G.H.; Reyes, J.B.D.; Kil, D.Y. Effect of heat stress and stocking density on growth performance, breast meat quality, and intestinal barrier function in broiler chickens. Animals 2019, 9, 107. [Google Scholar] [CrossRef] [Green Version]
- Akhavan-Salamat, H.; Ghasemi, H.A. Alleviation of chronic heat stress in broilers by dietary supplementation of betaine and turmeric rhizome powder: Dynamics of performance, leukocyte profile, humoral immunity, and antioxidant status. Trop. Anim. Health Prod. 2016, 48, 181–188. [Google Scholar] [CrossRef]
- Song, Z.H.; Cheng, K.; Zheng, X.C.; Ahmad, H.; Zhang, L.L.; Wang, T. Effects of dietary supplementation with enzymatically treated Artemisia annua on growth performance, intestinal morphology, digestive enzyme activities, immunity, and antioxidant capacity of heat-stressed broilers. Poult. Sci. 2018, 97, 430–437. [Google Scholar] [CrossRef] [PubMed]
- ur Rehman, Z.; Chand, N.; Khan, R.U. The effect of vitamin E, l-carnitine, and ginger on production traits, immune response, and antioxidant status in two broiler strains exposed to chronic heat stress. Environ. Sci. Pollut. Res. 2017, 24, 26851–26857. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.F.; Bai, K.W.; Su, W.P.; Wang, A.A.; Zhang, L.L.; Huang, K.H.; Wang, T. Curcumin attenuates heat-stress-induced oxidant damage by simultaneous activation of GSH-related antioxidant enzymes and Nrf2-mediated phase II detoxifying enzyme systems in broiler chickens. Poult. Sci. 2018, 97, 1209–1219. [Google Scholar] [CrossRef]
- Oke, O.E.; Oyelola, O.B.; Iyasere, O.S.; Njoku, C.P.; Oso, A.O.; Oso, O.M.; Fatoki, S.T.; Bankole, K.O.; Jimoh, I.O.; Sybill, N.I.; et al. In ovo injection of black cumin (Nigella sativa) extract on hatching and post hatch performance of thermally challenged broiler chickens during incubation. Poult. Sci. 2021, 100, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, M.J.; Boiago, M.M.; Stefani, L.M.; Zampar, A.; Roza, L.F.; Barreta, M.; Arno, A.; Robazza, W.S.; Giuriatti, J.; Galvão, A.C.; et al. Oregano essential oil in the diet of laying hens in winter reduces lipid peroxidation in yolks and increases shelf life in eggs. J. Therm. Biol. 2019, 85, 1–7. [Google Scholar] [CrossRef]
- Abudabos, A.M.; Alyemni, A.H.; Dafalla, Y.M.; Khan, R.U. The effect of phytogenics on growth traits, blood biochemical and intestinal histology in broiler chickens exposed to Clostridium perfringens challenge. J. Appl. Anim. Res. 2018, 46, 691–695. [Google Scholar] [CrossRef] [Green Version]
- Moharreri, M.; Vakili, R.; Oskoueian, E.; Rajabzadeh, G. Phytobiotic role of essential oil-loaded microcapsules in improving the health parameters in Clostridium perfringens -infected broiler chickens. Ital. J. Anim. Sci. 2021, 20, 2075–2085. [Google Scholar] [CrossRef]
- Du, E.; Wang, W.; Gan, L.; Li, Z.; Guo, S.; Guo, Y. Effects of thymol and carvacrol supplementation on intestinal integrity and immune responses of broiler chickens challenged with Clostridium perfringens. J. Anim. Sci. Biotechnol. 2016, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Moraes, P.O.; Cardinal, K.M.; Gouvêa, F.L.; Schroeder, B.; Ceron, M.S.; Lunedo, R.; Frazzon, A.P.G.; Frazzon, J.; Ribeiro, A.M.L. Comparison between a commercial blend of functional oils and monensin on the performance and microbiota of coccidiosis-challenged broilers. Poult. Sci. 2019, 98, 5456–5464. [Google Scholar] [CrossRef]
- Hussein, S.M.; M’Sadeq, S.A.; Beski, S.S.M.; Mahmood, A.L.; Frankel, T.L. Different combinations of peppermint, chamomile and a yeast prebiotic have different impacts on production and severity of intestinal and bursal abnormalities of broilers challenged with coccidiosis. Ital. J. Anim. Sci. 2021, 20, 1924–1934. [Google Scholar] [CrossRef]
- Su, J.-L.; Shi, B.-L.; Zhang, P.-F.; Sun, D.-S.; Li, T.-Y.; Yan, S.-M. Effects of Yucca extract on feed efficiency, immune and antioxidative functions in broilers. Braz. Arch. Biol. Technol. 2016, 59, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Oelschlager, M.L.; Rasheed, M.S.A.; Smith, B.N.; Rincker, M.J.; Dilger, R.N. Effects of Yucca schidigera-derived saponin supplementation during a mixed Eimeria challenge in broilers. Poult. Sci. 2019, 98, 3212–3222. [Google Scholar] [CrossRef]
- Yadav, S.; Teng, P.Y.; Souza dos Santos, T.; Gould, R.L.; Craig, S.W.; Lorraine Fuller, A.; Pazdro, R.; Kim, W.K. The effects of different doses of curcumin compound on growth performance, antioxidant status, and gut health of broiler chickens challenged with Eimeria species. Poult. Sci. 2020, 99, 5936–5945. [Google Scholar] [CrossRef]
- Rajput, N.; Muhammad, N.; Yan, R.; Zhong, X.; Wang, T. Effect of dietary supplementation of curcumin on growth performance, intestinal morphology and nutrients utilization of broiler chicks. J. Poult. Sci. 2013, 50, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, X.; Ou, S.; Arowolo, M.A.; Hou, D.X.; He, J. Effects of Achyranthes bidentata polysaccharides on intestinal morphology, immune response, and gut microbiome in yellow broiler chickens challenged with Escherichia coli K88. Polymers 2018, 10, 1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohebodini, H.; Jazi, V.; Bakhshalinejad, R.; Shabani, A.; Ashayerizadeh, A. Effect of dietary resveratrol supplementation on growth performance, immune response, serum biochemical indices, cecal microflora, and intestinal morphology of broiler chickens challenged with Escherichia coli. Livest. Sci. 2019, 229, 13–21. [Google Scholar] [CrossRef]
