Determination of the Nutritional Value of Diet Containing Bacillus subtilis Hydrolyzed Feather Meal in Adult Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Diets
Itens, % DM Basis | HFMBs (%) | HFMT (%) |
---|---|---|
Dry matter | 93.6 | 93.7 |
Crude protein | 88.3 | 84.1 |
Fat | 6.80 | 8.30 |
Mineral matter | 3.20 | 2.90 |
Gross energy, J/kg | 23,033 | 24,552 |
Amino acids profile, % | ||
Aspartic acid 1 | 6.95 | 6.23 |
Glutamic acid 1 | 10.8 | 9.06 |
Serine 1 | 10.2 | 10.9 |
Glycine 1 | 7.62 | 6.47 |
Histidine 1 | 0.85 | 0.41 |
Arginine 1 | 6.25 | 5.67 |
Threonine 1 | 3.93 | 3.99 |
Alanine 1 | 4.01 | 3.57 |
Proline 1 | 8.44 | 9.87 |
Tyrosine 1 | 2.43 | 2.11 |
Valine 1 | 6.12 | 6.58 |
Methionine 1 | 1,53 | 2.41 |
Cystine 1 | 3.38 | 8.11 |
Isoleucine 1 | 4.10 | 4.29 |
Leucine 1 | 7.31 | 6.98 |
Phenylalanine 1 | 4.25 | 4.39 |
Lysine 1 | 2.43 | 1.14 |
Tryptophane 2 | 0.40 | 0.19 |
Total aas | 91.0 | 92.4 |
2.2.1. Thermally Hydrolyzed Feather Meal (HFMT)
2.2.2. Bacillus Subtilis Hydrolyzed Feather Meal (HFMBs)
Evaluations on the Feather Processing
2.3. Experimental Diets and Feed Management
2.4. Apparent Total Tract Digestibility (ATTD) Assay
2.4.1. Experimental Design
2.4.2. Fecal Score Assessment
2.4.3. Urinary Analysis
2.5. Chemical Analysis
2.6. Fecal Microbial Count, pH and Ammonia
2.7. Feces Collection for Microbiota Identification
DNA Extraction, Amplicon Sequencing and Analysis
2.8. Calculation and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hollanda, M.A.C. Avaliação Nutriconal da Farinha de Penas Hidrolisada na Alimentação de Frangos de Corte. Master’s Thesis, Universidade Federal Rural de Pernambuco, Recife, Brazil, 2009. [Google Scholar]
- FAO. World Food and Agriculture—Statistical Yearbook 2020; World Food and Agriculture: Rome, Italy, 2020. [Google Scholar]
- Elmayergi, H.H.; Smith, R.E. Influence of growth of Streptomyces fradiae on pepsin-HCl digestibility and methionine content of feather meal. Can. J. Microbiol. 1971, 17, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Bielorai, R.; Iosif, B.; Neumark, H.; Alumot, E. Low Nutritional Value of Feather-Meal Protein for Chicks. J. Nutr. 1982, 112, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, G.F.E.; Pezzali, J.G.; Kessler, A.; Trevizan, L. Inclusion of exogenous enzymes to feathers during processing on the digestible energy content of feather meal for adult dogs. Rev. Bras. Zootec. 2016, 45, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Cedrola, S.M.L.; de Melo, A.C.N.; Mazotto, A.M.; Lins, U.; Zingali, R.B.; Rosado, A.S.; Peixoto, R.S.; Vermelho, A.B. Keratinases and sulfide from Bacillus subtilis SLC to recycle feather waste. World J. Microbiol. Biotechnol. 2012, 28, 1259–1269. [Google Scholar] [CrossRef] [PubMed]
- Nascente, P.S.; Xavier, M.O.; Rosa, C.S.; Souza, L.L.; Meireles, M.C.; Mello, J.R.B. Hipersensibilidade Alimentar em Cães e Gatos. Rev. Clínica Veterinária 2006, 64, 60–66. [Google Scholar]
- Harvey, R.; Hall, E. Alergia/intolerância alimentar. Vet. Focus 2009, 19, 36–41. [Google Scholar] [CrossRef]
- Ferrareze, P.A.G.; Correa, A.P.F.; Brandelli, A. Purification and characterization of a keratinolytic protease produced by probiotic Bacillus subtilis. Biocatal. Agric. Biotechnol. 2016, 7, 102–109. [Google Scholar] [CrossRef]
- Ritter, A.C.; Correa, A.P.F.; Veras, F.F.; Brandelli, A. Characterization of Bacillus subtilis Available as Probiotics. J. Microbiol. Res. 2018, 8, 23–32. [Google Scholar]
- Casula, G.; Cutting, S.M. Bacillus Probiotics: Spore Germination in the Gastrointestinal Tract. Appl. Environ. Microbiol. 2002, 68, 2344–2352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The European Pet Food Industry (FEDIAF). Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs; FEDIAF: Brussels, Belgium, 2021. [Google Scholar]
