Reverse Genetic Screen for Deleterious Recessive Variants in the Local Simmental Cattle Population of Switzerland
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Identification of Deficient Homozygous Haplotypes in Swiss Simmental Cattle
3.2. Identification of Candidate Genes in Haplotype Regions
3.3. Identification of Candidate Causal Variants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics Approval and Consent to Participate
References
- Signer-Hasler, H.; Burren, A.; Neuditschko, M.; Frischknecht, M.; Garrick, D.; Stricker, C.; Gredler, B.; Bapst, B.; Flury, C. Population structure and genomic inbreeding in nine Swiss dairy cattle populations. Genet. Sel. Evol. 2017, 49, 83. [Google Scholar] [CrossRef] [Green Version]
- Stranzinger, G.F.; Steiger, D.; Kneubühler, J.; Hagger, C. Y chromosome polymorphism in various breeds of cattle (Bos taurus) in Switzerland. J. Appl. Genet. 2007, 48, 241–245. [Google Scholar] [CrossRef]
- Cesarani, A.; Gaspa, G.; Pauciullo, A.; Degano, L.; Vicario, D.; Macciotta, N.P.P. Genome-wide analysis of homozygosity regions in european simmental bulls. J. Anim. Breed. Genet. 2021, 138, 69–79. [Google Scholar] [CrossRef]
- Pryce, J.E.; Woolaston, R.; Berry, D.P.; Wall, E.; Winters, M.; Butler, R.; Shaffer, M. World Trends in Dairy Cow Fertility. In Proceedings of the 10th World Congress on Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014; Volume 10, p. 6. [Google Scholar]
- Walsh, S.W.; Williams, E.J.; Evans, A.C.O. A review of the causes of poor fertility in high milk producing dairy cows. Anim. Reprod. Sci. 2011, 123, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Sonstegard, T.S.; Cole, J.B.; Vantassell, C.P.; Wiggans, G.R.; Crooker, B.A.; Tan, C.; Prakapenka, D.; Liu, G.E.; Da, Y. Genome changes due to artificial selection in U.S. Holstein cattle. BMC Genom. 2019, 20, 128. [Google Scholar] [CrossRef] [PubMed]
- Zobel, R.; Tkalčić, S.; Pipal, I.; Buić, V. Incidence and factors associated with early pregnancy losses in Simmental dairy cows. Anim. Reprod. Sci. 2011, 127, 121–125. [Google Scholar] [CrossRef]
- Seegers, H.; Beaudeau, F.; Fourichon, C.; Bareille, N. Reasons for culling in French Holstein cows. Prev. Vet. Med. 1998, 36, 257–271. [Google Scholar] [CrossRef]
- Rilanto, T.; Reimus, K.; Orro, T.; Emanuelson, U.; Viltrop, A.; Mõtus, K. Culling reasons and risk factors in Estonian dairy cows. BMC Vet. Res. 2020, 16, 173. [Google Scholar] [CrossRef]
- Charlier, C.; Li, W.; Harland, C.; Littlejohn, M.; Coppieters, W.; Creagh, F.; Davis, S.; Druet, T.; Faux, P.; Guillaume, F.; et al. NGS-based reverse genetic screen for common embryonic lethal mutations compromising fertility in livestock. Genome Res. 2016, 26, 1333–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VanRaden, P.M.; Olson, K.M.; Null, D.J.; Hutchison, J.L. Harmful recessive effects on fertility detected by absence of homozygous haplotypes. J. Dairy Sci. 2011, 94, 6153–6161. [Google Scholar] [CrossRef] [Green Version]