- Abudabos, A.M.; Alyemni, A.H.; Dafalla, Y.M.; Khan, R.U. The effect of phytogenic feed additives to substitute in-feed antibiotics on growth traits and blood biochemical parameters in broiler chicks challenged with Salmonella typhimurium. Environ. Sci. Pollut. Res. 2016, 23, 24151–24157. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Mansbridge, S.C.; Rose, S.P.; Lillehoj, H.S.; Bravo, D. Immune modulation, growth performance, and nutrient retention in broiler chickens fed a blend of phytogenic feed additives. Poult. Sci. 2019, 98, 3443–3449. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F.A.M.; Awad, A. Impact of thyme powder (Thymus vulgaris L.) supplementation on gene expression profiles of cytokines and economic efficiency of broiler diets. Environ. Sci. Pollut. Res. 2017, 24, 15816–15826. [Google Scholar] [CrossRef]
- Mohiti-Asli, M.; Ghanaatparast-Rashti, M. Comparison of the effect of two phytogenic compounds on growth performance and immune response of broilers. J. Appl. Anim. Res. 2017, 45, 603–608. [Google Scholar] [CrossRef] [Green Version]
- Dilawar, M.A.; Mun, H.S.; Rathnayake, D.; Yang, E.J.; Seo, Y.S.; Park, H.S.; Yang, C.J. Egg quality parameters, production performance and immunity of laying hens supplemented with plant extracts. Animals 2021, 11, 975. [Google Scholar] [CrossRef]
- Kothari, D.; Oh, J.S.; Kim, J.H.; Lee, W.D.; Kim, S.K. Effect of dietary supplementation of fermented pine needle extract on productive performance, egg quality, and serum lipid parameters in laying hens. Animals 2021, 11, 1475. [Google Scholar] [CrossRef]
- Moon, S.G.; Lee, S.K.; Do Lee, W.; Niu, K.M.; Hwang, W.U.; Oh, J.S.; Kothari, D.; Kim, S.K. Effect of dietary supplementation of a phytogenic blend containing Schisandra chinensis, Pinus densiflora, and Allium tuberosum on productivity, egg quality, and health parameters in laying hens. Anim. Biosci. 2021, 34, 285–294. [Google Scholar] [CrossRef]
- Cimrin, T. Thyme (Thymbra spicata L.), rosemary (Rosmarinus officinalis L.) and vitamin E supplementation of laying hens. S. Afr. J. Anim. Sci. 2019, 49, 914–919. [Google Scholar] [CrossRef] [Green Version]
- Saleh, A.A.; Kirrella, A.A.; Dawood, M.A.O.; Ebeid, T.A. Effect of dietary inclusion of cumin seed oil on the performance, egg quality, immune response and ovarian development in laying hens under high ambient temperature. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1810–1817. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.; Li, W.; Miao, J.; Chen, N.; Shao, X.; Cao, Y. Polyphenols in Eucalyptus leaves improved the egg and meat qualities and protected against ethanol-induced oxidative damage in laying hens. J. Anim. Physiol. Anim. Nutr. 2018, 102, 214–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.C.; Wang, X.H.; Wang, J.; Wang, H.; Zhang, H.J.; Wu, S.G.; Qi, G.H. Dietary tea polyphenol supplementation improved egg production performance, albumen quality, and magnum morphology of hy-line brown hens during the late laying period1. J. Anim. Sci. 2018, 96, 225–235. [Google Scholar] [CrossRef]
- Jahanian, E.; Jahanian, R.; Rahmani, H.R.; Alikhani, M. Dietary supplementation of Echinacea purpurea powder improved performance, serum lipid profile, and yolk oxidative stability in laying hens. J. Appl. Anim. Res. 2017, 45, 45–51. [Google Scholar] [CrossRef]
- Akbari, M.; Torki, M.; Kaviani, K. Single and combined effects of peppermint and thyme essential oils on productive performance, egg quality traits, and blood parameters of laying hens reared under cold stress condition (6.8 ± 3 °C). Int. J. Biometeorol. 2016, 60, 447–454. [Google Scholar] [CrossRef]
- Kara, K.; Kocaoğlu Güçlü, B.; Baytok, E.; Şentürk, M. Effects of grape pomace supplementation to laying hen diet on performance, egg quality, egg lipid peroxidation and some biochemical parameters. J. Appl. Anim. Res. 2016, 44, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Vakili, R.; Majidzadeh Heravi, R. Performance and egg quality of laying hens fed diets supplemented with herbal extracts and flaxseed. Poult. Sci. J. 2016, 4, 107–116. [Google Scholar] [CrossRef]
- da Rosa, G.; Dazuk, V.; Alba, D.F.; Galli, G.M.; Molosse, V.; Boiago, M.M.; Souza, C.F.; Abbad, L.B.; Baldissera, M.D.; Stefani, L.M.; et al. Curcumin addition in diet of laying hens under cold stress has antioxidant and antimicrobial effects and improves bird health and egg quality. J. Therm. Biol. 2020, 91, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.H.; Gebert, R.R.; Barreta, M.; Boiago, M.M.; Souza, C.F.; Baldissera, M.D.; Santos, I.D.; Wagner, R.; Laporta, L.V.; Stefani, L.M.; et al. Addition of grape pomace flour in the diet on laying hens in heat stress: Impacts on health and performance as well as the fatty acid profile and total antioxidant capacity in the egg. J. Therm. Biol. 2019, 80, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Ao, X.; Kim, I.H. Effects of grape seed extract on performance, immunity, antioxidant capacity, and meat quality in Pekin ducks. Poult. Sci. 2020, 99, 2078–2086. [Google Scholar] [CrossRef]
