The Use of Intrinsic Markers for Studying the Migratory Movements of Bats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Intrinsic Markers in Studies of Bat Migration
2.1. Using the Stable Isotopes of Hydrogen and Oxygen to Study Bat Migration
2.2. Using the Stable Isotopes of Carbon and Nitrogen to Study Bat Migration
2.3. Using the Stable Isotopes of Sulfur to Study Bat Migration
2.4. Using Strontium Isotopes to Study Bat Migration
2.5. Using Trace Elements and Contaminants to Study Bat Migration
2.6. Using Paired Techniques to Study Bat Migration
3. Tissue Selection for Intrinsic Marker Analysis in Bats
3.1. Metabolically Inert Tissues in Bats
3.2. Turnover of Metabolically Active Tissues in Bats
3.3. Discrimination Factors
3.4. Approaches to Tissue Sampling
4. Overview of Workflow
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Summary of Current Bat Literature Which Provide Rescaling Function Equations for δ2H, δ13C, and δ15N
Study Species | Common Name | Migratory Status | Intrinsic Marker | Region | Regression Method | Precipitation | Gender | Equation | n | r2 | p-Value | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Barbastella barbastellus | Western barbastelle | sedentary | δ2H | Europe | RMA | Mean annual precipitation | combined | δ2Hf = (1.37 × δ2Hp) − 5.52 | 217 | 0.67 | <0.001 | [15] |
Barbastella barbastellus | Western barbastelle | sedentary | δ2H | Europe | LMM / REML | Mean annual precipitation | combined | δ2Hf = (1.07 × δ2Hmap) − 16.84 | 178 | 0.72 | NR* | [40] |
Chaerephon cf. pumilus | Little free-tailed bat | sedentary | δ15N | Africa | OLS | N/A* | combined | 15Nf = (−0.01 × elevation) + 28.78 | 55 | 0.32 | <0.001 | [61] |
Eidolon helvum | Straw-colored fruit bat | migratory | δ2H | Africa | RMA | Mean annual precipitation | combined | δ2Hf = (1.52 × δ2Hp) − 54.09 | 193 | NR* | <0.001 | [30] |
Epomophorus crypturus | Peters’s epauletted fruit bat | likely non-migratory | δ2H | Africa | RMA | Mean annual precipitation | combined | δ2Hf = (1.5 2 × δ2Hp) − 54.09 | 193 | NR* | <0.001 | [30] |
Epomophorus wahlbergi | Wahlberg’s epauletted fruit bat | likely non-migratory | δ2H | Africa | RMA | Mean annual precipitation | combined | δ2Hf = (1.52 × δ2Hp) − 54.09 | 193 | NR* | <0.001 | [30] |
Epomophorus wahlbergi | Wahlberg’s epauletted fruit bat | likely non-migratory | δ13C, δ15N | Africa | OLS | N/A* | combined | elevation = 4635 − (67 × 15Nf) + (112 × 13Cf) | 66, 65 | 0.22 | 0.004, 0.002 | [61] |
Epomops franqueti | Franquet’s epauletted fruit bat | likely non-migratory | δ2H | Africa | RMA | Mean annual precipitation | combined | δ2Hf = (1.52 × δ2Hp) − 54.09 | 193 | NR* | <0.001 | [30] |
Eptesicus isabellinus | Meridional serotine | sedentary | δ2H | Europe | RMA | Mean annual precipitation | combined | δ2Hf = (1.37 × δ2Hp) − 5.52 | 217 | 0.67 | <0.001 | [15] |
Eptesicus isabellinus | Meridional serotine | sedentary | δ2H | Europe | LMM / REML | Mean annual precipitation | combined | δ2Hf = (1.07 × δ2Hmap) − 16.84 | 178 | 0.72 | NR* | [40] |
Eptesicus serotinus | Serotine bat | sedentary | δ2H | Europe | RMA | Mean annual precipitation | combined | δ2Hf = (1.37 × δ2Hp) − 5.52 | 217 | 0.67 | <0.001 | [15] |
Eptesicus serotinus | Serotine bat | sedentary | δ2H | Europe | LMM / REML | Mean annual precipitation | combined | δ2Hf = (1.07 × δ2Hmap) − 16.84 | 178 | 0.72 | NR* | [40] |
Hipposideros caffer | Sundevall’s roundleaf bat | sedentary | δ15N | Africa | OLS | N/A* | combined | 15Nf = (−0.01 × elevation) + 28.78 | 55 | 0.32 | <0.001 | [61] |
Hypsignathus monstrosus | Hammer-headed bat | likely non-migratory | δ2H | Africa | RMA | Mean annual precipitation | combined | δ2Hf = (1.52 × δ2Hp) − 54.09 | 193 | NR* | <0.001 | [30] |
Lasionycteris noctivagans | Silver-haired bat | migratory | δ2H | North America | geostatistical model | Mean growing season precipitation | combined | δ2Hf = (0.70 × δ2Hp) − 40.65 | NR* | 0.67 | <0.001 | [20] |
Lasiurus borealis | Eastern red bat | migratory | δ2H | North America | GLM | Mean annual precipitation | male | δ2Hf = (−0.82 × δ2Hp) − 58.80 | 17 | 0.33 | 0.0482 | [226] |
female | δ2Hf = (1.35 × δ2Hp) − 6.30 | 36 | 0.31 | 0.0003 | ||||||||
juvenile | δ2Hf = (0.67 × δ2Hp) − 23.97 | 28 | 0.16 | 0.0143 | ||||||||
combined | δ2Hf = (0.48 × δ2Hp) − 26.10 | 81 | 0.07 | 0.0201 | ||||||||
Lasiurus borealis | Eastern red bat | migratory | δ2H | North America | RMA | Mean growing season precipitation | male | δ2Hf = (1.48 × δ2Hp) + 13.95 | 20 | 0.69 | <0.001 | [67] |
female | δ2Hf = (1.75 × δ2Hp) + 18.02 | 44 | 0.29 | <0.001 | ||||||||
combined | δ2Hf = (1.67 × δ2Hp) + 16.84 | 64 | 0.37 | <0.001 | ||||||||
Lasiurus borealis | Eastern red bat | migratory | δ2H | North America | RMA | Mean annual precipitation | combined | δ2Hf = (1.00 × δ2Hp) + 8.17 | 64 | 0.41 | <0.001 | [31] |
Lasiurus cinereus | Hoary bat | migratory | δ2H | North America | NR* | Mean growing season precipitation | combined | δ2Hf = (0.7884 × δ2Hp) − 24.81 | 104 | 0.60 | <0.001 | [28] |
Lasiurus cinereus | Hoary bat | migratory | δ2H | North America | OLS | Mean growing season precipitation | combined | δ2Hf = (0.73 × δ2Hp) − 42.61 | 117 | 0.55 | <0.001 | [19] |
Lasiurus cinereus | Hoary bat | migratory | δ2H | North America | RMA | Mean June/July/August precipitation | combined | δ2Hf = (0.874 × δ2Hp) − 41.8 | 117 | 0.49 | <0.001 | [31] |
Lissonycteris angolensis | Angolan fruit bat | sedentary | δ2H | Africa | RMA | Mean annual precipitation | combined | δ2Hf = (1.52 × δ2Hp) − 54.09 | 193 | NR* | <0.001 | [30] |
Lissonycteris angolensis | Angolan fruit bat | sedentary | δ13C, δ15N | Africa | OLS | N/A* | combined | elevation = 4635 − (67 × 15Nf) + (112 * 13Cf) | 66, 65 | 0.22 | 0.004, 0.002 | [61] |
Miniopterus natalensis | Natal long-fingered bat | migratory | δ15N | Africa | OLS | N/A* | combined | 15Nf = (−0.01 × elevation) + 28.78 | 55 | 0.32 | <0.001 | [61] |
Miniopterus schreibersii | Schreiber’s bat | migratory | δ2H | Europe | LMM | growing season precipitation | combined | δ2Hf = (0.62 × δ2Hisoscape) − 14.66 | NR* | NR* | NR* | [227] |
δ2Hwing = (0.64 × δ2Hisoscape) − 14.64 | NR* | NR* | NR* | |||||||||
Myotis lucifugus | Little brown myotis | migratory | δ2H | North America | GLM | Mean annual precipitation | male | δ2Hf = (0.49 × δ2Hp) − 30.90 | 12 | 0.19 | 0.1527 | [226] |
female | δ2Hf = (0.33 × δ2Hp) − 40.41 | 54 | 0.06 | 0.0492 | ||||||||
juvenile | δ2Hf = (1.09 × δ2Hp) − 9.31 | 12 | 0.40 | 0.1291 | ||||||||
combined | δ2Hf = (0.52 × δ2Hp) − 30.82 | 78 | 0.17 | 0.0002 | ||||||||
Myotis lucifugus | Little brown myotis | migratory | δ2H | North America | OLS | Mean growing season precipitation | combined | δ2Hf = (2.69 × δ2Hp) + 96.93 | NR* | 0.63 | <0.001 | [172] |
Myotis septentrionalis | Northern myotis | migratory | δ2H | North America | GLM | Mean annual precipitation | male | δ2Hf = (0.79 × δ2Hp) − 4.73 | 10 | 0.53 | 0.0088 | [226] |
female | δ2Hf = (1.25 × δ2Hp) + 18.48 | 16 | 0.71 | 0.0001 | ||||||||
juvenile | δ2Hf = (1.65 × δ2Hp) + 17.64 | 7 | 0.47 | 0.0258 | ||||||||
combined | δ2Hf = (0.98 × δ2Hp) + 5.48 | 33 | 0.54 | <0.0001 | ||||||||
Myotis sodalis | Indiana bat | migratory | δ2H | North America | GLM | Mean annual precipitation | male | δ2Hf = (0.90 × δ2Hp) − 0.59 | 12 | 0.46 | 0.0115 | [226] |
female | δ2Hf = (0.71 × δ2Hp) − 8.17 | 39 | 0.35 | 0.0001 | ||||||||
juvenile | δ2Hf = (2.18 × δ2Hp) + 30.33 | 8 | 0.63 | 0.0046 | ||||||||
combined | δ2Hf = (0.83 × δ2Hp) − 2.97 | 59 | 0.49 | 0.0001 | ||||||||
Neoromicia nana | Banana pipistrelle | sedentary | δ15N | Africa | OLS | N/A* | combined | 15Nf = (−0.01 × elevation) + 28.78 | 55 | 0.32 | <0.001 | [61] |
Nyctalus leisleri | Leisler’s bats | migratory | δ2H | Europe | RMA | Mean annual precipitation | combined | δ2Hf = (1.27 × δ2Hp) − 7.35 | 178 | NR* | <0.001 | [34] |
Nyctalus noctula | Common noctule | migratory | δ2H | Europe | RMA | Mean annual precipitation | combined | δ2Hf = (1.37 × δ2Hp) − 5.52 | 217 | 0.67 | <0.001 | [15] |
Nyctalus noctula | Common noctule | migratory | δ2H | Europe | RMA | Mean annual precipitation | combined | δ2Hf = (1.27 × δ2Hp) − 7.35 | 178 | NR* | <0.001 | [34] |
Nyctalus noctula | Common noctule | migratory | δ2H | Europe | LMM | Mean annual precipitation | combined | δ2Hf = (0.92 × δ2Hp) − 30.72 | 335 | NR* | NR* | [63] |
Nycteris thebaica | Egyptian slit-faced bat | likely non-migratory | δ15N | Africa | OLS | N/A* | combined | 15Nf = (−0.01 × elevation) + 28.78 | 55 | 0.32 | <0.001 | [61] |
Perimyotis subflavus | Tri-colored bat | migratory | δ2H | North America | quadratic | Mean growing season precipitation | male | δ2Hf = (−0.036 × δ2Hp2)-(1.789 × δ2Hp) − 45.607 | 29 | 0.86 | <0.01 | [29] |
female | δ2Hf = (−0.034 × δ2Hp2) − (1.606 × δ2Hp) − 40.375 | 27 | 0.75 | <0.01 | ||||||||
Pipistrellus cf. grandidieri | Dobson’s pipistrelle | sedentary | δ15N | Africa | OLS | N/A* | combined | 15Nf = (−0.01 × elevation) + 28.78 | 55 | 0.32 | <0.001 | [61] |
Pipistrellus pipistrellus | Common pipistrelles | sedentary? | δ2H | Europe | RMA | Mean annual precipitation | combined | δ2Hf = (1.27 × δ2Hp) − 7.35 | 178 | NR* | <0.001 | [34] |
Pipistrellus nathusii | Nathusius’ pipistrelles | migratory | δ2H | Europe | RMA | Mean annual precipitation | combined | δ2Hf = (1.27 × δ2Hp) − 7.35 | 178 | NR* | <0.001 | [34] |