- Casellas, J.; Canas-Alvarez, J.J.; Gonzalez-Rodriguez, A.; Puig-Oliveras, A.; Fina, M.; Piedrafita, J.; Molina, A.; Diaz, C.; Baro, J.A.; Varona, L. Bayesian analysis of parent-specific transmission ratio distortion in seven Spanish beef cattle breeds. Anim. Genet. 2017, 48, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Casellas, J.; Gularte, R.J.; Farber, C.R.; Varona, L.; Mehrabian, M.; Schadt, E.E.; Lusis, A.J.; Attie, A.D.; Yandell, B.S.; Medrano, J.F. Genome Scans for Transmission Ratio Distortion Regions in Mice. Genetics 2012, 191, 247–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derks, M.F.L.; Megens, H.J.; Bosse, M.; Lopes, M.S.; Harlizius, B.; Groenen, M.A.M. A systematic survey to identify lethal recessive variation in highly managed pig populations. BMC Genom. 2017, 18, 858. [Google Scholar] [CrossRef] [Green Version]
- Derks, M.F.L.; Megens, H.J.; Bosse, M.; Visscher, J.; Peeters, K.; Bink, M.; Vereijken, A.; Gross, C.; de Ridder, D.; Reinders, M.J.T.; et al. A survey of functional genomic variation in domesticated chickens. Genet. Sel. Evol. 2018, 50, 17. [Google Scholar] [CrossRef] [Green Version]
- Georges, M.; Charlier, C.; Hayes, B. Harnessing genomic information for livestock improvement. Nat. Rev. Genet. 2019, 20, 135–156. [Google Scholar] [CrossRef]
- Abdalla, E.A.; Id-Lahoucine, S.; Cánovas, A.; Casellas, J.; Schenkel, F.S.; Wood, B.J.; Baes, C.F. Discovering lethal alleles across the turkey genome using a transmission ratio distortion approach. Anim. Genet. 2020, 51, 876–889. [Google Scholar] [CrossRef] [PubMed]
- Hoff, J.L.; Decker, J.E.; Schnabel, R.D.; Taylor, J.F. Candidate lethal haplotypes and causal mutations in Angus cattle. BMC Genom. 2017, 18, 799. [Google Scholar] [CrossRef] [Green Version]
- Mesbah-Uddin, M.; Hoze, C.; Michot, P.; Barbat, A.; Lefebvre, R.; Boussaha, M.; Sahana, G.; Fritz, S.; Boichard, D.; Capitan, A. A missense mutation (p.Tyr452Cys) in the CAD gene compromises reproductive success in French Normande cattle. J. Dairy Sci. 2019, 102, 6340–6356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritz, S.; Capitan, A.; Djari, A.; Rodriguez, S.C.; Barbat, A.; Baur, A.; Grohs, C.; Weiss, B.; Boussaha, M.; Esquerre, D.; et al. Detection of haplotypes associated with prenatal death in dairy cattle and identification of deleterious mutations in GART, SHBG and SLC37A2. PLoS ONE 2013, 8, e65550. [Google Scholar] [CrossRef]
- Pausch, H.; Schwarzenbacher, H.; Burgstaller, J.; Flisikowski, K.; Wurmser, C.; Jansen, S.; Jung, S.; Schnieke, A.; Wittek, T.; Fries, R. Homozygous haplotype deficiency reveals deleterious mutations compromising reproductive and rearing success in cattle. BMC Genom. 2015, 16, 312. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.B.; VanRaden, P.M.; Null, D.J.; Hutchison, J.L.; Cooper, T.A.; Hubbard, S.M. Haplotype Tests for Recessive Disorders that Affect Fertility and Other Traits. 2021. Available online: https://www.aipl.arsusda.gov/reference/recessive_haplotypes_ARR-G3.html (accessed on 15 April 2021).