- Ding, X.; Wu, X.; Zhang, K.; Bai, S.; Wang, J.; Peng, H.W.; Xuan, Y.; Su, Z.; Zeng, Q. Dietary supplement of essential oil from oregano affects growth performance, nutrient utilization, intestinal morphology and antioxidant ability in Pekin ducks. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Fathi, M.M.; Al-Homidan, I.; Ebeid, T.A.; Abou-Emera, O.K.; Mostafa, M.M. Dietary supplementation of Eucalyptus leaves enhances eggshell quality and immune response in two varieties of Japanese quails under tropical condition. Poult. Sci. 2020, 99, 879–885. [Google Scholar] [CrossRef]
- Abouelezz, K.; Abou-Hadied, M.; Yuan, J.; Elokil, A.A.; Wang, G.; Wang, S.; Wang, J.; Bian, G. Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks. Animal 2019, 13, 2216–2222. [Google Scholar] [CrossRef]
- Fernandez, M.E.; Kembro, J.M.; Ballesteros, M.L.; Caliva, J.M.; Marin, R.H.; Labaque, M.C. Dynamics of thymol dietary supplementation in quail (Coturnix japonica): Linking bioavailability, effects on egg yolk total fatty acids and performance traits. PLoS ONE 2019, 14, e0216623. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Hua, J.; Luan, Z.; Xue, P.; Zhou, S.; Wang, X.; Qin, N. Effects of the stems and leaves of Astragalus membranaceus on growth performance, immunological parameters, antioxidant status, and intestinal bacteria of quail. Anim. Sci. J. 2019, 90, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Mehri, M.; Sabaghi, V.; Bagherzadeh-Kasmani, F. Mentha piperita (peppermint) in growing Japanese quails diet: Performance, carcass attributes, morphology and microbial populations of intestine. Anim. Feed Sci. Technol. 2015, 207, 104–111. [Google Scholar] [CrossRef]
- Hussein, E.O.S.; Ahmed, S.H.; Abudabos, A.M.; Suliman, G.M.; Abd El-Hack, M.E.; Swelum, A.A.; Alowaimer, A.N. Ameliorative effects of antibiotic-, probiotic-and phytobiotic-supplemented diets on the performance, intestinal health, carcass traits, and meat quality of clostridium perfringens-infected broilers. Animals 2020, 10, 669. [Google Scholar] [CrossRef] [Green Version]
- Leskovec, J.; Levart, A.; Žgur, S.; Jordan, D.; Pirman, T.; Salobir, J.; Rezar, V. Effects of olive leaf and marigold extracts on the utilization of nutrients and on bone mineralization using two different oil sources in broilers. J. Poult. Sci. 2018, 55, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Pirgozliev, V.; Bravo, D.; Mirza, M.W.; Rose, S.P. Growth performance and endogenous losses of broilers fed wheat-based diets with and without essential oils and xylanase supplementation. Poult. Sci. 2015, 94, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, G.R.; Syed, B.; Haldar, S.; Pender, C. Phytogenic feed additives as an alternative to antibiotic growth promoters in broiler chickens. Front. Vet. Sci. 2015, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gheisar, M.M.; Im, Y.W.; Lee, H.H.; Choi, Y.I.; Kim, I.H. Inclusion of phytogenic blends in different nutrient density diets of meat-type ducks. Poult. Sci. 2015, 94, 2952–2958. [Google Scholar] [CrossRef]
- Reyer, H.; Zentek, J.; Männer, K.; Youssef, I.M.I.; Aumiller, T.; Weghuber, J.; Wimmers, K.; Mueller, A.S. Possible molecular mechanisms by which an essential oil blend from star anise, rosemary, thyme, and oregano and saponins increase the performance and ileal protein digestibility of growing broilers. J. Agric. Food Chem. 2017, 65, 6821–6830. [Google Scholar] [CrossRef]
- Kers, J.G.; Velkers, F.C.; Fischer, E.A.J.; Hermes, G.D.A.; Stegeman, J.A.; Smidt, H. Host and environmental factors affecting the intestinal microbiota in chickens. Front. Microbiol. 2018, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mountzouris, K.C.; Paraskevas, V.; Tsirtsikos, P.; Palamidi, I.; Steiner, T.; Schatzmayr, G.; Fegeros, K. Assessment of a phytogenic feed additive effect on broiler growth performance, nutrient digestibility and caecal microflora composition. Anim. Feed Sci. Technol. 2011, 168, 223–231. [Google Scholar] [CrossRef]
- Cross, D.E.; McDevitt, R.M.; Hillman, K.; Acamovic, T. The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age. Br. Poult. Sci. 2007, 48, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Kirkpinar, F.; Ünlü, H.B.; Özdemir, G. Effects of oregano and garlic essential oils on performance, carcase, organ and blood characteristics and intestinal microflora of broilers. Livest. Sci. 2011, 137, 219–225. [Google Scholar] [CrossRef]
- Hashemipour, H.; Kermanshahi, H.; Golian, A.; Raji, A. Effect of antibiotic alternatives on ileal microflora and intestinal histomorphology of broiler chickens fed wheat based diet. Iran. J. Appl. Anim. Sci. 2014, 4, 135–142. [Google Scholar]