Pipistrellus nathusii | Nathusius’ pipistrelles | migratory | δ2H | Europe | NR* | Mean annual precipitation | combined | δ2Hf = (0.74 × δ2Hp) − 83.96 | 458 | NR* | NR* | [39] |
Pipistrellus sp. | sedentary | δ15N | Africa | OLS | N/A* | combined | 15Nf = (−0.01 × elevation) + 28.78 | 55 | 0.32 | <0.001 | [61] | |
Plecotus auritus | Brown long-eared bat | sedentary | δ2H | Europe | RMA | Mean annual precipitation | combined | δ2Hf = (1.37 × δ2Hp) − 5.52 | 217 | 0.67 | <0.001 | [15] |
Plecotus auritus | Brown long-eared bat | sedentary | δ2H | Europe | LMM / REML | Mean annual precipitation | combined | δ2Hf = (1.07 × δ2Hmap) − 16.84 | 178 | 0.72 | NR* | [40] |
Plecotus austriacus | Grey long-eared bat | sedentary | δ2H | Europe | RMA | Mean annual precipitation | combined | δ2Hf = (1.37 × δ2Hp) − 5.52 | 217 | 0.67 | <0.001 | [15] |
Plecotus austriacus | Grey long-eared bat | sedentary | δ2H | Europe | LMM / REML | Mean annual precipitation | combined | δ2Hf = (1.07 × δ2Hmap) − 16.84 | 178 | 0.72 | NR* | [40] |
Rhinolophus cf. clivosus | Geoffroy’s horseshoe bat | sedentary | δ15N | Africa | OLS | N/A* | combined | 15Nf = (−0.01 × elevation) + 28.78 | 55 | 0.32 | <0.001 | [61] |
Rhinolophus sp. | sedentary | δ15N | Africa | OLS | N/A* | combined | 15Nf = (−0.01 × elevation) + 28.78 | 55 | 0.32 | <0.001 | [61] | |
Rousettus aegyptiacus | Egyptian fruit bat | sedentary | δ2H | Africa | RMA | Mean annual precipitation | combined | δ2Hf = (1.52 × δ2Hp) − 54.09 | 193 | NR* | <0.001 | [30] |
Rousettus aegyptiacus | Egyptian fruit bat | sedentary | δ13C, δ15N | Africa | OLS | N/A* | combined | elevation = 4635 − (67 × 15Nf) + (112 × 13Cf) | 66, 65 | 0.22 | 0.004, 0.002 | [61] |
Rousettus lanosus | Long-haired rousette | sedentary | δ13C, δ15N | Africa | OLS | N/A* | combined | elevation = 4635-(67 × 15Nf) + (112 × 13Cf) | 66, 65 | 0.22 | 0.004, 0.002 | [61] |
Scotophilus dingani | African yellow bat | sedentary | δ15N | Africa | OLS | N/A* | combined | 15Nf = (−0.01 × elevation) + 28.78 | 55 | 0.32 | <0.001 | [61] |
Appendix B. Mass Requirements and Analysis Mechanisms for δ18O, δ34S, 87Sr/86Sr, and Trace Element/Contaminant Analysis of Modern Tissue Samples
Study Species | Common Name | Tissue Sample | Mass of Sample (mg) | Analysis Mechanism | Reference |
---|---|---|---|---|---|
Passer domesticus L. | House sparrow | Blood (plasma) | 0.1–0.2 | TC-EA-IRMS | [80] |
Cortunix japonica | Japanese quail | Blood (plasma) | 0.14 ± 0.03 | CF-IRMS | [81] |
Passer domesticus L. | House sparrow | Blood (RBC) | 0.1–0.2 | TC-EA-IRMS | [80] |
Cortunix japonica | Japanese quail | Blood (RBC) | 0.14 ± 0.03 | CF-IRMS | [81] |
Cortunix japonica | Japanese quail | Body water | 0.14 ± 0.03 | CF-IRMS | [81] |
Falco sparverius | American Kestrel | Feather | NR | CF-IRMS | [79] |
Passer domesticus L. | House sparrow | Feather | 0.1–0.2 | TC-EA-IRMS | [80] |
Cortunix japonica | Japanese quail | Feather | 0.14 ± 0.03 | CF-IRMS | [81] |
several species of insectivorous passerines | Passerines | Feather | 0.350 ± 0.02 | HTC-CF-IRMS | [82] |
Microtus californicus | California vole | Fur | 0.30–0.35 | EA-CF-IRMS | [78] |
Cortunix japonica | Japanese quail | Intestine | 0.14 ± 0.03 | CF-IRMS | [81] |
Cortunix japonica | Japanese quail | Liver | 0.14 ± 0.03 | CF-IRMS | [81] |
Cortunix japonica | Japanese quail | Muscle | 0.14 ± 0.03 | CF-IRMS | [81] |
Rangifer tarandus granti | Alaskan caribou | Tooth enamel | 5.0 | CF-IRMS | [47] |
Bison bison bison | Bison | Tooth enamel | 3.0–4.0 | CF-IRMS | [76] |
Rangifer tarandus | Caribou | Tooth enamel | 1.0–5.0 | CF-IRMS | [48] |
Equus cedralensis, E. conversidens, E. mexicanus | Fossil horses | Tooth enamel | NR | GC/IRMS | [77] |
Study Species | Common Name | Tissue Sample | Mass of Sample (mg) | Analysis Mechanism | Reference |
---|---|---|---|---|---|
Sus scrofa domesticus | Domestic pig | Bone collagen | 11.0 | EA-VisION IRMS | [100] |
Sus scrofa domesticus | Domestic pig | Faeces | 2.0 | EA-VisION IRMS | [100] |
Several species of raptors | Raptors | Feather | 2.0–3.0 | EA-CF-IRMS * | [105] |
Anas platyrhynchos, A. acuta | Mallard, northern pintail | Feather | 1.0–1.8 | EA-CF-IRMS | [106] |
Anser albifrons | Greater white-fronted goose | Feather | NR | 3 Element EA-CF-IRMS | [228] |
Anser fabalis fabalis | Taiga bean goose | Feather | 3.5 ± 0.1 | EA-IRMS | [111] |
Several species of waterfowl | Waterfowl | Feather | 3.5 | EA-CF-IRMS | [107] |
Eptesicus fuscus | Big brown bat | Fur | 2.0 | EA-CF-IRMS * | [68] |
Nyctalus noctula | Common noctule | Fur | 1.0–1.2 | EA-CF-IRMS | [108] |
Microtus californicus | California vole | Fur | 0.9–1.1 | EA-CF-IRMS * | [78] |
Sus scrofa domesticus | Domestic pig | Hair | 2.0 | EA-VisION IRMS | [100] |
Bos taurus | Domestic cattle | Hair | 1.0–1.3 | EA-VisION IRMS | [110] |
Sus scrofa domesticus | Domestic pig | Liver | 2.0 | EA-VisION IRMS | [100] |
Sus scrofa domesticus | Domestic pig | Milk | 2.0 | EA-VisION IRMS | [100] |
Sus scrofa domesticus | Domestic pig | Muscle | 2.0 | EA-VisION IRMS | [100] |
Study Species | Common Name | Tissue Sample | Mass of Sample (mg) | Analysis Mechanism | Reference |
---|---|---|---|---|---|
Dendroica caerulescens | Black-throated blue warbler | Bone | 2.0–25 | TIMS | [119] |
Several species of shorebirds | Bhorebirds | Bone | 50–100 | MC-ICP-MS, TIMS | [126] |
Taurotragus spp. | Eland | Bone | 14–28 | MC-ICP-MS | [132] |
Several species of shorebirds | Shorebirds | Feather | 50–100 | MC-ICP-MS, TIMS | [126] |
Acrocephalus schoenobaenus | Sedge warbler | Feather | 1–2.2 | TIMS | [123] |
Tachycineta bicolor | Tree swallow | Feather | 4.8–10.3 | MC-ICP-MS | [120] |
Homo sapiens sapiens | Humans | Fingernail | 20–80 | MC-ICP-MS | [229] |
Pipistrellus nathusii | Nathusius’ Pipistrelle | Fur | 0.5–5 | TIMS | [39] |
Homo sapiens sapiens | Human | Hair | 3.0–7.9 | TIMS | [230] |
Homo sapiens sapiens | Human | Hair | 50 | MC-ICP-MS | [231] |
Rodentia | Several species of rodent | Tooth (whole) | 14–28 | MC-ICP-MS | [132] |
Rangifer tarandus granti | Alaskan caribou | Tooth enamel | 5.0 | PIMMS | [47] |
Bison bison bison | Bison | Tooth enamel | 20 | MC-ICP-MS | [76] |
Study Species | Common Name | Tissue Sample | Mass of Sample (mg) | Analysis Mechanism | Reference |
---|---|---|---|---|---|
Mops condylurus, Tadarida aegyptiaca | Angolan free-tailed, Egyptian free-tailed bat | Blood | NR | ICP-MS | [155] |
Miniopterus schreibersii | Common bentwing bat | Bone | NR | ICP-MS | [152] |
Tadarida teniotis | Free-tailed bat | Bone | NR | ICP-MS | [152] |
Hypsugo savii, Nyctalus leisleri, Pipistrellus pipistrellus, Pipistrellus pygmaeus | Savi’s pipistrelle, lesser noctule, common pipistrelle, soprano pipistrelle | Bone | NR | ICP-MS | [153] |
Hypsugo savii, Nyctalus leisleri, Pipistrellus pipistrellus, Pipistrellus pygmaeus | Savi’s pipistrelle, lesser noctule, common pipistrelle, soprano pipistrelle | Brain | NR | ICP-MS | [153] |
Phalacrocorax auritus | Double-crested cormorant | Feather | NR | CVAFS | [142] |
several species of Arctic seabird | Arctic seabirds | Feather | 0.5–2.0 | Advanced Mercury Analyzer | [144] |
Myotis lucifugus, M. leibii, M. septentrionalis, Eptesicus fuscus | Little brown, eastern small-footed, nothern long-eared, big brown bat | Fur | NR | ICP-MS, Fixed Wave Mercury Monitor | [149] |
Eptesicus fuscus, Lasionycteris noctivagans, Lasiurus cinereus, Myotis lucifugus | Big brown, little brown, silver-haired, hoary bat | Fur | 1.0–2.0 | Direct Mercury Analyzer | [141] |
Myotis myotis | Greater mouse-eared bat | Fur | NR | ICP-MS | [151] |
Myotis bechsteinii, Myotis nattereri, Plecotus auritus | Bechstein’s, Natterer’s, brown long-eared bat | Fur | NR | ICP-OES | [150] |
Hypsugo savii, Nyctalus leisleri, Pipistrellus pipistrellus, Pipistrellus pygmaeus | Savi’s pipistrelle, lesser noctule, common pipistrelle, soprano pipistrelle | Fur | NR | ICP-MS | [153] |
Lasiurus borealis | Eastern red bat | Fur | NR | High resolution ICP-MS | [38] |
Mops condylurus, Tadarida aegyptiaca | Angolan free-tailed, Egyptian free-tailed bat | Fur | NR | ICP-MS | [155] |
Hypsugo savii, Nyctalus leisleri, Pipistrellus pipistrellus, Pipistrellus pygmaeus | Savi’s pipistrelle, lesser noctule, common pipistrelle, soprano pipistrelle | Heart | NR | ICP-MS | [153] |
Tadarida teniotis | Free-tailed bat | Kidney | NR | ICP-MS | [152] |
Myotis myotis | Greater mouse-eared bat | Liver | NR | ICP-MS | [151] |
Tadarida teniotis | Free-tailed bat | Liver | NR | ICP-MS | [152] |
Hypsugo savii, Nyctalus leisleri, Pipistrellus pipistrellus, Pipistrellus pygmaeus | Savi’s pipistrelle, lesser noctule, common pipistrelle, soprano pipistrelle | Liver | NR | ICP-MS | [153] |
Tadarida teniotis | Free-tailed bat | Skin-fur | NR | ICP-MS | [152] |
Tadarida teniotis | Free-tailed bat | Skinned body | NR | ICP-MS | [152] |
Miniopterus schreibersii | Common bentwing bat | Whole body | NR | ICP-MS | [152] |
Tadarida teniotis | Free-tailed bat | Whole body | NR | ICP-MS | [152] |
Hypsugo savii, Nyctalus leisleri, Pipistrellus pipistrellus, Pipistrellus pygmaeus | Savi’s pipistrelle, lesser noctule, common pipistrelle, soprano pipistrelle | Wing membrane | NR | ICP-MS | [153] |
References