- Schwarzenbacher, H.; Burgstaller, J.; Seefried, F.R.; Wurmser, C.; Hilbe, M.; Jung, S.; Fuerst, C.; Dinhopl, N.; Weissenböck, H.; Fuerst-Waltl, B.; et al. A missense mutation in TUBD1 is associated with high juvenile mortality in Braunvieh and Fleckvieh cattle. BMC Genom. 2016, 17, 400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonstegard, T.S.; Cole, J.B.; VanRaden, P.M.; Van Tassell, C.P.; Null, D.J.; Schroeder, S.G.; Bickhart, D.; McClure, M.C. Identification of a nonsense mutation in CWC15 associated with decreased reproductive efficiency in Jersey cattle. PLoS ONE 2013, 8, e54872. [Google Scholar] [CrossRef] [PubMed]
- Charlier, C.; Agerholm, J.S.; Coppieters, W.; Karlskov-Mortensen, P.; Li, W.; de Jong, G.; Fasquelle, C.; Karim, L.; Cirera, S.; Cambisano, N.; et al. A Deletion in the Bovine FANCI Gene Compromises Fertility by Causing Fetal Death and Brachyspina. PLoS ONE 2012, 7, e43085. [Google Scholar] [CrossRef]
- McClure, M.; Kim, E.; Bickhart, D.; Null, D.; Cooper, T.; Cole, J.; Wiggans, G.; Ajmone-Marsan, P.; Colli, L.; Santus, E.; et al. Fine Mapping for Weaver Syndrome in Brown Swiss Cattle and the Identification of 41 Concordant Mutations across NRCAM, PNPLA8 and CTTNBP2. PLoS ONE 2013, 8, e59251. [Google Scholar] [CrossRef]
- Schütz, E.; Wehrhahn, C.; Wanjek, M.; Bortfeld, R.; Wemheuer, W.E.; Beck, J.; Brenig, B. The Holstein Friesian lethal haplotype 5 (HH5) results from a complete deletion of TBF1M and cholesterol deficiency (CDH) from an ERV-(LTR) insertion into the coding region of APOB. PLoS ONE 2016, 11, e0154602. [Google Scholar] [CrossRef]
- Null, D.J.; Huthcins, J.L.; Bickhart, D.M.; VanRaden, P.M.; Cole, J.B. Discovery of a haplotype affecting fertility in Ayrshire dairy cattle and identification of a putative causal variant. In Proceedings of the American Dairy Science Association Annual Meeting, Pittsburgh, PA, USA, 25–29 June 2017; Volume 100, p. 199. [Google Scholar]
- Guarini, A.R.; Sargolzaei, M.; Brito, L.F.; Kroezen, V.; Lourenco, D.A.L.; Baes, C.F.; Miglior, F.; Cole, J.B.; Schenkel, F.S. Estimating the effect of the deleterious recessive haplotypes AH1 and AH2 on reproduction performance of Ayrshire cattle. J. Dairy Sci. 2019, 102, 5315–5322. [Google Scholar] [CrossRef] [Green Version]
- Cooper, T.A.; Wiggans, G.R.; Null, D.J.; Hutchison, J.L.; Cole, J.B. Genomic evaluation, breed identification, and discovery of a haplotype affecting fertility for Ayrshire dairy cattle. J. Dairy Sci. 2014, 97, 3878–3882. [Google Scholar] [CrossRef]
- Ben Braiek, M.; Fabre, S.; Hozé, C.; Astruc, J.-M.; Moreno-Romieux, C. Identification of homozygous haplotypes carrying putative recessive lethal mutations that compromise fertility traits in French Lacaune dairy sheep. Genet. Sel. Evol. 2021, 53, 41. [Google Scholar] [CrossRef]
- Michot, P.; Fritz, S.; Barbat, A.; Boussaha, M.; Deloche, M.C.; Grohs, C.; Hoze, C.; Le Berre, L.; Le Bourhis, D.; Desnoes, O.; et al. A missense mutation in PFAS (phosphoribosylformylglycinamidine synthase) is likely causal for embryonic lethality associated with the MH1 haplotype in Montbeliarde dairy cattle. J. Dairy Sci. 2017, 100, 8176–8187. [Google Scholar] [CrossRef] [Green Version]