- Hashemipour, H.; Khaksar, V.; Rubio, L.A.; Veldkamp, T.; van Krimpen, M.M. Effect of feed supplementation with a thymol plus carvacrol mixture, in combination or not with an NSP-degrading enzyme, on productive and physiological parameters of broilers fed on wheat-based diets. Anim. Feed Sci. Technol. 2016, 211, 117–131. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, I.H. Effects of a protease and essential oils on growth performance, blood cell profiles, nutrient retention, ileal microbiota, excreta gas emission, and breast meat quality in broiler chicks. Poult. Sci. 2018, 97, 2854–2860. [Google Scholar] [CrossRef]
- Chen, Y.; Ni, J.; Li, H. Effect of green tea and mulberry leaf powders on the gut microbiota of chicken. BMC Vet. Res. 2019, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Perricone, V.; Comi, M.; Giromini, C.; Rebucci, R.; Agazzi, A.; Savoini, G.; Bontempo, V. Green tea and pomegranate extract administered during critical moments of the production cycle improves blood antiradical activity and alters cecal microbial ecology of broiler chickens. Animals 2020, 10, 785. [Google Scholar] [CrossRef] [PubMed]
- Paraskeuas, V.V.; Mountzouris, K.C. Modulation of broiler gut microbiota and gene expression of Toll-like receptors and tight junction proteins by diet type and inclusion of phytogenics. Poult. Sci. 2019, 98, 2220–2230. [Google Scholar] [CrossRef]
- Saeed, M.; Xu, Y.; Zhang, T.; Ren, Q.; Sun, C. 16S ribosomal RNA sequencing reveals a modulation of intestinal microbiome and immune response by dietary L-theanine supplementation in broiler chickens. Poult. Sci. 2019, 98, 842–854. [Google Scholar] [CrossRef]
- Lan, Y.; Verstegen, M.W.A.; Tamminga, S.; Williams, B.A. The role of the commensal gut microbial community in broiler chickens. Worlds Poult. Sci. J. 2005, 61, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Lopetuso, L.R.; Scaldaferri, F.; Petito, V.; Gasbarrini, A. Commensal Clostridia: Leading players in the maintenance of gut homeostasis. Gut Pathog. 2013, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Lu, M.; Wang, J.; Zhang, H.; Qiu, K.; Qi, G.; Wu, S. Dietary oregano essential oil supplementation improves intestinal functions and alters gut microbiota in late-phase laying hens. J. Anim. Sci. Biotechnol. 2021, 12, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Placha, I.; Takacova, J.; Ryzner, M.; Cobanova, K.; Laukova, A.; Strompfova, V.; Venglovska, K.; Faix, S. Effect of thyme essential oil and selenium on intestine integrity and antioxidant status of broilers. Br. Poult. Sci. 2014, 55, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Du, E.; Gan, L.; Li, Z.; Wang, W.; Liu, D.; Guo, Y. In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens. J. Anim. Sci. Biotechnol. 2015, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yin, D.; Du, E.; Yuan, J.; Gao, J.; Wang, Y.L.; Aggrey, S.E.; Guo, Y. Supplemental thymol and carvacrol increases ileum Lactobacillus population and reduces effect of necrotic enteritis caused by Clostridium perfringes in chickens. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Shipitsyna, E.; Roos, A.; Datcu, R.; Hallén, A.; Fredlund, H.; Jensen, J.S.; Engstrand, L.; Unemo, M. Composition of the vaginal microbiota in women of reproductive age—Sensitive and specific molecular diagnosis of bacterial vaginosis is possible? PLoS ONE 2013, 8, e60670. [Google Scholar] [CrossRef] [Green Version]
- Gudiña, E.J.; Fernandes, E.C.; Teixeira, J.A.; Rodrigues, L.R. Antimicrobial and anti-adhesive activities of cell-bound biosurfactant from Lactobacillus agilis CCUG31450. RSC Adv. 2015, 5, 90960–90968. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.H. The use of green tea (Camellia sinensis) as a phytogenic substance in poultry diets. Onderstepoort J. Vet. Res. 2014, 81, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Xiao, R.; Li, H.; Liu, T.; Liao, Y.; Wang, Y.; Wu, S.; Li, Z. Effect of a novel strain of Lactobacillus brevis M8 and tea polyphenol diets on performance, meat quality and intestinal microbiota in broilers. Ital. J. Anim. Sci. 2018, 17, 396–407. [Google Scholar] [CrossRef] [Green Version]
- Muir, W.I.; Bryden, W.L.; Husband, A.J. Immunity, vaccination and the avian intestinal tract. Dev. Comp. Immunol. 2000, 24, 325–342. [Google Scholar] [CrossRef]
- Mohiti-asli, M.; Ghanaatparast-rashti, M. Comparing the effects of a combined phytogenic feed additive with an individual essential oil of oregano on intestinal morphology and microflora in broilers. J. Appl. Anim. Res. 2018, 46, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Lillehoj, H.; Liu, Y.; Calsamiglia, S.; Miyakawa, M.E.F.; Chi, F.; Cravens, R.L.; Oh, S.; Gay, C.G. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet. Res. 2018, 49, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Lillehoj, H.S.; Chun, H.K.; Tuo, W.; Park, H.J.; Cho, S.M.; Lee, Y.M.; Lillehoj, E.P. In vitro treatment of chicken peripheral blood lymphocytes, macrophages, and tumor cells with extracts of Korean medicinal plants. Nutr. Res. 2007, 27, 362–366. [Google Scholar] [CrossRef]