- Krauel, J.J.; McCracken, G.F. Virology and immunology of bats. In Bat Evolution, Ecology, and Conservation; Springer: New York, NY, USA, 2013; ISBN 9781461473978. [Google Scholar]
- Brack, V., Jr.; Reynolds, R.J.; Orndorf, W.; Zokaites, J.; Zokaites, C. Bats of Skydusky Hollow, Bland County, Virginia. J. Sci. 2005, 56, 93–106. [Google Scholar]
- Fenton, M.D. Summer activity of Myotis lucifgus (Chiroptera: Vespertilionidae) at hibernacula in Ontario and Quebec. Can. J. Zool. 1969, 47, 597–602. [Google Scholar] [CrossRef]
- Kazakov, D.; Shumkina, A.; Botvinkin, A.; Morozov, O. Bat Swarming in the Eastern Palaearctic (Eastern Siberia). Acta Chiropterologica 2018, 20, 427–438. [Google Scholar] [CrossRef]
- Parsons, K.N.; Jones, G.; Davidson-Watts, I.; Greenaway, F. Swarming of bats at underground sites in Britain—Implications for conservation. Biol. Conserv. 2003, 111, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Piksa, K.; Bogdanowicz, W.; Tereba, A. Swarming of bats at different elevations in the Carpathian mountains. Acta Chiropterologica 2011, 13, 113–122. [Google Scholar] [CrossRef]
- Schowalter, D.B. Swarming, Reproduction, and Early Hibernation of Myotis lucifugus and M. volans in Alberta. J. Mammal. 1980, 61, 350–354. [Google Scholar] [CrossRef]
- Krauel, J.J.; McGuire, L.P.; Boyles, J.G. Testing traditional assumptions about regional migration in bats. Mammal Res. 2017, 63, 115–123. [Google Scholar] [CrossRef]
- Norquay, K.J.O.; Martinez-Nuñez, F.; Dubois, J.E.; Monson, K.M.; Willis, C.K.R. Long-distance movements of little brown bats (Myotis lucifugus). J. Mammal. 2013, 94, 506–515. [Google Scholar] [CrossRef] [Green Version]
- Nusová, G.; Uhrin, M.; Voigt, C.C.; Kaňuch, P. Tracing the geographic origin of common pipistrelles (Pipistrellus pipistrellus) swarming at a mass hibernaculum. Mamm. Biol. 2020, 100, 601–610. [Google Scholar] [CrossRef]
- Rodrigues, L.; Palmeirim, J.M. Migratory behaviour of the Schreiber’s bat: When, where and why do cave bats migrate in a Mediterranean region? J. Zool. 2008, 274, 116–125. [Google Scholar] [CrossRef]
- Alcalde, J.T.; Jiménez, M.; Brila, I.; Vintulis, V.; Voigt, C.C.; Pētersons, G. Transcontinental 2200 km migration of a Nathusius’ pipistrelle (Pipistrellus nathusii) across Europe. Mammalia 2021, 85, 161–163. [Google Scholar] [CrossRef]
- Pētersons, G. Seasonal migrations of north-eastern populations of Nathusius’ bat Pipistrellus nathusii (Chiroptera). Myotis 2004, 41–42, 29–56. [Google Scholar]
- Hutterer, R.; Ivanova, T.; Meyer-Cords, C.; Rodrigues, L.L. Bat Migrations in Europe A Review of Banding Data and Literature; Federal Agency for Nature Conservation: Bonn, Germany, 2005; pp. 28–31.
- Voigt, C.C.; Lehnert, L.S.; Popa-Lisseanu, A.G.; Ciechanowski, M.; Estók, P.; Gloza-Rausch, F.; Görföl, T.; Göttsche, M.; Harrje, C.; Hötzel, M.; et al. The trans-boundary importance of artificial bat hibernacula in managed European forests. Biodivers. Conserv. 2014, 23, 617–631. [Google Scholar] [CrossRef]
- Cockrum, E.L. Seasonal distribution of Northwestern populations of the long-nosed bats, Leptonycteris sanborni family phyllostomidae. An. Inst. Biología. Ser. Zool. 1991, 62, 181–202. [Google Scholar]
- Fleming, T.H.; Nufiez, R.A.; Da Silveira, L.; Sternberg, L. Seasonal changes in the diets of migrant and non-migrant nectarivorous bats as revealed by carbon stable isotope analysis. Oecologia 1993, 94, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Cryan, P.M.; Wolf, B.O. Sex differences in the thermoregulation and evaporative water loss of a heterothermic bat, Lasiurus cinereus, during its spring migration. J. Exp. Biol. 2003, 206, 3381–3390. [Google Scholar] [CrossRef] [Green Version]
- Cryan, P.M.; Stricker, C.A.; Wunder, M.B. Continental-scale, seasonal movements of a heterothermic migratory tree bat. Ecol. Appl. 2014, 24, 602–616. [Google Scholar] [CrossRef] [Green Version]
- Fraser, E.E.; Brooks, D.; Longstaffe, F.J. Stable isotope investigation of the migratory behavior of silver-haired bats (Lasionycteris noctivagans) in eastern North America. J. Mammal. 2017, 98, 1225–1235. [Google Scholar] [CrossRef] [Green Version]
- Weller, T.J.; Castle, K.T.; Liechti, F.; Hein, C.D.; Schirmacher, M.R.; Cryan, P.M. First Direct Evidence of Long-distance Seasonal Movements and Hibernation in a Migratory Bat. Sci. Rep. 2016, 6, 34585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, T.H.; Eby, P.; Kunz, T.H.; Fenton, M.B. Ecology of bat migration. Bat. Ecol. 2003, 156, 164–165. [Google Scholar]
- O’Mara, T.M.; Wikelski, M.; Dechmann, D.K.N. 50 years of bat tracking: Device attachment and future directions. Methods Ecol. Evol. 2014, 5, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Villa, B.R.; Cockrum, E.L. Migration in the Guano Bat Tadarida Brasiliensis Mexicana (Saussure). J. Mammal. 1962, 43, 43–64. [Google Scholar] [CrossRef]
- Taylor, P.D.; Crewe, T.L.; Mackenzie, S.A.; Lepage, D.; Aubry, Y.; Crysler, Z.; Finney, G.; Francis, C.M.; Guglielmo, C.G.; Hamilton, D.J.; et al. The Motus Wildlife Tracking System: A collaborative research network. Avian Conserv. Ecol. 2017, 12, 8. [Google Scholar] [CrossRef]
- Mcguire, L.P.; Guglielmo, C.G.; Mackenzie, S.A.; Taylor, P.D. Migratory stopover in the long-distance migrant silver-haired bat, Lasionycteris noctivagans. J. Anim. Ecol. 2012, 81, 377–385. [Google Scholar] [CrossRef]
- Morningstar, D.; Sandilands, A. Summer movements of a radio-tagged Hoary Bat (Lasiurus cinereus) captured in southwestern Ontario. Can. Field-Nat. 2019, 133, 125–129. [Google Scholar] [CrossRef]
- Cryan, P.M.; Bogan, M.A.; Rye, R.O.; Landis, G.P.; Kester, C.L. Stable hydrogen isotope analysis of bat hair as evidence for seasonal molt and long-distance migration. J. Mammal. 2004, 85, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Fraser, E.E.; McGuire, L.P.; Eger, J.L.; Longstaffe, F.J.; Fenton, M.B. Evidence of latitudinal migration in tri-colored bats, perimyotis subflavus. PLoS ONE 2012, 7, e31419. [Google Scholar] [CrossRef] [PubMed]
- Ossa, G.; Kramer-Schadt, S.; Peel, A.J.; Scharf, A.K.; Voigt, C.C. The Movement Ecology of the Straw-Colored Fruit Bat, Eidolon helvum, in Sub-Saharan Africa Assessed by Stable Isotope Ratios. PLoS ONE 2012, 7, e45729. [Google Scholar] [CrossRef] [Green Version]
- Pylant, L.P.; Nelson, D.M.; Fitzpatrick, M.C.; Gates, J.E.; Keller, S.R. Geographic origins and population genetics of bats killed at wind-energy facilities. Ecol. Appl. 2016, 26, 1381–1395. [Google Scholar] [CrossRef]
- Lehnert, L.S.; Kramer-Schadt, S.; Schönborn, S.; Lindecke, O.; Niermann, I.; Voigt, C.C. Wind farm facilities in Germany kill noctule bats from near and far. PLoS ONE 2014, 9, e103106. [Google Scholar] [CrossRef] [Green Version]
- Kunz, T.H.; Arnett, E.B.; Erickson, W.P.; Hoar, A.R.; Johnson, G.D.; Larkin, R.P.; Strickland, M.D.; Thresher, R.W.; Tuttle, M.D. Ecological impacts of wind energy development on bats: Questions, research needs, and hypotheses. Front. Ecol. Environ. 2007, 5, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Voigt, C.C.; Popa-Lisseanu, A.G.; Niermann, I.; Kramer-Schadt, S. The catchment area of wind farms for European bats: A plea for international regulations. Biol. Conserv. 2012, 153, 80–86. [Google Scholar] [CrossRef]
- Frick, W.F.; Baerwald, E.F.; Pollock, J.F.; Barclay, R.M.R.; Szymanski, J.A.; Weller, T.J.; Russell, A.L.; Loeb, S.C.; Medellin, R.A.; McGuire, L.P. Fatalities at wind turbines may threaten population viability of a migratory bat. Biol. Conserv. 2017, 209, 172–177. [Google Scholar] [CrossRef]
- Friedenberg, N.A.; Frick, W.F. Assessing fatality minimization for hoary bats amid continued wind energy development. Biol. Conserv. 2021, 262, 109309. [Google Scholar] [CrossRef]
- Vander Zanden, H.B.; Nelson, D.M.; Wunder, M.B.; Conkling, T.J.; Katzner, T. Application of isoscapes to determine geographic origin of terrestrial wildlife for conservation and management. Biol. Conserv. 2018, 228, 268–280. [Google Scholar] [CrossRef]
- Wieringa, J.G.; Nagel, J.; Nelson, D.M.; Carstens, B.C.; Gibbs, H.L. Using trace elements to identify the geographic origin of migratory bats. PeerJ 2020, 8, e10082. [Google Scholar] [CrossRef] [PubMed]
- Kruszynski, C.; Bailey, L.D.; Courtiol, A.; Bach, L.; Bach, P.; Göttsche, M.; Göttsche, M.; Hill, R.; Lindecke, O.; Matthes, H.; et al. Identifying migratory pathways of Nathusius’ pipistrelles (Pipistrellus nathusii) using stable hydrogen and strontium isotopes. Rapid Commun. Mass Spectrom. 2021, 35, e9031. [Google Scholar] [CrossRef]
- Popa-Lisseanu, A.G.; Sörgel, K.; Luckner, A.; Wassenaar, L.I.; Ibáñez, C.; Kramer-Schadt, S.; Ciechanowski, M.; Görföl, T.; Niermann, I.; Beuneux, G.; et al. A triple-isotope approach to predict the breeding origins of European bats. PLoS ONE 2012, 7, e30388. [Google Scholar] [CrossRef] [Green Version]
- Voigt, C.C.; Lindecke, O.; Schönborn, S.; Kramer-Schadt, S.; Lehmann, D. Habitat use of migratory bats killed during autumn at wind turbines. Ecol. Appl. 2016, 26, 771–783. [Google Scholar] [CrossRef] [Green Version]
- Frick, W.F.; Shipley, J.R.; Kelly, J.F.; Heady, P.A.; Kay, K.M. Seasonal reliance on nectar by an insectivorous bat revealed by stable isotopes. Oecologia 2014, 174, 55–65. [Google Scholar] [CrossRef]