- Fritz, S.; Hoze, C.; Rebours, E.; Barbat, A.; Bizard, M.; Chamberlain, A.; Escouflaire, C.; Vander Jagt, C.; Boussaha, M.; Grohs, C.; et al. An initiator codon mutation in SDE2 causes recessive embryonic lethality in Holstein cattle. J. Dairy Sci. 2018, 101, 6220–6231. [Google Scholar] [CrossRef] [Green Version]
- Hozé, C.; Escouflaire, C.; Mesbah-Uddin, M.; Barbat, A.; Boussaha, M.; Deloche, M.C.; Boichard, D.; Fritz, S.; Capitan, A. Short communication: A splice site mutation in CENPU is associated with recessive embryonic lethality in Holstein cattle. J. Dairy Sci. 2020, 103, 607–612. [Google Scholar] [CrossRef]
- Kunz, E.; Rothammer, S.; Pausch, H.; Schwarzenbacher, H.; Seefried, F.R.; Matiasek, K.; Seichter, D.; Russ, I.; Fries, R.; Medugorac, I. Confirmation of a non-synonymous SNP in PNPLA8 as a candidate causal mutation for Weaver syndrome in Brown Swiss cattle. Genet. Sel. Evol. 2016, 48, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarzenbacher, H.; Wurmser, C.; Flisikowski, K.; Misurova, L.; Jung, S.; Langenmayer, M.C.; Schnieke, A.; Knubben-Schweizer, G.; Fries, R.; Pausch, H. A frameshift mutation in GON4L is associated with proportionate dwarfism in Fleckvieh cattle. Genet. Sel. Evol. 2016, 48, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.; Pausch, H.; Langenmayer, M.C.; Schwarzenbacher, H.; Majzoub-Altweck, M.; Gollnick, N.S.; Fries, R. A nonsense mutation in PLD4 is associated with a zinc deficiency-like syndrome in Fleckvieh cattle. BMC Genom. 2014, 15, 623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owczarek-Lipska, M.; Plattet, P.; Zipperle, L.; Drögemüller, C.; Posthaus, H.; Dolf, G.; Braunschweig, M.H. A nonsense mutation in the optic atrophy 3 gene (OPA3) causes dilated cardiomyopathy in Red Holstein cattle. Genomics 2011, 97, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Seichter, D.; Russ, I.; Förster, M.; Medugorac, I. SNP-based association mapping of Arachnomelia in Fleckvieh cattle. Anim. Genet. 2011, 42, 544–547. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information ARS-UCD1.2 Assembly. 2018. Available online: https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.1 (accessed on 31 May 2018).
- Rosen, B.D.; Bickhart, D.M.; Schnabel, R.D.; Koren, S.; Elsik, C.G.; Tseng, E.; Rowan, T.N.; Low, W.Y.; Zimin, A.; Couldrey, C.; et al. De novo assembly of the cattle reference genome with single-molecule sequencing. Gigascience 2020, 9, giaa021. [Google Scholar] [CrossRef] [Green Version]
- Sargolzaei, M.; Chesnais, J.P.; Schenkel, F.S. A new approach for efficient genotype imputation using information from relatives. BMC Genom. 2014, 15, 478. [Google Scholar] [CrossRef] [Green Version]
- Sargolzaei, M. SNP1101 User’s Guide. Version 1.0; HiggsGene Solut. Inc.: Guelph, ON, Canada, 2014. [Google Scholar]
- Wigginton, J.E.; Cutler, D.J.; Abecasis, G.R. A note on exact tests of Hardy-Weinberg equilibrium. Am. J. Hum. Genet. 2005, 76, 887–893. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001, 29, 1165–1188. [Google Scholar] [CrossRef]
- Häfliger, I.M.; Wiedemar, N.; Švara, T.; Starič, J.; Cociancich, V.; Šest, K.; Gombač, M.; Paller, T.; Agerholm, J.S.; Drögemüller, C. Identification of small and large genomic candidate variants in bovine pulmonary hypoplasia and anasarca syndrome. Anim. Genet. 2020, 51, 382–390. [Google Scholar] [CrossRef]
- Bovine Research Community 1000 Bull Genomes Project. 2018. Available online: http://www.1000bullgenomes.com/ (accessed on 15 June 2018).