- Lee, S.H.; Lillehoj, H.S.; Hong, Y.H.; Jang, S.I.; Lillehoj, E.P.; Ionescu, C.; Mazuranok, L.; Bravo, D. In vitro effects of plant and mushroom extracts on immunological function of chicken lymphocytes and macrophages. Br. Poult. Sci. 2010, 51, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Ciraci, C.; Redmond, S.B.; Chuammitri, P.; Andreasen, C.B.; Palić, D.; Lamont, S.J. Immune response gene expression in spleens of diverse chicken lines fed dietary immunomodulators. Poult. Sci. 2011, 90, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Lillehoj, H.S.; Lee, S.H.; Jang, S.I.; Bravo, D. High-throughput gene expression analysis of intestinal intraepithelial lymphocytes after oral feeding of carvacrol, cinnamaldehyde, or Capsicum oleoresin. Poult. Sci. 2010, 89, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Lillehoj, H.S. Recent Progress in Understanding Host Mucosal Response to Avian Coccidiosis and development of alternative strategies to mitigate the use of antibiotics in poultry production. Korean J. Poult. Sci. 2011, 38, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Galli, G.M.; Gerbet, R.R.; Griss, L.G.; Fortuoso, B.F.; Petrolli, T.G.; Boiago, M.M.; Souza, C.F.; Baldissera, M.D.; Mesadri, J.; Wagner, R.; et al. Combination of herbal components (curcumin, carvacrol, thymol, cinnamaldehyde) in broiler chicken feed: Impacts on response parameters, performance, fatty acid profiles, meat quality and control of coccidia and bacteria. Microb. Pathog. 2020, 139, 1–11. [Google Scholar] [CrossRef]
- El-Shall, N.A.; Shewita, R.S.; Abd El-Hack, M.E.; AlKahtane, A.; Alarifi, S.; Alkahtani, S.; Abdel-Daim, M.M.; Sedeik, M.E. Effect of essential oils on the immune response to some viral vaccines in broiler chickens, with special reference to Newcastle disease virus. Poult. Sci. 2020, 29, 2944–2954. [Google Scholar] [CrossRef] [PubMed]
- Moraes, P.O.; Andretta, I.; Cardinal, K.M.; Ceron, M.; Vilella, L.; Borille, R.; Frazzon, A.P.; Frazzon, J.; Santin, E.; Ribeiro, A.M.L. Effect of functional oils on the immune response of broilers challenged with Eimeria spp. Animal 2019, 13, 2190–2198. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mandal, G.P.; Patra, A.K.; Kumar, P.; Samanta, I.; Pradhan, S.; Samanta, A.K. Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes. Anim. Feed Sci. Technol. 2018, 236, 39–47. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, S.; Gadde, U.D.; Oh, S.; Lee, S.; Lillehoj, H.S. Dietary Allium hookeri reduces inflammatory response and increases expression of intestinal tight junction proteins in LPS-induced young broiler chicken. Res. Vet. Sci. 2017, 112, 149–155. [Google Scholar] [CrossRef]
- El-GhAffAr GAlAl, A.A.A.; el-ArAby, I.E.-S.; Hassanin, O.; Omar, A.E.-S. Positive impact of oregano essential oil on growth performance, humoral immune responses and chicken interferon alpha signalling pathway in broilers. Adv. Anim. Vet. Sci. 2016, 4, 57–65. [Google Scholar] [CrossRef]
- Lee, S.H.; Lillehoj, H.S.; Jang, S.I.; Lillehoj, E.P.; Min, W.; Bravo, D.M. Dietary supplementation of young broiler chickens with Capsicum and turmeric oleoresins increases resistance to necrotic enteritis. Br. J. Nutr. 2013, 110, 840–847. [Google Scholar] [CrossRef] [Green Version]
- Ulmer-Franco, A.M.; Cherian, G.; Quezada, N.; Fasenko, G.M.; McMullen, L.M. Hatching egg and newly hatched chick yolk sac total IgY content at 3 broiler breeder flock ages. Poult. Sci. 2012, 91, 758–764. [Google Scholar] [CrossRef]
- Sadeghi, G.H.; Karimi, A.; Padidar Jahromi, S.H.; Azizi, T.; Daneshmand, A. Effects of cinnamon, thyme and turmeric infusions on the performance and immune response in of 1- to 21-day-old male broilers. Braz. J. Poult. Sci. 2012, 14, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Toghyani, M.; Toghyani, M.; Gheisari, A.; Ghalamkari, G.; Eghbalsaied, S. Evaluation of cinnamon and garlic as antibiotic growth promoter substitutions on performance, immune responses, serum biochemical and haematological parameters in broiler chicks. Livest. Sci. 2011, 138, 167–173. [Google Scholar] [CrossRef]
- Mehr, M.A.; Hassanabadi, A.; Moghaddam, H.N.; Kermanshahi, H. Supplementation of clove essential oils and probiotic on blood components, lymphoid organs and immune response in broiler chickens. Res. Opin. Anim. Vet. Sci. 2014, 4, 218–223. [Google Scholar]
- Hong, J.-C.; Steiner, T.; Aufy, A.; Lien, T.-F. Effects of supplemental essential oil on growth performance, lipid metabolites and immunity, intestinal characteristics, microbiota and carcass traits in broilers. Livest. Sci. 2012, 144, 253–262. [Google Scholar] [CrossRef]
- Eladl, A.H.; Arafat, N.; El-Shafei, R.A.; Farag, V.M.; Saleh, R.M.; Awadin, W.F. Comparative immune response and pathogenicity of the H9N2 avian influenza virus after administration of Immulant®, based on Echinacea and Nigella sativa, in stressed chickens. Comp. Immunol. Microbiol. Infect. Dis. 2019, 65, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Swamy, S.M.K.; Tan, B.K.H. Cytotoxic and immunopotentiating effects of ethanolic extract of Nigella sativa L. seeds. J. Ethnopharmacol. 2000, 70, 1–7. [Google Scholar] [CrossRef]