- Voigt, C.C.; Matt, F.; Michener, R.; Kunz, T.H. Low turnover rates of carbon isotopes in tissues of two nectar-feeding bat species. J. Exp. Biol. 2003, 206, 1419–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voigt, C.C.; Lehnert, L.S. Tracking of Movements of Terrestrial Mammals Using Stable Isotopes. In Tracking Animal Migration with Stable Isotopes, 2nd ed.; Hobson, K.A., Wassenaar, L.I., Eds.; Academic Press: London, UK, 2019; pp. 117–135. ISBN 978-0-12-814723-8. [Google Scholar]
- Hobson, K.A. Tracing origins and migration of wildlife using isotopes: A review. Oecologia 1999, 120, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Crawford, K.; Mcdonald, R.A.; Bearhop, S. Applications of stable isotope techniques to the ecology of mammals. Mammal Rev. 2008, 38, 87–107. [Google Scholar] [CrossRef]
- Britton, K.; Grimes, V.; Dau, J.; Richards, M.P. Reconstructing faunal migrations using intra-tooth sampling and strontium and oxygen isotope analyses: A case study of modern caribou (Rangifer tarandus granti). J. Archaeol. Sci. 2009, 36, 1163–1172. [Google Scholar] [CrossRef]
- Gigleux, C.; Grimes, V.; Tütken, T.; Knecht, R.; Britton, K. Reconstructing caribou seasonal biogeography in Little Ice Age (late Holocene) Western Alaska using intra-tooth strontium and oxygen isotope analysis. J. Archaeol. Sci. Rep. 2019, 23, 1043–1054. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Phys. Lab. 1964, 4, 436–468. [Google Scholar] [CrossRef]
- Rubenstein, D.R.; Hobson, K.A. From birds to butterflies: Animal movement patterns and stable isotopes. Trends Ecol. Evol. 2004, 19, 256–263. [Google Scholar] [CrossRef]
- Vander Zanden, H.; Soto, D.X.; Bowen, G.J.; Hobson, H.A. Expanding the Isotopic Toolbox: Applications of Hydrogen and Oxygen Stable Isotope Ratios to Food Web Studies. Front. Ecol. Evol. 2016, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- McKechnie, A.E.; Wolf, B.O.; Del Rio, C.M. Deuterium stable isotope ratios as tracers of water resource use: An experimental test with rock doves. Oecologia 2004, 140, 191–200. [Google Scholar] [CrossRef]
- Birchall, J.; O’Connell, T.; Heaton, T.H.E.; Hedges, R.E.M. Hydrogen isotope ratios in animal body protein reflect trophic level. J. Anim. Ecol. 2005, 74, 877–881. [Google Scholar] [CrossRef]
- Voigt, C.C.; Lehmann, D.; Greif, S. Stable isotope ratios of hydrogen separate mammals of aquatic and terrestrial food webs. Methods Ecol. Evol. 2015, 6, 1332–1340. [Google Scholar] [CrossRef]
- Voigt, C.C.; Schneeberger, K.; Luckner, A. Ecological and dietary correlates of stable hydrogen isotope ratios in fur and body water of syntopic tropical bats. Ecology 2013, 94, 346–355. [Google Scholar] [CrossRef]
- Pederzani, S.; Britton, K. Oxygen isotopes in bioarchaeology: Principles and applications, challenges and opportunities. Earth Sci. Rev. 2019, 188, 77–107. [Google Scholar] [CrossRef] [Green Version]
- Wassenaar, L.I. Introduction to Conducting Stable Isotop Measurements for Animal Migration Studies. In Tracking Animal Migration with Stable Isotopes, 2nd ed.; Hobson, K.A., Wassenaar, L.I., Eds.; Academic Press: London, UK, 2019; pp. 25–51. ISBN 978-0-12-814723-8. [Google Scholar]
- Hobson, K.A.; Wassenaar, L.I.; Milá, B.; Lovette, I.; Dingle, C.; Smith, T.B. Stable isotopes as indicators of altitudinal distributions and movements in an Ecuadorean hummingbird community. Oecologia 2003, 136, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Hardesty, J.L.; Fraser, K.C. Using deuterium to examine altitudinal migration by Andean birds. J. Field Ornithol. 2010, 81, 83–91. [Google Scholar] [CrossRef]
- Erzberger, A.; Popa-Lisseanu, A.G.; Lehmann, G.U.C.; Voigt, C.C. Potential and limits in detecting altitudinal movements of bats using stable hydrogen isotope ratios of fur keratin. Acta Chiropterol. 2011, 13, 431–438. [Google Scholar] [CrossRef]
- Voigt, C.C.; Helbig-Bonitz, M.; Kramer-Schadt, S.; Kalko, E.K.V. The third dimension of bat migration: Evidence for elevational movements of Miniopterus natalensis along the slopes of Mount Kilimanjaro. Oecologia 2014, 174, 751–764. [Google Scholar] [CrossRef] [PubMed]
- Britzke, E.R.; Loeb, S.C.; Romanek, C.S.; Hobson, K.A.; Vonhof, M.J. Variation in catchment areas of Indiana bat (Myotis sodalis) hibernacula inferred from stable hydrogen (δ2H) isotope analysis. Can. J. Zool. 2012, 90, 1243–1250. [Google Scholar] [CrossRef]
- Lehnert, L.S.; Kramer-Schadt, S.; Teige, T.; Hoffmeister, U.; Popa-Lisseanu, A.; Bontadina, F.; Ciechanowski, M.; Dechmann, D.K.N.; Kravchenko, K.; Presetnik, P.; et al. Variability and repeatability of noctule bat migration in Central Europe: Evidence for partial and differential migration. Proc. R. Soc. B Biol. Sci. 2018, 285, 20182174. [Google Scholar] [CrossRef] [Green Version]
- Segers, J.L.; Broders, H.G. Carbon (δ13C) and nitrogen (δ15N) stable isotope signatures in bat fur indicate swarming sites have catchment areas for bats from different summering areas. PLoS ONE 2015, 10, e0125755. [Google Scholar] [CrossRef] [Green Version]
- Baerwald, E.F.; Patterson, W.P.; Barclay, R.M.R. Origins and migratory patterns of bats killed by wind turbines in southern Alberta: Evidence from stable isotopes. Ecosphere 2014, 5, 118. [Google Scholar] [CrossRef] [Green Version]
- Kravchenko, K.A.; Lehnert, L.S.; Vlaschenko, A.S.; Voigt, C.C. Multiple isotope tracers in fur keratin discriminate between mothers and offspring. Rapid Commun. Mass Spectrom. 2019, 33, 907–913. [Google Scholar] [CrossRef]
- Pylant, C.L.; Nelson, D.M.; Keller, S.R. Stable hydrogen isotopes record the summering grounds of eastern red bats (Lasiurus borealis). PeerJ 2014, 2, e629. [Google Scholar] [CrossRef] [Green Version]
- Cryan, P.M.; Stricker, C.A.; Wunder, M.B. Evidence of cryptic individual specialization in an opportunistic insectivorous bat. J. Mammal. 2012, 93, 381–389. [Google Scholar] [CrossRef]
- Fraser, E.E.; Miller, J.F.; Longstaffe, F.J.; Fenton, M.B. Systematic variation in the stable hydrogen isotope (δ2H) composition of fur from summer populations of two species of temperate insectivorous bats. Mamm. Biol. 2015, 80, 278–284. [Google Scholar] [CrossRef]
- Fraser, K.C.; McKinnon, E.A.; Diamond, A.W. Migration, diet, or molt? Interpreting stable-hydrogen isotope values in neotropical bats. Biotropica 2010, 42, 512–517. [Google Scholar] [CrossRef]
- Wassenaar, L.I.; Hobson, K.A. Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration. Isot. Environ. Health Stud. 2010, 39, 211–217. [Google Scholar] [CrossRef]
- Meier-Augenstein, W.; Hobson, K.A.; Wassenaar, L.I. Critique: Measuring hydrogen stable isotope abundance of proteins to infer origins of wildlife, food and people. Bioanalysis 2013, 5, 751–767. [Google Scholar] [CrossRef] [PubMed]
- Soto, D.X.; Koehler, G.; Wassenaar, L.I.; Hobson, K.A. Re-evaluation of the hydrogen stable isotopic composition of keratin calibration standards for wildlife and forensic science applications. Rapid Commun. Mass Spectrom. 2017, 31, 1193–1203. [Google Scholar] [CrossRef]
- Hobson, K.A.; García-Rubio, O.R.; Carrera-Treviño, R.; Anparasan, L.; Kardynal, K.J.; McNeil, J.N.; García-Serrano, E.; Mora Alvarez, B.X. Isotopic (δ2H) Analysis of Stored Lipids in Migratory and Overwintering Monarch Butterflies (Danaus plexippus): Evidence for Southern Critical Late-Stage Nectaring Sites? Front. Ecol. Evol. 2020, 8, 1–11. [Google Scholar] [CrossRef]
- Twining, C.W.; Taipale, S.J.; Ruess, L.; Bec, A.; Martin-Creuzburg, D.; Kainz, M.J. Stable isotopes of fatty acids: Current and future perspectives for advancing trophic ecology. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190641. [Google Scholar] [CrossRef] [PubMed]
- Glassburn, C.L.; Potter, B.A.; Clark, J.L.; Reuther, J.D.; Bruning, D.L.; Wooller, M.J. Strontium and oxygen isotope profiles of sequentially sampled modern bison (Bison bison bison) teeth from interior alaska as proxies of seasonal mobility. Arctic 2018, 71, 183–200. [Google Scholar] [CrossRef]
- Marín-Leyva, A.H.; Schaaf, P.; Solís-Pichardo, G.; Hernández-Treviño, T.; García-Zepeda, M.L.; Ponce-Saavedra, J.; Arroyo-Cabrales, J.; Alberdi, M.T. Tracking origin, home range, and mobility of Late Pleistocene fossil horses from west-central Mexico. J. S. Am. Earth Sci. 2021, 105, 102926. [Google Scholar] [CrossRef]
- Crumsey, J.M.; Searle, J.B.; Sparks, J.P. Isotope values of California vole (Microtus californicus) hair relate to historical drought and land use patterns in California, USA. Oecologia 2019, 190, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Hobson, K.A.; Dement, S.H.; Van Wilgenburg, S.L.; Wassenaar, L.I. Origins of American Kestrels wintering at two Southern U.S. Sites: An investigation using stable-isotope (δD, δ18O) methods. J. Raptor Res. 2009, 43, 325–337. [Google Scholar] [CrossRef]
- Wolf, N.; Bowen, G.J.; Del Rio, C.M. The influence of drinking water on the δD and δ18O values of house sparrow plasma, blood and feathers. J. Exp. Biol. 2011, 214, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Wolf, N.; Newsome, S.D.; Foge, M.L.; Del Rio, C.M. The relationship between drinking water and the hydrogen and oxygen stable isotope values of tissues in Japanese Quail (Cortunix japonica). Auk 2013, 130, 323–330. [Google Scholar] [CrossRef]