- White, J.A.; Hart, R.J.; Fry, J.C. An evaluation of the Waters Pico-Tag system for the amino-acid analysis of food materials. J. Autom. Chem. 1986, 8, 170–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagen, S.R.; Frost, B.; Augustin, J. Precolumn phenylisothiocyanate derivatization and liquid chromatography of amino acids in food—PubMed. J. Assoc. Off. Anal. Chem. 1989, 72, 912–916. [Google Scholar] [PubMed]
- Lucas, B.; Sotelo, A. Effect of different alkalies, temperature, and hydrolysis times on tryptophan determination of pure proteins and of foods. Anal. Biochem. 1980, 109, 192–197. [Google Scholar] [CrossRef]
- Alsmeyer, R.H.; Cunningham, A.E.; Happich, M.L. Equations predict PER from amino acid analysis. Food Technol. 1974, 28, 34–38. [Google Scholar]
- Dewen, L.; Hu, L.; Defa, L.; Fenglai, W. Determination of nutrient digestibility in corn and soybean meal using the direct and substitution methods as well as different basal diets fed to growing pigs. J. Appl. Anim. Res. 2019, 47, 184–188. [Google Scholar]
- NRC. Nutrient Requirements of Dogs and Cats, 1st ed.; National Academies Press: Washington, DC, USA, 2006; ISBN 9780309488921. [Google Scholar]
- Moxham, G. Waltham feces scoring system—A tool for veterinarians and pet owners: How does your pet rate? Walth. Focus 2001, 11, 24–25. [Google Scholar]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of the Association of the Analytical Chemists, 16th ed.; AOAC: Washington, DC, USA, 1995. [Google Scholar]
- Félix, A.P.; Zanatta, C.P.; Brito, C.B.M.; Sá Fortes, C.M.L.; Oliveira, S.G.; Maiorka, A. Digestibility and metabolizable energy of raw soya manufactured with different processing treatments and fed to adult dogs and puppies. J. Anim. Sci. 2013, 91, 2794–2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, S.T.; Berg-Lyons, D.; Caporaso, J.G.; A Walters, W.; Knight, R.; Fierer, N. Examining the global distribution of dominant archaeal populations in soil. ISME J. 2010, 5, 908–917. [Google Scholar] [CrossRef] [Green Version]
- Schmieder, R.; Lim, Y.W.; Rohwer, F.; Edwards, R. TagCleaner: Identification and removal of tag sequences from genomic and metagenomic datasets. BMC Bioinform. 2010, 11, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl. Environ. Microbiol. 2016, 71, 672–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riffel, A.; Brandelli, A. Isolation and characterization of a feather-degrading bacterium from the poultry processing industry. J. Ind. Microbiol. Biotechnol. 2002, 29, 255–258. [Google Scholar] [CrossRef]
- Riffel, A.; Lucas, F.; Heeb, P.; Brandelli, A. Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch. Microbiol. 2003, 179, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Daroit, D.J.; Corrêa, A.P.F.; Brandelli, A. Production of keratinolytic proteases through bioconversion of feather meal by the Amazonian bacterium Bacillus sp. P45. Int. Biodeterior. Biodegrad. 2011, 65, 45–51. [Google Scholar] [CrossRef]
- Zaghloul, T.I.; Embaby, A.; Elmahdy, A.R. Biodegradation of chicken feathers waste directed by Bacillus subtilis recombinant cells: Scaling up in a laboratory scale fermentor. Bioresour. Technol. 2011, 102, 2387–2393. [Google Scholar] [CrossRef] [PubMed]
- Maciel, J.L.; Werlang, P.O.; Daroit, D.J.; Brandelli, A. Characterization of Protein-Rich Hydrolysates Produced through Microbial Conversion of Waste Feathers. Waste Biomass-Valorization 2017, 8, 1177–1186. [Google Scholar] [CrossRef]
- Bertsch, A.; Coello, N. A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Bioresour. Technol. 2005, 96, 1703–1708. [Google Scholar] [CrossRef]