- Hayes, B.J.; Daetwyler, H.D. 1000 Bull Genomes Project to Map Simple and Complex Genetic Traits in Cattle: Applications and Outcomes. Annu. Rev. Anim. Biosci. 2019, 7, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollard, K.S.; Hubisz, M.J.; Rosenbloom, K.R.; Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010, 20, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Siepel, A.; Bejerano, G.; Pedersen, J.S.; Hinrichs, A.S.; Hou, M.; Rosenbloom, K.; Clawson, H.; Spieth, J.; Hillier, L.D.W.; Richards, S.; et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005, 15, 1034–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; Fitzhugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Sims, G.E.; Murphy, S.; Miller, J.R.; Chan, A.P. Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE 2012, 7, e46688. [Google Scholar] [CrossRef] [Green Version]
- Bendl, J.; Stourac, J.; Salanda, O.; Pavelka, A.; Wieben, E.D.; Zendulka, J.; Brezovsky, J.; Damborsky, J. PredictSNP: Robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput. Biol. 2014, 10, e1003440. [Google Scholar] [CrossRef] [PubMed]
- Kadri, N.K.; Sahana, G.; Charlier, C.; Iso-Touru, T.; Guldbrandtsen, B.; Karim, L.; Nielsen, U.S.; Panitz, F.; Aamand, G.P.; Schulman, N.; et al. A 660-Kb Deletion with Antagonistic Effects on Fertility and Milk Production Segregates at High Frequency in Nordic Red Cattle: Additional Evidence for the Common Occurrence of Balancing Selection in Livestock. PLoS Genet. 2014, 10, e1004049. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Yuan, N.; Yang, M.; Du, Z.; Wang, J.; Sheng, X.; Wu, J.; Xiao, J. Comprehensive Assessment of Genotype Imputation Performance. Hum. Hered. 2018, 83, 107–116. [Google Scholar] [CrossRef]
- Tomecki, R.; Kristiansen, M.S.; Lykke-Andersen, S.; Chlebowski, A.; Larsen, K.M.; Szczesny, R.J.; Drazkowska, K.; Pastula, A.; Andersen, J.S.; Stepien, P.P.; et al. The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J. 2010, 29, 2342–2357. [Google Scholar] [CrossRef] [Green Version]
- Schmid, M.; Jensen, T.H. The Nuclear RNA Exosome and Its Cofactors BT—The Biology of mRNA: Structure and Function; Oeffinger, M., Zenklusen, D., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 113–132. ISBN 978-3-030-31434-7. [Google Scholar]
- Robinson, S.R.; Oliver, A.W.; Chevassut, T.J.; Newbury, S.F. The 3’ to 5’ Exoribonuclease DIS3: From Structure and Mechanisms to Biological Functions and Role in Human Disease. Biomolecules 2015, 5, 1515–1539. [Google Scholar] [CrossRef] [Green Version]
- Fasken, M.B.; Morton, D.J.; Kuiper, E.G.; Jones, S.K.; Leung, S.W.; Corbett, A.H. The RNA Exosome and Human Disease BT—The Eukaryotic RNA Exosome: Methods and Protocols; LaCava, J., Vaňáčová, Š., Eds.; Springer New York: New York, NY, USA, 2020; pp. 3–33. ISBN 978-1-4939-9822-7. [Google Scholar]
- Tomecki, R.; Drazkowska, K.; Kucinski, I.; Stodus, K.; Szczesny, R.J.; Gruchota, J.; Owczarek, E.P.; Kalisiak, K.; Dziembowski, A. Multiple myeloma-associated hDIS3 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug target. Nucleic Acids Res. 2014, 42, 1270–1290. [Google Scholar] [CrossRef]