- Hobson, K.A.; Koehler, G. On the use of stable oxygen isotope (δ18O) measurements for tracking avian movements in North America. Ecol. Evol. 2015, 5, 799–806. [Google Scholar] [CrossRef]
- Campbell, C.J.; Nelson, D.M.; Ogawa, N.O.; Chikaraishi, Y.; Ohkouchi, N. Trophic position and dietary breadth of bats revealed by nitrogen isotopic composition of amino acids. Sci. Rep. 2017, 7, 15932. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.G.; Korine, C.; Fleming, T.H.; Arad, Z. Dietary implications of interapopulation variation in nitrogen isotope composition of an old world fruit bats. J. Mammal. 2008, 89, 1184–1190. [Google Scholar] [CrossRef]
- Painter, M.L.; Chambers, C.L.; Siders, M.; Doucett, R.R.; Whitaker, J.O.; Phillips, D.L. Diet of spotted bats (Euderma maculatum) in Arizona as indicated by fecal analysis and stable isotopes. Can. J. Zool. 2009, 87, 865–875. [Google Scholar] [CrossRef]
- Rex, K.; Michener, R.; Kunz, T.H.; Voigt, C.C. Vertical stratification of Neotropical leaf-nosed bats (Chiroptera: Phyllostomidae) revealed by stable carbon isotopes. J. Trop. Ecol. 2011, 27, 211–222. [Google Scholar] [CrossRef]
- Siemers, B.M.; Greif, S.; Borissov, I.; Voigt-Heucke, S.L.; Voigt, C.C. Divergent trophic levels in two cryptic sibling bat species. Oecologia 2011, 166, 69–78. [Google Scholar] [CrossRef]
- Wurster, C.M.; McFarlane, D.A.; Bird, M.I. Spatial and temporal expression of vegetation and atmospheric variability from stable carbon and nitrogen isotope analysis of bat guano in the southern United States. Geochim. Cosmochim. Acta 2007, 71, 3302–3310. [Google Scholar] [CrossRef] [Green Version]
- Wurster, C.M.; Mcfarlane, D.A.; Bird, M.I.; Ascough, P.; Athfield, N.B. Stable isotopes of subfossil bat guano as a long-term environmental archive: Insights from a grand canyon cave deposit. J. Cave Karst Stud. 2010, 72, 111–121. [Google Scholar] [CrossRef]
- Baloun, D.E.; Hobson, K.A.; Guglielmo, C.G. Temporal patterns of foraging by silver-haired bats during migratory stopover revealed by isotopic analyses (δ13C) of breath CO2. Oecologia 2020, 193, 67–75. [Google Scholar] [CrossRef]
- Post, D.M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 2002, 83, 703–718. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Hall, A.E.; Farquhar, G.D. Stable Isotopes and Plant Carbon—Water Relations; Academic Press: San Diego, CA, USA, 1993; ISBN 0-12-2333380-2. [Google Scholar]
- Ambrose, S.H. Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. J. Archaeol. Sci. 1991, 18, 293–317. [Google Scholar] [CrossRef]
- Procházka, P.; Kralj, J.; Pearson, D.J.; Yohannes, E. Moulting and wintering grounds of marsh warblers acrocephalus palustris: Evidence from stable isotopes and ring recoveries. Acta Ornithol. 2014, 49, 193–200. [Google Scholar] [CrossRef]
- Hall, L.A.; Beissinger, S.R. Inferring the timing of long-distance dispersal between Rail metapopulations using genetic and isotopic assignments. Ecol. Appl. 2017, 27, 208–218. [Google Scholar] [CrossRef]
- Vogel, J.C.; Eglington, B.; Auret, J.M. Isotope fingerprints in elephant bone and ivory. Nature 1990, 346, 747–749. [Google Scholar] [CrossRef]
- Veen, T.; Hjernquist, M.B.; Van Wilgenburg, S.L.; Hobson, K.A.; Folmer, E.; Font, L.; Klaassen, M. Identifying the African wintering grounds of hybrid flycatchers using a multi-isotope (δ2H, δ13C, δ15N) assignment approach. PLoS ONE 2014, 9, e98075. [Google Scholar] [CrossRef] [Green Version]
- Seifert, N.; Ambrosini, R.; Bontempo, L.; Camin, F.; Liechti, F.; Rubolini, D.; Scandolara, C.; Saino, N.; Hahn, S. Matching geographical assignment by stable isotopes with African non-breeding sites of barn swallows Hirundo rustica tracked by geolocation. PLoS ONE 2018, 13, e0202025. [Google Scholar] [CrossRef]
- Nehlich, O. The application of sulphur isotope analyses in archaeological research: A review. Earth-Sci. Rev. 2015, 142, 1–17. [Google Scholar] [CrossRef]
- Webb, E.C.; Newton, J.; Lewis, J.; Stewart, A.; Miller, B.; Tarlton, J.F.; Evershed, R.P. Sulphur-isotope compositions of pig tissues from a controlled feeding study. Sci. Technol. Archaeol. Res. 2017, 3, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Yi-Balan, S.A. An Investigation of the Factors Controlling the Terrestrial Sulfur Cycle; University of California: Berkeley, CA, USA, 2013. [Google Scholar]
- Madgwick, R.; Grimes, V.; Lamb, A.L.; Nederbragt, A.J.; Evans, J.A.; McCormick, F. Feasting and Mobility in Iron Age Ireland: Multi-isotope analysis reveals the vast catchment of Navan Fort, Ulster. Sci. Rep. 2019, 9, 19792. [Google Scholar] [CrossRef] [Green Version]
- Linglin, M.; Amiot, R.; Richardin, P.; Porcier, S.; Antheaume, I.; Berthet, D.; Grossi, V.; Fourel, F.; Flandrois, J.P.; Louchart, A.; et al. Isotopic systematics point to wild origin of mummified birds in Ancient Egypt. Sci. Rep. 2020, 10, 15463. [Google Scholar] [CrossRef]
- Rand, A.J.; Matute, V.; Grimes, V.; Freiwald, C.; Źrałka, J.; Koszkul, W. Prehispanic Maya diet and mobility at Nakum, Guatemala: A multi-isotopic approach. J. Archaeol. Sci. Rep. 2020, 32, 102374. [Google Scholar] [CrossRef]
- Lott, C.A.; Meehan, T.D.; Heath, J.A. Estimating the latitudinal origins of migratory birds using hydrogen and sulfur stable isotopes in feathers: Influence of marine prey base. Oecologia 2003, 134, 505–510. [Google Scholar] [CrossRef]
- Hebert, C.E.; Wassenaar, L.I. Feather stable isotopes in western North American waterfowl: Spatial patterns, underlying factors, and management applications. Wildl. Soc. Bull. 2005, 33, 92–102. [Google Scholar] [CrossRef]
- Asante, C.K.; Jardine, T.D.; Van Wilgenburg, S.L.; Hobson, K.A. Tracing origins of waterfowl using the Saskatchewan River Delta: Incorporating stable isotope approaches in continent-wide waterfowl management and conservation. Condor 2017, 119, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Dechmann, D.K.N.; Wikelski, M.; Varga, K.; Yohannes, E.; Fiedler, W.; Safi, K.; Burkhard, W.D.; O’Mara, M.T. Tracking post-hibernation behavior and early migration does not reveal the expected sex-differences in a “Female-Migrating” bat. PLoS ONE 2014, 9, e114810. [Google Scholar] [CrossRef]
- Zazzo, A.; Monahan, F.J.; Moloney, A.P.; Green, S.; Schmidt, O. Sulphur isotopes in animal hair track distance to sea. Rapid Commun. Mass Spectrom. 2011, 25, 2371–2378. [Google Scholar] [CrossRef] [PubMed]
- Kabalika, Z.; Morrison, T.A.; McGill, R.A.R.; Munishi, L.K.; Ekwem, D.; Mahene, W.L.; Lobora, A.L.; Newton, J.; Morales, J.M.; Haydon, D.T.; et al. Tracking animal movements using biomarkers in tail hairs: A novel approach for animal geolocating from sulfur isoscapes. Mov. Ecol. 2020, 8, 1–10. [Google Scholar] [CrossRef]
- Fox, A.D.; Hobson, K.A.; De Jong, A.; Kardynal, K.J.; Koehler, G.; Heinicke, T. Flyway population delineation in Taiga Bean Geese Anser fabalis fabalis revealed by multi-element feather stable isotope analysis. Ibis 2016, 159, 66–75. [Google Scholar] [CrossRef]
- Bentley, R.A. Strontium isotopes from the earth to the archaeological skeleton: A review. J. Archaeol. Method Theory 2006, 13, 135–187. [Google Scholar] [CrossRef]
- Faure, G.; Powell, J.L. Strontium Isotope Geology; Springer: Berlin/Heidelberg, Germany, 1972; ISBN 978-3-642-65369-8. [Google Scholar]
- Bataille, C.P.; Crowley, B.E.; Wooller, M.J.; Bowen, G.J. Advances in global bioavailable strontium isoscapes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 555, 109849. [Google Scholar] [CrossRef]
- Price, T.D.; Burton, J.H.; Bentley, R.A. The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeom 2002, 44, 117–135. [Google Scholar] [CrossRef]
- Weber, M.; Tacail, T.; Lugli, F.; Clauss, M.; Weber, K.; Leichliter, J.; Winkler, D.E.; Mertz-Kraus, R.; Tütken, T. Strontium Uptake and Intra-Population 87Sr/86Sr Variability of Bones and Teeth—Controlled Feeding Experiments With Rodents (Rattus norvegicus, Cavia porcellus). Front. Ecol. Evol. 2020, 8, 569940. [Google Scholar] [CrossRef]
- Copeland, S.R.; Cawthra, H.C.; Fisher, E.C.; Lee-Thorp, J.A.; Cowling, R.M.; le Roux, P.J.; Hodgkins, J.; Marean, C.W. Strontium isotope investigation of ungulate movement patterns on the Pleistocene Paleo-Agulhas Plain of the Greater Cape Floristic Region, South Africa. Quat. Sci. Rev. 2016, 141, 65–84. [Google Scholar] [CrossRef] [Green Version]
- Szostek, K.; Mądrzyk, K.; Cienkosz-Stepańczak, B. Strontium isotopes as an indicator of human migration-Easy questions, difficult answers. Anthropol. Rev. 2015, 78, 133–156. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, C.P.; Blum, J.D.; Holmes, R.T.; Feng, X.; Sherry, T.W.; Graves, G.R. The use of isotope tracers for identifying populations of migratory birds. Oecologia 1997, 109, 132–141. [Google Scholar] [CrossRef]
- Sellick, M.J.; Kyser, T.K.; Wunder, M.B.; Chipley, D.; Norris, D.R. Geographic variation of strontium and hydrogen isotopes in avian tissue: Implications for tracking migration and dispersal. PLoS ONE 2009, 4, e4735. [Google Scholar] [CrossRef] [Green Version]
- Font, L.; Van Der Peijl, G.; Van Wetten, I.; Vroon, P.; Van Der Wagt, B.; Davies, G. Strontium and lead isotope ratios in human hair: Investigating a potential tool for determining recent human geographical movements. J. Anal. At. Spectrom. 2012, 27, 719–732. [Google Scholar] [CrossRef]