- Ghasemi, H.A.; Kasani, N.; Taherpour, K. Effects of black cumin seed (Nigella sativa L.), a probiotic, a prebiotic and a synbiotic on growth performance, immune response and blood characteristics of male broilers. Livest. Sci. 2014, 164, 128–134. [Google Scholar] [CrossRef]
- Toghyani, M.; Toghyani, M.; Shivazad, M.; Gheisari, A.; Bahadoran, R. Chromium supplementation can alleviate the negative effects of heat stress on growth performance, carcass traits, and meat lipid oxidation of broiler chicks without any adverse impacts on blood constituents. Biol. Trace Elem. Res. 2012, 146, 171–180. [Google Scholar] [CrossRef]
- Yarmohammadi Barbarestani, S.; Jazi, V.; Mohebodini, H.; Ashayerizadeh, A.; Shabani, A.; Toghyani, M. Effects of dietary lavender essential oil on growth performance, intestinal function, and antioxidant status of broiler chickens. Livest. Sci. 2020, 233, 1–7. [Google Scholar] [CrossRef]
- Paraskeuas, V.; Fegeros, K.; Palamidi, I.; Theodoropoulos, G.; Mountzouris, K.C. Phytogenic administration and reduction of dietary energy and protein levels affects growth performance, nutrient digestibility and antioxidant status of broilers. J. Poult. Sci. 2016, 53, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, A.; Mahdavi, A.H.; Riasi, A.; Soltani-Ghombavani, M. Synergetic effects of essential oils mixture improved egg quality traits, oxidative stability and liver health indices in laying hens fed fish oil. Anim. Feed Sci. Technol. 2017, 234, 162–172. [Google Scholar] [CrossRef]
- Torki, M.; Sedgh-Gooya, S.; Mohammadi, H. Effects of adding essential oils of rosemary, dill and chicory extract to diets on performance, egg quality and some blood parameters of laying hens subjected to heat stress. J. Appl. Anim. Res. 2018, 46, 1118–1126. [Google Scholar] [CrossRef] [Green Version]
- Ciftci, M.; Simsek, U.G.; Yuce, A.; Yilmaz, O.; Dalkilic, B. Effects of dietary antibiotic and cinnamon oil supplementation on antioxidant enzyme activities, cholesterol levels and fatty acid compositions of serum and meat in broiler chickens. Acta Vet. Brno 2010, 79, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Hoffman-Pennesi, D.; Wu, C. The effect of thymol and thyme oil feed supplementation on growth performance, serum antioxidant levels, and cecal Salmonella population in broilers. J. Appl. Poult. Res. 2010, 19, 432–443. [Google Scholar] [CrossRef]
- Polat, U.; Yesilbag, D.; Eren, M. Serum biochemical profile of broiler chickens fed diets containing rosemary and rosemary volatile oil. J. Biol. Environ. Sci. 2011, 5, 23–30. [Google Scholar] [CrossRef]
- Kamkar, A.; Javan, A.J.; Asadi, F.; Kamalinejad, M. The antioxidative effect of Iranian Mentha pulegium extracts and essential oil in sunflower oil. Food Chem. Toxicol. 2010, 48, 1796–1800. [Google Scholar] [CrossRef]
- Kim, D.K.; Lillehoj, H.S.; Lee, S.H.; Jang, S.I.; Park, M.S.; Min, W.; Lillehoj, E.P.; Bravo, D. Immune effects of dietary anethole on Eimeria acervulina infection. Poult. Sci. 2013, 92, 2625–2634. [Google Scholar] [CrossRef]
- Su, G.; Zhou, X.; Wang, Y.; Chen, D.; Chen, G.; Li, Y.; He, J. Effects of plant essential oil supplementation on growth performance, immune function and antioxidant activities in weaned pigs. Lipids Health Dis. 2018, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.T.; Islam, M.M.; Bostami, A.B.M.R.; Mun, H.S.; Kim, Y.J.; Yang, C.J. Meat composition, fatty acid profile and oxidative stability of meat from broilers supplemented with pomegranate (Punica granatum L.) by-products. Food Chem. 2015, 188, 481–488. [Google Scholar] [CrossRef]
- Starčević, K.; Krstulović, L.; Brozić, D.; Maurić, M.; Stojević, Z.; Mikulec, Ž.; Bajić, M.; Mašek, T. Production performance, meat composition and oxidative susceptibility in broiler chicken fed with different phenolic compounds. J. Sci. Food Agric. 2014, 95, 1172–1178. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Chowdhury, M.A.K.; Hou, Y.; Gong, J. Phytogenic compounds as alternatives to in-feed antibiotics: Potentials and challenges in application. Pathogens 2015, 4, 137–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevanović, Z.D.; Bošnjak-Neumüller, J.; Pajić-Lijaković, I.; Raj, J.; Vasiljević, M. Essential oils as feed additives—Future perspectives. Molecules 2018, 23, 1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchemin, K.A.; McGinn, S.M. Effects of various feed additives on the methane emissions from beef cattle. Int. Congr. Ser. 2006, 1293, 152–155. [Google Scholar] [CrossRef]
- de Oliveira, E.F.; Paula, H.C.B.; de Paula, R.C.M. Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids Surf. B Biointerfaces 2014, 113, 146–151. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Micciche, A.; Rothrock, M.J., Jr.; Yang, Y.; Ricke, S.C. Essential oils as an intervention strategy to reduce Campylobacter in poultry production: A review. Front. Microbiol. 2019, 10, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Bassolé, I.H.N.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef] [Green Version]