- Towler, B.P.; Jones, C.I.; Viegas, S.C.; Apura, P.; Waldron, J.A.; Smalley, S.K.; Arraiano, C.M.; Newbury, S.F. The 3’-5’ exoribonuclease Dis3 regulates the expression of specific microRNAs in Drosophila wing imaginal discs. RNA Biol. 2015, 12, 728–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laffleur, B.; Lim, J.; Zhang, W.; Chen, Y.; Pefanis, E.; Bizarro, J.; Batista, C.R.; Wu, L.; Economides, A.N.; Wang, J.; et al. Noncoding RNA processing by DIS3 regulates chromosomal architecture and somatic hypermutation in B cells. Nat. Genet. 2021, 53, 230–242. [Google Scholar] [CrossRef]
- Turpeinen, M.; Zanger, U.M. Cytochrome P450 2B6: Function, genetics, and clinical relevance. Drug Metabol. Drug Interact. 2012, 27, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.M.; Miksys, S.; Palmour, R.; Tyndale, R.F. CYP2B6 is expressed in African Green monkey brain and is induced by chronic nicotine treatment. Neuropharmacology 2006, 50, 441–450. [Google Scholar] [CrossRef]
- Miksys, S.; Lerman, C.; Shields, P.G.; Mash, D.C.; Tyndale, R.F. Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain. Neuropharmacology 2003, 45, 122–132. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Q.-Y.; Ding, X. A CYP2B6-humanized mouse model and its potential applications. Drug Metab. Pharmacokinet. 2018, 33, 2–8. [Google Scholar] [CrossRef]
- Koh, K.H.; Jurkovic, S.; Yang, K.; Choi, S.-Y.; Jung, J.W.; Kim, K.P.; Zhang, W.; Jeong, H. Estradiol induces cytochrome P450 2B6 expression at high concentrations: Implication in estrogen-mediated gene regulation in pregnancy. Biochem. Pharmacol. 2012, 84, 93–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheftel, A.D.; Stehling, O.; Pierik, A.J.; Netz, D.J.A.; Kerscher, S.; Elsässer, H.-P.; Wittig, I.; Balk, J.; Brandt, U.; Lill, R. Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I. Mol. Cell. Biol. 2009, 29, 6059–6073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo, S.E.; Tucker, E.J.; Compton, A.G.; Kirby, D.M.; Crawford, G.; Burtt, N.P.; Rivas, M.; Guiducci, C.; Bruno, D.L.; Goldberger, O.A.; et al. High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat. Genet. 2010, 42, 851–858. [Google Scholar] [CrossRef]
- Kevelam, S.H.; Rodenburg, R.J.; Wolf, N.I.; Ferreira, P.; Lunsing, R.J.; Nijtmans, L.G.; Mitchell, A.; Arroyo, H.A.; Rating, D.; Vanderver, A.; et al. NUBPL mutations in patients with complex I deficiency and a distinct MRI pattern. Neurology 2013, 80, 1577–1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimonis, V.; Al Dubaisi, R.; Maclean, A.E.; Hall, K.; Weiss, L.; Stover, A.E.; Schwartz, P.H.; Berg, B.; Cheng, C.; Parikh, S. NUBPL mitochondrial disease: New patients and review of the genetic and clinical spectrum. J. Med. Genet. 2021, 58, 314–325. [Google Scholar] [CrossRef]
- Eis, P.S.; Huang, N.; Langston, J.W.; Hatchwell, E.; Schüle, B. Loss-of-Function NUBPL Mutation May Link Parkinson’s Disease to Recessive Complex I Deficiency. Front. Neurol. 2020, 11, 1332. [Google Scholar] [CrossRef]
- Dickinson, M.E.; Flenniken, A.M.; Ji, X.; Teboul, L.; Wong, M.D.; White, J.K.; Meehan, T.F.; Weninger, W.J.; Westerberg, H.; Adissu, H.; et al. High-throughput discovery of novel developmental phenotypes. Nature 2016, 537, 508–514. [Google Scholar] [CrossRef]
Number of Homozygotes | ||||||||
---|---|---|---|---|---|---|---|---|