- Nielsen, S.P. The biological role of strontium. Bone 2004, 35, 583–588. [Google Scholar] [CrossRef]
- Font, L.; Nowell, G.M.; Graham Pearson, D.; Ottley, C.J.; Willis, S.G. Sr isotope analysis of bird feathers by TIMS: A tool to trace bird migration paths and breeding sites. J. Anal. At. Spectrom. 2007, 22, 513–522. [Google Scholar] [CrossRef]
- Tipple, B.J.; Chau, T.; Chesson, L.A.; Fernandez, D.P.; Ehleringer, J.R. Isolation of strontium pools and isotope ratios in modern human hair. Anal. Chim. Acta 2013, 798, 64–73. [Google Scholar] [CrossRef]
- Blum, J.D.; Taliaferro, E.H.; Holmes, R.T. Determining the sources of calcium for migratory songbirds using stable strontium isotopes. Oecologia 2001, 126, 569–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, J.; Bullman, R. 87Sr/86Sr isotope fingerprinting of Scottish and Icelandic migratory shorebirds. Appl. Geochem. 2009, 24, 1927–1933. [Google Scholar] [CrossRef]
- Flockhart, D.T.T.; Kyser, T.K.; Chipley, D.; Miller, N.G.; Norris, D.R. Experimental evidence shows no fractionation of strontium isotopes (87Sr/86Sr) among soil, plants, and herbivores: Implications for tracking wildlife and forensic science. Isot. Environ. Health Stud. 2015, 51, 372–381. [Google Scholar] [CrossRef]
- Evans, J.A.; Montgomery, J.; Wildman, G.; Boulton, N. Spatial variations in biosphere 87Sr/86Sr in Britain. J. Geol. Soc. Lond. 2010, 167, 1–4. [Google Scholar] [CrossRef]
- Kootker, L.M.; van Lanen, R.J.; Kars, H.; Davies, G.R. Strontium isoscapes in The Netherlands. Spatial variations in 87Sr/86Sr as a proxy for palaeomobility. J. Archaeol. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef]
- Lehmann, S.B.; Levin, N.E.; Braun, D.R.; Stynder, D.D.; Zhu, M.; le Roux, P.J.; Sealy, J. Environmental and ecological implications of strontium isotope ratios in mid-Pleistocene fossil teeth from Elandsfontein, South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 490, 84–94. [Google Scholar] [CrossRef]
- Britton, K.; Le Corre, M.; Willmes, M.; Moffat, I.; Grün, R.; Mannino, M.A.; Woodward, S.; Jaouen, K. Sampling Plants and Malacofauna in 87Sr/86Sr Bioavailability Studies: Implications for Isoscape Mapping and Reconstructing of Past Mobility Patterns. Front. Ecol. Evol. 2020, 8, 579473. [Google Scholar] [CrossRef]
- Radloff, F.G.T.; Mucina, L.; Bond, W.J.; Le Roux, P.J. Strontium isotope analyses of large herbivore habitat use in the Cape Fynbos region of South Africa. Oecologia 2010, 164, 567–578. [Google Scholar] [CrossRef]
- Koch, P.L.; Heisinger, J.; Moss, C.; Carlson, R.W. Isotopic tracking of change in diet and habitat use in African elephants. Science 1995, 267, 1340–1343. [Google Scholar] [CrossRef] [PubMed]
- Britton, K.; Grimes, V.; Niven, L.; Steele, T.E.; McPherron, S.; Soressi, M.; Kelly, T.E.; Jaubert, J.; Hublin, J.J.; Richards, M.P. Strontium isotope evidence for migration in late Pleistocene Rangifer: Implications for Neanderthal hunting strategies at the Middle Palaeolithic site of Jonzac, France. J. Hum. Evol. 2011, 61, 176–185. [Google Scholar] [CrossRef]
- Pérez-Crespo, V.A.; Schaaf, P.; Solís-Pichardo, G.; Arroyo-Cabrales, J.; Torres-Hernández, J.R. Mobility studies in fossil mammals from Laguna de las Cruces, San Luis Potosí, México: The strontium isotopic analyses. J. South Am. Earth Sci. 2020, 103, 102759. [Google Scholar] [CrossRef]
- Hoppe, K.A.; Kock, P.L.; Carlson, R.W.; Webb, S.D. Tracking mammoths and mastodons: Reconstruction of migratory behavior using strontium isotope ratios. Geology 1999, 27, 439–442. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, M.I.; Fernandez, D.P.; Nelson, S.V. Using strontium isotopes to determine philopatry and dispersal in primates: A case study from Kibale National Park. R. Soc. Open Sci. 2021, 8, 200760. [Google Scholar] [CrossRef]
- Feranec, R.S.; Hadly, E.A.; Paytan, A. Determining landscape use of Holocene mammals using strontium isotopes. Oecologia 2007, 153, 943–950. [Google Scholar] [CrossRef]
- Shin, W.J.; Jung, M.; Ryu, J.S.; Hwang, J.; Lee, K.S. Revisited digestion methods for trace element analysis in human hair. J. Anal. Sci. Technol. 2020, 11, 1–5. [Google Scholar] [CrossRef]
- Kabata-Pendias, H.A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 3-540-32713-4. [Google Scholar]
- Chételat, J.; Hickey, M.B.C.; Poulain, A.J.; Dastoor, A.; Ryjkov, A.; McAlpine, D.; Vanderwolf, K.; Jung, T.S.; Hale, L.; Cooke, E.L.L.; et al. Spatial variation of mercury bioaccumulation in bats of Canada linked to atmospheric mercury deposition. Sci. Total Environ. 2018, 626, 668–677. [Google Scholar] [CrossRef]
- Ofukany, A.F.A.; Hobson, K.A.; Wassenaar, L.I. Connecting breeding and wintering habitats of migratory piscivorous birds: Implications for tracking contaminants (Hg) using multiple stable isotopes. Environ. Sci. Technol. 2012, 46, 3263–3272. [Google Scholar] [CrossRef]
- Cooper, Z.; Bringolf, R.; Cooper, R.; Loftis, K.; Bryan, A.L.; Martin, J.A. Heavy metal bioaccumulation in two passerines with differing migration strategies. Sci. Total Environ. 2017, 592, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, C.; Helgason, H.H.; Brault-Favrou, M.; Robertson, G.J.; Descamps, S.; Amélineau, F.; Danielsen, J.; Dietz, R.; Elliott, K.; Erikstad, K.E.; et al. Seasonal variation of mercury contamination in Arctic seabirds: A pan-Arctic assessment. Sci. Total Environ. 2021, 750, 142201. [Google Scholar] [CrossRef]
- Pratte, I.; Noble, D.G.; Mallory, M.L.; Braune, B.M.; Provencher, J.F. The influence of migration patterns on exposure to contaminants in Nearctic shorebirds: A historical study. Environ. Monit. Assess. 2020, 192, 1–25. [Google Scholar] [CrossRef]
- Mackay, D.; Wania, F. Transport of contaminants to the Arctic: Partitioning, processes and models. Sci. Total Environ. 1995, 160–161, 25–38. [Google Scholar] [CrossRef]
- Schmutz, J.A.; Trust, K.A.; Matz, A.C. Red-throated loons (Gavia stellata) breeding in Alaska, USA, are exposed to PCBs while on their Asian wintering grounds. Environ. Pollut. 2009, 157, 2386–2393. [Google Scholar] [CrossRef]
- Bayat, S.; Geiser, F.; Kristiansen, P.; Wilson, S.C. Organic contaminants in bats: Trends and new issues. Environ. Int. 2014, 63, 40–52. [Google Scholar] [CrossRef]
- Hickey, M.B.C.; Fenton, M.B.; MacDonald, K.C.; Soulliere, C. Trace Elements in the Fur of Bats (Chiroptera: Vespertilionidae) from Ontario and Quebec, Canada. Bull. Environ. Contam. Toxicol. 2001, 66, 699–706. [Google Scholar] [CrossRef]
- Flache, L.; Becker, N.I.; Kierdorf, U.; Czarnecki, S.; Düring, R.A.; Encarnação, J.A. Similar but not the same: Metal concentrations in hair of three ecologically similar, forest-dwelling bat species (Myotis bechsteinii, Myotis nattereri, and Plecotus auritus). Environ. Sci. Pollut. Res. 2018, 25, 5437–5446. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, M.; Spena, M.T.; Hernout, B.V.; Grasso, A.; Messina, A.; Grasso, R.; Agnelli, P.; Brundo, M.V.; Copat, C. Trace elements bioaccumulation in liver and fur of Myotis myotis from two caves of the eastern side of Sicily (Italy): A comparison between a control and a polluted area. Environ. Pollut. 2018, 240, 273–285. [Google Scholar] [CrossRef]
- Andreani, G.; Cannavacciuolo, A.; Menotta, S.; Spallucci, V.; Fedrizzi, G.; Carpenè, E.; Isani, G. Environmental exposure to non-essential trace elements in two bat species from urbanised (Tadarida teniotis) and open land (Miniopterus schreibersii) areas in Italy. Environ. Pollut. 2019, 254, 113034. [Google Scholar] [CrossRef]
- Mina, R.; Alves, J.; da Silva, A.A.; Natal-da-Luz, T.; Cabral, J.A.; Barros, P.; Topping, C.J.; Sousa, J.P. Wing membrane and fur samples as reliable biological matrices to measure bioaccumulation of metals and metalloids in bats. Environ. Pollut. 2019, 253, 199–206. [Google Scholar] [CrossRef]
- Laverty, T.M.; Berger, J. Do bats seek clean water? A perspective on biodiversity from the Namib Desert. Biol. Conserv. 2020, 248, 108686. [Google Scholar] [CrossRef]
- Toussaint, D.C.; Taylor, P.J. Non-invasive sampling of bats re ects their potential as ecological indicators of heavy metal and trace metal contamination due to open cast diamond mining, northern Limpopo Province, South Africa. Environ. Sci. Pollut. Res. Int. 2021, 1–20. [Google Scholar]
- Donovan, T.; Buzas, J.; Jones, P.; Gibbs, H.L. Tracking dispersal in brids: Assessing the potential of elemental markers. Auk 2006, 123, 500–511. [Google Scholar] [CrossRef]
- Szép, T.; Pape Møller, A.; Vallner, J.; Kovács, B.; Norman Szép, D. Use of trace elements in feathers of sand martin Riparia riparia for identifying moulting areas. J. Avian Biol. 2003, 34, 307–320. [Google Scholar] [CrossRef]
- Gómez-Díaz, E.; González-Solís, J. Geographic assignment of seabirds to their origin: Combining morphologic, genetic, and biogeochemical analyses. Ecol. Appl. 2007, 17, 1484–1498. [Google Scholar] [CrossRef]
- Norris, D.R.; Lank, D.B.; Pither, J.; Chipley, D.; Ydenberg, R.C.; Kyser, T.K. Trace element profiles as unique identifiers of western sandpiper (Calidris mauri) populations. Can. J. Zool. 2007, 85, 579–583. [Google Scholar] [CrossRef]
- Poesel, A.; Nelson, D.A.; Gibbs, H.L.; Olesik, J.W. Use of trace element analysis of feathers as a tool to track fine-scale dispersal in birds. Behav. Ecol. Sociobiol. 2008, 63, 153–158. [Google Scholar] [CrossRef]