- Foskolos, A.; Ferret, A.; Siurana, A.; Castillejos, L.; Calsamiglia, S. Effects of capsicum and propyl-propane thiosulfonate on rumen fermentation, digestion, and milk production and composition in dairy cows. Animals 2020, 10, 859. [Google Scholar] [CrossRef]
- Soltan, Y.A.; Natel, A.S.; Araujo, R.C.; Morsy, A.S.; Abdalla, A.L. Progressive adaptation of sheep to a microencapsulated blend of essential oils: Ruminal fermentation, methane emission, nutrient digestibility, and microbial protein synthesis. Anim. Feed Sci. Technol. 2018, 237, 8–18. [Google Scholar] [CrossRef]
- Pham, V.H.; Kan, L.; Huang, J.; Geng, Y.; Zhen, W.; Guo, Y.; Abbas, W.; Wang, Z. Dietary encapsulated essential oils and organic acids mixture improves gut health in broiler chickens challenged with necrotic enteritis. J. Anim. Sci. Biotechnol. 2020, 11, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanello, C.; Rosa, D.P.; Dalmoro, Y.K.; Segatto, A.L.; Vieira, M.S.; Moraes, M.L.; Santin, E. Protected blend of organic acids and essential oils improves growth performance, nutrient digestibility, and intestinal health of broiler chickens undergoing an intestinal challenge. Front. Vet. Sci. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, B.S.M. The efficacy of grape seed extract, citric acid and lactic acid on the inactivation of Vibrio parahaemolyticus in shucked oysters. Food Control 2014, 41, 13–16. [Google Scholar] [CrossRef]
- Feye, K.M.; Swaggerty, C.L.; Kogut, M.H.; Ricke, S.C.; Piva, A.; Grilli, E. The biological effects of microencapsulated organic acids and botanicals induces tissue-specific and dose-dependent changes to the Gallus gallus microbiota. BMC Microbiol. 2020, 20, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Stamilla, A.; Messina, A.; Sallemi, S.; Condorelli, L.; Antoci, F.; Puleio, R.; Loria, G.R.; Cascone, G.; Lanza, M. Effects of microencapsulated blends of organics acids (OA) and essential oils (EO) as a feed additive for broiler chicken. A focus on growth performance, gut morphology and microbiology. Animals 2020, 10, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaggerty, C.L.; He, H.; Genovese, K.J.; Callaway, T.R.; Kogut, M.H.; Piva, A.; Grilli, E. A microencapsulated feed additive containing organic acids, thymol, and vanillin increases in vitro functional activity of peripheral blood leukocytes from broiler chicks. Poult. Sci. 2020, 99, 3428–3436. [Google Scholar] [CrossRef]
- Wang, H.; Liang, S.; Li, X.; Yang, X.; Long, F.; Yang, X. Effects of encapsulated essential oils and organic acids on laying performance, egg quality, intestinal morphology, barrier function, and microflora count of hens during the early laying period. Poult. Sci. 2019, 98, 6751–6760. [Google Scholar] [CrossRef]
- Booth, I.R. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 1985, 49, 359–378. [Google Scholar] [CrossRef]
Feed Additive | Major Components | Dose, (mg/kg Diet) | Experimental Conditions | Immune Response | References |
---|---|---|---|---|---|
Curcumin EOs (PHY) | Curcumin (72%; CU) carvacrol (21.55 mg/g), thymol (18.76 mg/g) and cinnamaldehyde (27.62 mg/g) of PHY | 50 100 | Corn-soybean meal-based diet | ↓ Total leukocyte and heterophils number in the CU and PHY + CU groups, ↓ lymphocytes in the CU group | [144] |
EOs | Oregano oil (50 g), carvacrol (10 g), thyme oil (33.33 g), eucalyptus oil (50 g), thymol (5 g), eucalyptol(10 g), and acacia (Arabic gum) surfactant (27 g) in water up to 1 L | 500 | Challenge with virulent Newcastle disease virus+ vaccin against Newcastle disease (ND), the avian influenza (AI), infectious bronchitis (IB), and infectious bursal disease (IBD) | ↓ Hemagglutination inhibition and viral shedding titres 1 wk after challenge ↑ ELISA antibody titre for IBD virus at the 28th d of age | [145] |
Resveratrol | Polyphenols | 300 and 600 | Corn-soybean meal-based diet and chickens challenged with Escherichia coli | ↑ Total Ig and IgG at d22 and total Ig and IgM at d 35 | [84] |
Cashew nut shell liquid and castor oil | Cardanol, cardol, and anacardic acid Ricinoleic acid | 1500 | Broilers challenged with Eimeria spp. | ↑ Gene expression of TNF-α, IL-6 and IFN-γ and ↓ expression of IL-1 and COX-2 | [146] |
Yucca schidigera | Saponins | 250 | Corn-soybean meal-based diet Mixed Eimeria challenge | =Lymphocyte percentages to that of unchallenged birds on d7 p.i | [80] |
EOs | Carvacrol (5%), cinnamaldehyde (3%), and capsicum oleoresin (2%) | 100 | Two control diets based on either wheat or maize | ↓ CD40LG, IFN-γ and IL-6. | [86] |
EOs | Cinnamon bark oil (CNO) Clove bud oil (CLO) Ajwain seed oil (AJO) | 300 600 400 | Corn-soybean meal-based diet. Broilers vaccinated against NDV at 5 and 18 d of age, and IBDV at 14 d of age. | ↑ Antibody titres against NDV vaccine with CNO and CLO at 35 d of age | [147] |