Haplotype a | Analysis | Chr | Position (Mb) b | Length (Mb) | Observed | Expected | Deficiency (%) | Allele Frequency |
SH1 | trio and pgp | 1 | 65.793–66.891 | 1.10 | 3 | 17 | 85 | 0.042 |
SH2 | trio | 2 | 1.191–1.920 | 0.73 | 1 | 16 | 94 | 0.040 |
SH3 | pgp | 7 | 104.784–105.640 | 0.86 | 1 | 17 | 94 | 0.041 |
SH4 | pgp | 11 | 29.389–30.353 | 0.96 | 4 | 22 | 85 | 0.047 |
SH5 | trio | 12 | 46.828–47.837 | 1.01 | 0 | 38 | 100 | 0.062 |
pgp | 46.831–47.843 | 1.01 | ||||||
SH6 | pgp | 14 | 11.304–12.373 | 1.07 | 2 | 15 | 88 | 0.039 |
SH7 | trio | 16 | 6.120–8.011 | 1.89 | 0 | 30 | 100 | 0.055 |
pgp | 6.122–8.060 | 1.94 | 5 | 111 | 96 | 0.106 | ||
SH8 | pgp | 18 | 48.763–50.005 | 1.24 | 0 | 11 | 100 | 0.0337 |
trio | 48.806–50.017 | 1.21 | 0.0338 | |||||
SH9 | trio and pgp | 21 | 41.855–42.851 | 1.00 | 2 | 19 | 96 | 0.043 |
SH10 | pgp | 24 | 41.945–43.140 | 1.20 | 0 | 10 | 100 | 0.032 |
SH11 | trio | 28 | 38.937–40.069 | 1.13 | 1 | 12 | 92 | 0.035 |
Haplotype | Gene | Gene Description | Recessive Disorder |
---|---|---|---|
SH1 | IQCB1§ | IQ motif containing B1 | Senior-Loken syndrome 5 |
MYLK§ | myosin light chain kinase | Megacystis-microcolon-intestinal hypoperistalsis syndrome 1 | |
CASR * | calcium sensing receptor | Hyperparathyroidism, neonatal | |
POGLUT1 * | protein O-glucosyltransferase 1 | Limb-girdle muscular dystrophy-dystroglycanopathy | |
TIMMDC1 * | translocase of inner mitochondrial membrane domain containing 1 | Mitochondrial complex I deficiency, nuclear type 31 | |
SH2 | HERC2 *,§ | HECT and RLD domain containing E3 ubiquitin protein ligase 2 | Mental retardation, MRT 38 |
OCA2 *,§ | OCA2 melanosomal transmembrane protein | Albinism, brown oculocutaneous | |
SH4 | CRIPT * | CXXC repeat containing interactor of PDZ3 domain | Short stature with microcephaly and distinctive facies |
EPCAM * | epithelial cell adhesion molecule | Congenital diarrhea with tufting enteropathy | |
FSHR *,§ | follicle stimulating hormone receptor | Ovarian dysgenesis 1 | |
MSH2§ | mutS homolog 2 | Mismatch repair cancer syndrome 2 | |
MSH6 | mutS homolog 6 | Mismatch repair cancer syndrome 3 | |
PIGF * | phosphatidylinositol glycan anchor biosynthesis class F | Onychodystrophy, osteodystrophy, impaired intellectual development, and seizures syndrome | |
PPP1R21 * | protein phosphatase 1 regulatory subunit 21 | Neurodevelopmental disorder with hypotonia, facial dysmorphism, and brain abnormalities | |
TTC7A * | tetratricopeptide repeat domain 7A | Gastrointestinal defects and immunodeficiency syndrome | |
SH5 | PIBF1 * | progesterone immunomodulatory binding factor 1 | Joubert syndrome 33 |
SH6 | MYC * | MYC proto-oncogene, bHLH transcription factor | Burkitt lymphoma, somatic |
SH7 | CFH | complement factor H | Basal laminar drusen, complement factor H deficiency |
CR2§ | complement C3d receptor 2 | Immunodeficiency, CVID7 | |
IL10§ | interleukin 10 | Critical role in the control of immune responses | |
SH8 | ARHGEF1§ | Rho guanine nucleotide exchange factor 1 | Immunodeficiency 62 |
BCKDHA * | branched chain keto acid dehydrogenase E1 subunit alpha | Maple syrup urine disease, type Ia @ | |
B9D2 * | B9 domain containing 2 | Meckel syndrome 10, Joubert syndrome 34 | |