- Kaimal, B.; Johnson, R.; Hannigan, R. Distinguishing breeding populations of mallards (Anas platyrhynchos) using trace elements. J. Geochem. Explor. 2009, 102, 176–180. [Google Scholar] [CrossRef]
- Torres-Dowdall, J.; Farmer, A.H.; Abril, M.; Bucher, E.H.; Ridley, I. Trace elements have limited utility for studying migratory connectivity in shorebirds that winter in Argentina. Condor 2010, 112, 490–498. [Google Scholar] [CrossRef]
- Khatri-Chhetri, U.; Woods, J.G.; Walker, I.R.; Curtis, P.J. Origin identification of migratory pests (European starling) using geochemical fingerprinting. PeerJ 2020, 8, e8962. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.J.; Fitzpatrick, M.C.; Vander Zanden, H.B.; Nelson, D.M. Advancing interpretation of stable isotope assignment maps: Comparing and summarizing origins of known-provenance migratory bats. Anim. Migr. 2020, 7, 27–41. [Google Scholar] [CrossRef]
- Bataille, C.P.; Jaouen, K.; Milano, S.; Trost, M.; Steinbrenner, S.; Crubézy, É.; Colleter, R. Triple sulfur-oxygen-strontium isotopes probabilistic geographic assignment of archaeological remains using a novel sulfur isoscape of western Europe. PLoS ONE 2021, 16, e0250383. [Google Scholar] [CrossRef]
- Szép, T.; Hobson, K.A.; Vallner, J.; Piper, S.E.; Kovács, B.; Szabó, D.Z.; Møller, A.P. Comparison of trace element and stable isotope approaches to the study of migratory connectivity: An example using two hirundine species breeding in Europe and wintering in Africa. J. Ornithol. 2009, 150, 621–636. [Google Scholar] [CrossRef]
- Lavers, J.L.; Bond, A.L.; Van Wilgenburg, S.L.; Hobson, K.A. Linking at-sea mortality of a pelagic shearwater to breeding colonies of origin using biogeochemical markers. Mar. Ecol. Prog. Ser. 2013, 491, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Ramos, R.; González-Solís, J.; Ruiz, X. Linking isotopic and migratory patterns in a pelagic seabird. Oecologia 2009, 160, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.A.; Nickley, B.M.; Poesel, A.; Gibbs, H.L.; Olesik, J.W. Inter-dialect dispersal is common in the Puget Sound white-crowned sparrow. Behaviour 2017, 154, 809–834. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, T.M.; Taylor, P.D. Migratory orientation of juvenile yellow-rumped warblers (Dendroica coronata) following stopover: Sources of variation and the importance of geographic origins. Behav. Ecol. Sociobiol. 2008, 62, 1499–1508. [Google Scholar] [CrossRef]
- Procházka, P.; Brlík, V.; Yohannes, E.; Meister, B.; Auerswald, J.; Ilieva, M.; Hahn, S. Across a migratory divide: Divergent migration directions and non-breeding grounds of Eurasian reed warblers revealed by geolocators and stable isotopes. J. Avian Biol. 2018, 49, e01769. [Google Scholar] [CrossRef]
- Sullivan, A.R.; Bump, J.K.; Kruger, L.A.; Peterson, R.O. Bat-cave catchment areas: Using stable isotopes (dD) to determine the probable origins of hibernating bats. Ecol. Soc. Am. 2012, 22, 1428–1434. [Google Scholar] [CrossRef]
- Castle, K.T.; Weller, T.J.; Cryan, P.M.; Hein, C.D.; Schirmacher, M.R. Using sutures to attach miniature tracking tags to small bats for multimonth movement and behavioral studies. Ecol. Evol. 2015, 5, 2980–2989. [Google Scholar] [CrossRef]
- Roby, P.L.; Gumbert, M.W.; Lacki, M.J. Nine years of Indiana bat (Myotis sodalis) spring migration behavior. J. Mammal. 2019, 100, 1501–1511. [Google Scholar] [CrossRef]
- Smith, R.B.; Meehan, T.D.; Wolf Smith, B.O.; Smith, R.B.; Meehan, T.D.; Wolf, B.O. Assessing migration patterns of sharp-shinned hawks Accipiter striatus using stable-isotope and band encounter analysis. J. Avian Biol. 2003, 34, 307–392. [Google Scholar] [CrossRef]
- Van Wilgenburg, S.L.; Hobson, K.A. Combining stable-isotope (δD) and band recovery data to improve probabilistic assignment of migratory birds to origin. Ecol. Soc. Am. 2011, 21, 1340–1351. [Google Scholar] [CrossRef]
- Ciaglo, M.; Calhoun, R.; Yanco, S.W.; Wunder, M.B.; Stricker, C.A.; Linkhart, B.D. Evidence of postbreeding prospecting in a long-distance migrant. Ecol. Evol. 2021, 11, 599–611. [Google Scholar] [CrossRef]
- Hobson, K.A.; Van Wilgenburg, S.L.; Dunn, E.H.; Hussell, D.J.T.; Taylor, P.D.; Collister, D.M. Predicting origins of passerines migrating through Canadian migration monitoring stations using stable-hydrogen isotope analyses of feathers: A new tool for bird conservation. Avian Conserv. Ecol. 2015, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Glass, B.P. Seasonal Movements of Mexican Freetail Bats Tadarida brasiliensis mexicana Banded in the Great Plains. Southwest. Nat. 1982, 27, 127–133. [Google Scholar] [CrossRef]
- van Harten, E.; Reardon, T.; Lumsden, L.F.; Meyers, N.; Prowse, T.A.A.; Weyland, J.; Lawrence, R. High detectability with low impact: Optimizing large PIT tracking systems for cave-dwelling bats. Ecol. Evol. 2019, 9, 10916–10928. [Google Scholar] [CrossRef] [PubMed]
- Britzke, E.R.; Gumbert, M.W.; Hohmann, M.G. Behavioral response of bats to passive integrated transponder tag reader arrays placed at cave entrances. J. Fish Wildl. Manag. 2014, 5, 146–150. [Google Scholar] [CrossRef] [Green Version]
- Lindecke, O.; Elksne, A.; Holland, R.A.; Pētersons, G.; Voigt, C.C. Orientation and flight behaviour identify the Soprano pipistrelle as a migratory bat species at the Baltic Sea coast. J. Zool. 2019, 308, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Lindecke, O.; Elksne, A.; Holland, R.A.; Pētersons, G.; Voigt, C.C. Experienced Migratory Bats Integrate the Sun’s Position at Dusk for Navigation at Night. Curr. Biol. 2019, 29, 1369–1373.e3. [Google Scholar] [CrossRef] [PubMed]
- Dowling, Z.R.; O’Dell, D.I. Bat Use of an Island off the Coast of Massachusetts. Northeast. Nat. 2018, 25, 362–382. [Google Scholar] [CrossRef]
- Faure, P.A.; Re, D.E.; Clare, E.L. Wound healing in the flight membranes of big brown bats. J. Mammal. 2009, 90, 1148–1156. [Google Scholar] [CrossRef]
- Eshar, D.; Weinberg, M. Venipuncture in bats. Clin. Technol. 2010, 39, 175–176. [Google Scholar] [CrossRef] [PubMed]
- Tieszen, L.L.; Boutton, T.W.; Tesdahl, K.G.; Slade, N.A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for 613C analysis of diet. Oecologia 1983, 57, 32–37. [Google Scholar] [CrossRef]
- Roswag, A.; Becker, N.I.; Encarnação, J.A. Isotopic discrimination and indications for turnover in hair and wing membranes of the temperate bat Nyctalus noctula. Eur. J. Wildl. Res. 2015, 61, 703–709. [Google Scholar] [CrossRef]
- Thompson, R.C.; Ballou, J.E. Studies of metabolic turnover with tritium as a tracer v. the predominantly non-dynamic state of body constituents in the rat. J. Biol. Chem. 1956, 223, 795–809. [Google Scholar]
- Voigt, C.C.; Rex, K.; Michener, R.H.; Speakman, J.R. Nutrient routing in omnivorous animals tracked by stable carbon isotopes in tissue and exhaled breath. Oecologia 2008, 157, 31–40. [Google Scholar] [CrossRef]
- Voigt, C.C.; Sörgel, K.; Dechmann, D.K.N. Refueling while flying: Foraging bats combust food rapidly and directly to power flight. Ecology 2010, 91, 2908–2917. [Google Scholar] [CrossRef]
- Fraser, E.E.; Longstaffe, F.J.; Fenton, M.B. Moulting matters: The importance of understanding moulting cycles in bats when using fur for endogenous marker analysis. Can. J. Zool. 2013, 91, 533–544. [Google Scholar] [CrossRef]
- Simpson, R.; Cooper, D.M.L.; Swanston, T.; Coulthard, I.; Varney, T.L. Historical overview and new directions in bioarchaeological trace element analysis: A review. Archaeol. Anthropol. Sci. 2021, 13, 24. [Google Scholar] [CrossRef]
- Stegman, L.C. Tooth development and wear myotis. J. Mammal. 1956, 37, 58–63. [Google Scholar] [CrossRef]
- Clementz, M.T. New insight from old bones: Stable isotope analysis of fossil mammals. J. Mammal. 2012, 93, 368–380. [Google Scholar] [CrossRef]
- Koch, P.L.; Fisher, D.C.; Dettman, D. Oxygen isotope variation in the tusks of extinct proboscideans: A measure of season of death and seasonality. Geology 1989, 17, 515–519. [Google Scholar] [CrossRef]
- Mosbacher, J.B.; Michelsen, A.; Stelvig, M.; Hendrichsen, D.K.; Schmidt, N.M. Show me your rump hair and i will tell you what you ate-The dietary history of muskoxen (ovibos moschatus) revealed by sequential stable isotope analysis of guard hairs. PLoS ONE 2016, 11, e0152874. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewicz, C.N.T.; Seminoff, J.A.; Avens, L.; Kurle, C.M. Methods for sampling sequential annual bone growth layers for stable isotope analysis. Methods Ecol. Evol. 2016, 7, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Ethier, D.M.; Kyle, C.J.; Kyser, T.K.; Nocera, J.J. Variability in the growth patterns of the cornified claw sheath among vertebrates: Implications for using biogeochemistry to study animal movement. Can. J. Zool. 2010, 88, 1043–1051. [Google Scholar] [CrossRef]
- Davy, C.M.; Mastromonaco, G.F.; Riley, J.L.; Baxter-Gilbert, J.H.; Mayberry, H.; Willis, C.K.R. Conservation implications of physiological carry-over effects in bats recovering from white-nose syndrome. Conserv. Biol. 2017, 31, 615–624. [Google Scholar] [CrossRef]