EOs | Carvacrol, thymol and cinnamic aldehyde | 5000 and 10,000 | Corn-soybean meal-based diet. | ↑ Total erythrocyte counts, hemoglobin content and ↓ leucocyte count | [42] |
Thyme powder | Major EOs (thymol (50.48%), γ-terpinene (11.03%), P-cymene (9.77%), and carvacrol (4.30%)), phenolic acids (salicylic acid (2450.03 ppm), ellagic acid (1240.42 ppm)) and flavonoid compounds | 2000, 5000 and 8000 | Corn-soybean meal-based diet. | ↑ Lymphocytes, white blood cells, and IgG. ↓ TNF-α, IFN-γ, NF-κBP50 by all the doses. ↓ IL-6 by the dose of 8000 | [87] |
Allium hookeri (AH) roots Fermented root | Phenols | 10,000 and 50,000 for both | Corn-soybean meal-based diet. LPS-induced young broiler chicken | ↓ IL-1b with 1% AH root and 5% fermented root, TNFSF15 expression with fermented root (1% and 5%), and IL-8 with 1% fermented root supplementation | [148] |
EOs | Oregano: (5%) | 300 | Corn-soybean meal-based diet. | ↑ Secondary antibody titer and IgG titer, ↓ H/L ratio | [88] |
Artemisia annua | Phenolics (44.24 mg GAE/g) and flavonoids (27.8 mg RE/g) | 1000 | Heat-stressed broilers | ↑ Intestinal SIgA and IgG | [69] |
Turmeric rhizome | Phenolic compounds (16.2 mg/g) | 2000 | Corn-soybean meal-based diet and broilers kept under chronic heat stress | ↑ Total secondary antibody titer, and ↓ H/L ratio | [68] |
EOs | Carvacrol (60.2%) and thymol (4%) | 50 and 100 in water | Corn-soybean meal-based diet and broilers vaccinated with inactivated avian influenza and Newcastle disease (NDV) | ↑ Antibody titer against NDV and avian influenza virus | [149] |
Mixture of OA+EO | Study Design | Main Findings | Reference |
---|---|---|---|
Citric (25%) and sorbic (16.7%) acids, thymol (1.7%), and vanillin (1.0%) | Type: male breeder chickens Dose: 500 g/metric ton diet Form: microencapsulated Duration: 15 days Conditions: without challenge | -Increased Lactobacilliaceae, Clostridiaceae and Ruminococcaceae abundance -Decreased Staphylococcaceae, | [185] |
Thyme (4%), carvacrol (4%), hexanoic acid (0.5%), benzoic acid (3.5%) and butyric acid (0.5%) | Type: male Arbor Acres broiler chickens Dose: 500 mg/kg diet Form: Encapsulated Duration: 42 days Conditions: Eimeria spp. and Clostridium perfringens | -Improved FCR -Higher villus height and villus height/crypt depth ratio. -Reduced intestinal C. perfringens counts, liver C. perfringens carriage, and gut lesion scores. -Reduced serum fluorescein isothiocyanate dextran (FITC-D) concentrations. -Upregulated claudin-1, IGF-2 and A20 mRNA expression. -Downregulated TRAF-6, TNFSF15 and TOLLIP mRNA levels | [181] |
Citric (25%, as fed) and sorbic acids (16.7%, as fed), thymol (1.7%, as fed) and vanillin (1%, as fed) | Type: Male Ross 308 broiler chickens Dose: 5 g/kg diet Form: Encapsulated Duration: 47 days Conditions: without challenge | -Improved growth performances -Improved gut morphology -Microbial control against Clostridium perfringens, Enterobacteriaceae, Enterococci and Mesophilic bacteria | [186] |
Fumaric, sorbic, malic, and citric acids, thymol, vanillin, and eugenol | Type: Cobb 500 male broilers Dose: 300 g/t diet Form: Protected Duration: 42 days Conditions: Eimeria spp. and Clostridium perfringens | -Greater body weight gain -Higher apparent ileal nutrient and energy digestibility -Improved intestinal integrity with lower blood fluorescein isothiocyanate-dextran concentration -Improved intestinal macroscopic and histologic alterations -Greater expression of MUC2, CLDN1, and OCLN genes | [182] |
Citric andsorbic acids, thymol, and vanillin | Type: By-product breeder chicks Dose: 500 g/metric ton diet Form: Microencapsulated Duration: 4 days Conditions: Without challenge | -Enhanced in vitro functional activity of peripheral blood leukocytes (degranulation, oxidative burst, and nitric oxide production) | [187] |
Sorbic acid (200 g/kg), fumaric acid (200 g/kg), and thymol (100 g/kg) | Type: Roman laying hens Dose: 150 and 300 mg/kg diet Form: Encapsulated Duration: 21–30 weeks Conditions: Without challenge | -Increased laying rate with 150 mg/kg. -A linear increase in ileal villus height. -Increased mRNA relative expression of aminopeptidase, sodium-glucose cotransporter 1, and Na+-independent neutral amino acid transporter in duodenum and glucose transporter 2 in jejunum with 300 mg/kg. -Higher mRNA relative expression ofmucin-2 in ileum with 300 mg/kg. -Linear decrease of the secretory immunoglobulin in ileum A. | [188] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelli, N.; Solà-Oriol, D.; Pérez, J.F. Phytogenic Feed Additives in Poultry: Achievements, Prospective and Challenges. Animals 2021, 11, 3471. https://doi.org/10.3390/ani11123471
Abdelli N, Solà-Oriol D, Pérez JF. Phytogenic Feed Additives in Poultry: Achievements, Prospective and Challenges. Animals. 2021; 11(12):3471. https://doi.org/10.3390/ani11123471
Chicago/Turabian StyleAbdelli, Nedra, David Solà-Oriol, and José Francisco Pérez. 2021. "Phytogenic Feed Additives in Poultry: Achievements, Prospective and Challenges" Animals 11, no. 12: 3471. https://doi.org/10.3390/ani11123471