COQ8B * | coenzyme Q8B | Nephrotic syndrome, type 9 | |
DLL3§ | delta-like canonical Notch ligand 3 | Spondylocostal dysostosis 1 | |
ERF * | ETS2 repressor factor | Spondylocostal dysostosis 1 | |
ETHE1§ | ETHE1 persulfide dioxygenase | Ethylmalonic encephalopathy | |
LTBP4§ | latent transforming growth factor beta binding protein 4 | Cutis laxa, autosomal recessive, type IC | |
MEGF8 * | multiple EGF-like domains 8 | Carpenter syndrome 2 | |
PLEKHG2 | pleckstrin homology and RhoGEF domain containing G2 | Leukodystrophy and acquired microcephaly | |
RYR1 * | ryanodine receptor 1 | Neuromuscular disease | |
SMG9 * | SMG9 nonsense mediated mRNA decay factor | Heart and brain malformation syndrome | |
SPINT2 * | serine peptidase inhibitor, Kunitz type 2 | Diarrhea 3, secretory sodium, congenital, syndromic | |
SPTBN4 | spectrin beta, non-erythrocytic 4 | Neurodevelopmental disorder with hypotonia, neuropathy, and deafness | |
TGFB1 * | transforming growth factor beta 1 | Inflammatory bowel disease, immunodeficiency, and encephalopathy | |
TIMM50 * | translocase of inner mitochondrial membrane 50 | 3-methylglutaconic aciduria, type IX | |
XRCC1 * | X-ray repair cross complementing 1 | Spinocerebellar ataxia, SCAR26 | |
SH9 | NUBPL * | nucleotide binding protein-like | Mitochondrial complex I deficiency, nuclear type 21 |
SH10 | AFG3L2 * | AFG3-like matrix AAA peptidase subunit 2 | Spastic ataxia 5 |
LAMA1 * | laminin subunit alpha 1 | Poretti–Boltshauser syndrome | |
MC2R§ | melanocortin 2 receptor | Glucocorticoid deficiency due to ACTH unresponsiveness | |
NDUFV2 * | NADH:ubiquinone oxidoreductase core subunit V2 | Mitochondrial complex I deficiency, nuclear type 7 | |
PIEZO2 * | piezo type mechanosensitive ion channel component 2 | Arthrogryposis, distal, with impaired proprioception and touch |
Haplotype | Gene | OMIM | Variant | Transcript a | Coding DNA Change | Predicted Protein Change |
---|---|---|---|---|---|---|
SH5 | DIS3 | 607533 | 1 bp insertion (frameshift) | XM_025000110.1 | c.2032dupA | p.Ile678AsnTer2 |
SH8 | CYP2B6 | 123930 | SNV (missense) | NM_001075173.1 | c.938T > A | p.Ile313Asn |
SH9 | NUBPL | 613621 | SNV (missense) | NM_001193042.1 | c.428C > A | p.Ser143Tyr |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Häfliger, I.M.; Seefried, F.R.; Drögemüller, C. Reverse Genetic Screen for Deleterious Recessive Variants in the Local Simmental Cattle Population of Switzerland. Animals 2021, 11, 3535. https://doi.org/10.3390/ani11123535
Häfliger IM, Seefried FR, Drögemüller C. Reverse Genetic Screen for Deleterious Recessive Variants in the Local Simmental Cattle Population of Switzerland. Animals. 2021; 11(12):3535. https://doi.org/10.3390/ani11123535
Chicago/Turabian StyleHäfliger, Irene M., Franz R. Seefried, and Cord Drögemüller. 2021. "Reverse Genetic Screen for Deleterious Recessive Variants in the Local Simmental Cattle Population of Switzerland" Animals 11, no. 12: 3535. https://doi.org/10.3390/ani11123535
APA StyleHäfliger, I. M., Seefried, F. R., & Drögemüller, C. (2021). Reverse Genetic Screen for Deleterious Recessive Variants in the Local Simmental Cattle Population of Switzerland. Animals, 11(12), 3535. https://doi.org/10.3390/ani11123535