- Mirón, L.L.M.; Herrera, L.G.M.; Ramírez, N.P.; Hobson, K.A. Effect of diet quality on carbon and nitrogen turnover and isotopic discrimination in blood of a New World nectarivorous bat. J. Exp. Biol. 2006, 209, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Gashchak, S.; Beresford, N.A.; Maksimenko, A.; Vlaschenko, A.S. Strontium-90 and caesium-137 activity concentrations in bats in the Chernobyl exclusion zone. Radiat. Environ. Biophys. 2010, 49, 635–644. [Google Scholar] [CrossRef]
- Chew, R.M.; White, H.E. Evaporative water losses of the pallid bat. J. Mammal. 1957, 41, 452–458. [Google Scholar] [CrossRef]
- Roswag, A.; Becker, N.I.; Encarnação, J.A. Factors influencing stable nitrogen isotope ratios in wing membranes of insectivorous bat species: A field study. Mamm. Biol. 2014, 79, 110–116. [Google Scholar] [CrossRef]
- Barclay, R.M.R.; Jacobs, D.S.; Harding, C.T.; McKechnie, A.E.; McCulloch, S.D.; Markotter, W.; Paweska, J.; Brigham, R.M. Thermoregulation by captive and free-ranging Egyptian rousette bats (Rousettus aegyptiacus) in South Africa. J. Mammal. 2017, 98, 572–578. [Google Scholar] [CrossRef] [Green Version]
- Chappell, M.A.; Garland, T.; Robertson, G.F.; Saltzman, W. Relationships among running performance, aerobic physiology and organ mass in male Mongolian gerbils. J. Exp. Biol. 2007, 210, 4179. [Google Scholar] [CrossRef] [Green Version]
- Popa-Lisseanu, A.G.; Delgado-Huertas, A.; Forero, M.G.; Rodríguez, A.; Arlettaz, R.; Ibáñez, C. Bats’ conquest of a formidable foraging niche: The myriads of nocturnally migrating songbirds. PLoS ONE 2007, 2, e205. [Google Scholar] [CrossRef] [Green Version]
- Estók, P.; Görföl, T.; Szoke, K.; Barti, L. Records of Greater Noctule Bat (Nyctalus lasiopterus) from Romania-with new additions. North. West. J. Zool. 2017, 13, 375–376. [Google Scholar]
- Voigt, C.C.; Sörgel, K.; Šuba, J.; Keišs, O.; Petersons, G. The insectivorous bat Pipistrellus nathusii uses a mixed-fuel strategy to power autumn migration. Proc. R. Soc. B Biol. Sci. 2012, 279, 3772–3778. [Google Scholar] [CrossRef] [Green Version]
- Voigt, C.C.; Grasse, P.; Rex, K.; Hetz, S.K.; Speakman, J.R. Bat breath reveals metabolic substrate use in free-ranging vampires. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2008, 178, 9–16. [Google Scholar] [CrossRef]
- Hobson, K.A.; Clark, R.G. Turnover of 13C in Cellular and Plasma Fractions of Blood: Implications for Nondestructive Sampling in Avian Dietary Studies. Auk 1993, 110, 638–641. [Google Scholar] [CrossRef]
- Mazerolle, D.F.; Hobson, K.A. Feature articles estimating origins of short-distance migrant songbirds in North America: Contrasting inferences from hydrogen isotopes measurements of feathers, claws, and blood. Condor 2005, 107, 280–289. [Google Scholar] [CrossRef]
- Balter, V.; Simon, L.; Fouillet, H.; Lécuyer, C. Box-modeling of 15N/14N in mammals. Oecologia 2006, 147, 212–222. [Google Scholar] [CrossRef]
- Baer, G.M.; McLean, R.G. A new method of bleeding small and infant bats. J. Mammal. 1972, 53, 231–232. [Google Scholar] [CrossRef]
- Wimsatt, J.; O’Shea, T.J.; Ellison, L.E.; Pearce, R.D.; Price, V.R. Anesthesia and blood sampling of wild big brown bats (Eptesicus fuscus) with an assessment of impacts on survival. J. Wildl. Dis. 2005, 41, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.S.; De Jong, C.E.; Field, H.E. Sampling small quantities of blood from microbats. Acta Chiropterologica 2010, 12, 255–258. [Google Scholar] [CrossRef]
- Racey, P.A.; Swift, S.M.; Mackie, I. Recommended methods for bleeding small bats … Comment on Smith et al. 2009. Acta Chiropterologica 2011, 13, 223–224. [Google Scholar] [CrossRef]
- Pollock, T.; Moreno, C.R.; Sánchez, L.; Ceballos-Vasquez, A.; Faure, P.A.; Mora, E.C. Wound healing in the flight membranes of wild big brown bats. J. Wildl. Manag. 2016, 80, 19–26. [Google Scholar] [CrossRef]
- Wunder, M.B.; Norris, D.R. Design and Analysis for Isotope-Based Studies of Migratory Animals. In Tracking Animal Migration with Stable Isotopes, 2nd ed.; Hobson, K.A., Wassenaar, L.I., Eds.; Academic Press: London, UK, 2019; pp. 191–206. ISBN 978-0-12-814723-8. [Google Scholar]
- Popa-Lisseanu, A.G.; Voigt, C.C. Bats on the move. J. Mammal. 2009, 90, 1283–1289. [Google Scholar] [CrossRef] [Green Version]
- Bowen, G.J.; West, J.B. Isoscapes for Terrestrial Migration Research. In Tracking Animal Migration with Stable Isotopes, 2nd ed.; Hobson, K.A., Wassenaar, L.I., Eds.; Academic Press: London, UK, 2019; pp. 53–84. ISBN 978-0-12-814723-8. [Google Scholar]
- Bowen, G. Available online: http://waterisotopesDB.org (accessed on 3 December 2021).
- Bowen, G.J.; Liu, Z.; Vander Zanden, H.B.; Zhao, L.; Takahashi, G. Geographic assignment with stable isotopes in IsoMAP. Methods Ecol. Evol. 2014, 5, 201–206. [Google Scholar] [CrossRef]
- Suits, N.S.; Denning, A.S.; Berry, J.A.; Still, C.J.; Kaduk, J.; Miller, J.B.; Baker, I.T. Simulation of carbon isotope discrimination of the terrestrial biosphere. Glob. Biogeochem. Cycles 2005, 19, 1–15. [Google Scholar] [CrossRef]
- Amundson, R.; Austin, A.T.; Schuur, E.A.G.; Yoo, K.; Matzek, V.; Kendall, C.; Uebersax, A.; Brenner, D.; Baisden, W.T. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Britzke, E.R.; Loeb, S.C.; Hobson, K.A.; Romanek, C.S.; Vonhof, M.J. Using Hydrogen Isotopes to Assign Origins of Bats in the Eastern United States. J. Mammal. 2009, 90, 743–751. [Google Scholar] [CrossRef] [Green Version]
- Wright, P.G.R.; Newton, J.; Agnelli, P.; Budinski, I.; Di Salvo, I.; Flaquer, C.; Fulco, A.; Georgiakakis, P.; Martinoli, A.; Mas, M.; et al. Hydrogen isotopes reveal evidence of migration of Miniopterus schreibersii in Europe. BMC Ecol. 2020, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Horacek, M. Backtracking the movements of a migratory bird: A case study of a white-fronted goose (Anser albifrons). Rapid Commun. Mass Spectrom. 2011, 25, 3146–3150. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, C.J.; Ehleringer, J.R. Strontium isotope ratios (87Sr/86Sr) of human fingernail clippings reveal multiple location signals. Rapid Commun. Mass Spectrom. 2018, 32, 1922–1930. [Google Scholar] [CrossRef]
- Vautour, G.; Poirier, A.; Widory, D. Tracking mobility using human hair: What can we learn from lead and strontium isotopes? Sci. Justice 2015, 55, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Tipple, B.J.; Valenzuela, L.O.; Ehleringer, J.R. Strontium isotope ratios of human hair record intra-city variations in tap water source. Sci. Rep. 2018, 8, 3334. [Google Scholar] [CrossRef]
Tissue Type | Turnover Rate | Amount of Tissue | Study Species | Mass of Species (g) | Reference |
---|---|---|---|---|---|
Wing Membrane | 3 mm biopsy | A. pallidus | 15.8 | [42,203] | |
2 mm biopsy, (≥0.1 mg) | Myotis daubentonii, N. noctula, Nyctalus leiseri | N.noctula: = 27.7 * | [204] | ||
δ13C & δ15N: 7 w | 3.5 mm biopsy | N. noctula | = 27.7 * | [188] | |
t50 = 102−134 d | 3 mm biopsy (2/wing) | L. curasoae, G. soricina | L. curasoae: 23.6 ± 2.1 G. soricina: 10.2 ± 0.7 | [43] | |
Bone Collagen | Low (yearly to lifetime) | L. curasoae, G. soricina | L. curasoae: 23.6 ± 2.1 G. soricina: 10.2 ± 0.7 | [43] | |
Early life: rapid; late life: 500 d-life | Rattus spp. | 235 | [189] | ||
Muscle | δ15N: 6–8 w | 12–15 mg | Rousettus aegyptiacus | 110–160 | [84,205] |
t50 = 27.6 d | 5–10 mg | M.unguiculatus (gerbil) | 67.7 ± 6.0 | [187,206] | |
Liver | t50 = 6.4 d, t99.99 = 84 d | 5–10 mg | M. unguiculatus (gerbil) | 67.7 ± 6.0 | [187,206] |
Blood | δ13C & δ15N: 24–39 d | G. soricina | 10.2 ± 0.7 ** | [201] | |
0.5–1 mg | Nyctalus lasiopterus | 41–76 | [207,208] | ||
50 µL | A. pallidus | 15.8 | [20,203] | ||
t50 = 120–126 d | 30 µL (propatagial vein) | L. curasoae, G. soricina | L. curasoae: 23.6 ± 2.1 G. soricina: 10.2 ± 0.7 | [43] | |
Breath CO2 | t50 = 27.3 ± 6.4 m | 10 mL | Noctilio albiventris | 22.1 ± 3.1 (fasted); 27.3 ± 2.9 (foraging) | [191] |
Sample accumulated for 1.5 m | Pipistrellus nathusii | 7.6 ± 0.6 | [209] | ||
t50 = 9.5 ± 6.1 m (Hexose) t50 = 9.5 ± 7.0 m (Fructose) t50 = 13.8 ± 9.4 m (Protein/Fructose) = 10.9 ± 7.5 m (all diets) | Carollia perspicillata | = 21.76 | [190] | ||
18 mL | L. noctivagans | 11.30 ± 1.45 | [90] | ||
Sample accumulated for 5 m | A. pallidus | 15.8 | [42,203] | ||
18.6 m | 3 m/10 mL | Desmodus rotundus | 30.4 ± 3.2 | [210] | |
Fur | δ13C & δ15N: >7 w | Upper tips (dorsal) | N. noctula | = 27.7 * | [188] |
t50 mean = 537 d | 0.25 cm2 (dorsal) | L. curasoae, G. soricina | L. curasoae: 23.6 ± 2.1 G. soricina: 10.2 ± 0.7 | [43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brewer, C.T.; Rauch-Davis, W.A.; Fraser, E.E. The Use of Intrinsic Markers for Studying the Migratory Movements of Bats. Animals 2021, 11, 3477. https://doi.org/10.3390/ani11123477
Brewer CT, Rauch-Davis WA, Fraser EE. The Use of Intrinsic Markers for Studying the Migratory Movements of Bats. Animals. 2021; 11(12):3477. https://doi.org/10.3390/ani11123477
Chicago/Turabian StyleBrewer, Caralie T., William A. Rauch-Davis, and Erin E. Fraser. 2021. "The Use of Intrinsic Markers for Studying the Migratory Movements of Bats" Animals 11, no. 12: 3477. https://doi.org/10.3390/ani11123477
APA StyleBrewer, C. T., Rauch-Davis, W. A., & Fraser, E. E. (2021). The Use of Intrinsic Markers for Studying the Migratory Movements of Bats. Animals, 11(12), 3477. https://doi.org/10.3390/ani11123477