- Friedman, M. Nutritional Value of Proteins from Different Food Sources—A Review. J. Agric. Food Chem. 1996, 44, 6–29. [Google Scholar] [CrossRef]
- Fernandez-Alarcon, M.F.; Trottier, N.; Steibel, J.P.; Lunedo, R.; Campos, D.M.B.; Santana, A.M.; Pizauro, J.M.; Furlan, R.L.; Furlan, L.R. Interference of age and supplementation of direct-fed microbial and essential oil in the activity of digestive enzymes and expression of genes related to transport and digestion of carbohydrates and proteins in the small intestine of broilers. Poult. Sci. 2017, 96, 2920–2930. [Google Scholar] [CrossRef] [PubMed]
- Guarner, F.; Khan, A.G.; Garisch, J.; Eliakim, R.; Gangl, A.; Thomson, A.; Krabshuis, J.; Le Mair, T.; Kaufmann, P.; De Paula, J.A.; et al. World Gastroenterology Organisation Practice Guideline: Probiotics and Prebiotics—May 2008: Guideline|South African Gastroenterology Review. S. Afr. Gastroenterol. Rev. 2008, 6, 14–25. [Google Scholar]
- Murray, S.M.; Patil, A.R.; Fahey, G.C.; Merchen, N.R.; Hughes, D.M. Raw and rendered animal by-products as ingredients in dog diets. J. Anim. Sci. 1997, 75, 2497–2505. [Google Scholar] [CrossRef] [PubMed]
- Callegaro, K.; Brandelli, A.; Daroit, D.J. Beyond plucking: Feathers bioprocessing into valuable protein hydrolysates. Waste Manag. 2019, 95, 399–415. [Google Scholar] [CrossRef] [PubMed]
- Cavalari, A.P.M.; Donzele, J.L.; Viana, J.A.; Abreu, M.L.T.; Oliveira, A.L.S.; Freitas, L.S.; Pereira, A.A.; Carciofi, A.C. Evaluation of nutritive value of energy and protein feeds in adult dog diets. Braz. J. Anim. Sci. 2006, 35, 1985–1991. [Google Scholar]
- Chiba, L.; Ivey, H.; Cummins, K.; Gamble, B. Effects of hydrolyzed feather meal as a source of extra dietary nitrogen on growth performance and carcass traits of finisher pigs. Anim. Feed Sci. Technol. 1995, 53, 1–16. [Google Scholar] [CrossRef]
- Chiba, L.; Ivey, H.; Cummins, K.; Gamble, B. Hydrolyzed feather meal as a source of amino acids for finisher pigs. Anim. Feed Sci. Technol. 1996, 57, 15–24. [Google Scholar] [CrossRef]
- Divakala, K.C.; Chiba, L.I.; Kamalakar, R.B.; Rodning, S.P.; Welles, E.G.; Cummins, K.A.; Swann, J.; Cespedes, F.; Payne, R.L. Amino acid supplementation of hydrolyzed feather meal diets for finisher pigs1,2. J. Anim. Sci. 2009, 87, 1270–1281. [Google Scholar] [CrossRef] [Green Version]
- Hesta, M.; Janssens, G.; Debraekeleer, J.; Millet, S.; De Wilde, R. Fecal odor components in dogs: Nondigestible oligosaccharides and resistant starch do not decrease fecal H2S emission. J. Appl. Res. Vet. Med. 2003, 1, 225–232. [Google Scholar]
- Mallmann, B.A. Digestibilidade de aa de Penas Submetidos a Diferentes Processos em Dietas de Frango de Corte. Master’s Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2015. [Google Scholar]
- Vitković, L.; Sadoff, H.L. Purificação da protease extracelular de Bacillus licheniformis e sua inibição pela bacitracina. J. Bact. 1977, 131, 891–896. [Google Scholar] [CrossRef] [Green Version]
- Strickling, J.; Harmon, D.; Dawson, K.; Gross, K. Evaluation of oligosaccharide addition to dog diets: Influences on nutrient digestion and microbial populations. Anim. Feed Sci. Technol. 2000, 86, 205–219. [Google Scholar] [CrossRef]
- Handl, S.; Dowd, S.E.; Garcia-Mazcorro, J.F.; Steiner, J.M.; Suchodolski, J.S. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol. Ecol. 2011, 76, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, L.E.; Steiner, J.M.; Suchodolski, J.S. Assessment of microbial diversity along the feline intestinal tract using 16S rRNA gene analysis. FEMS Microbiol. Ecol. 2008, 66, 590–598. [Google Scholar] [CrossRef] [Green Version]
- Suchodolski, J.S.; Camacho, J.; Steiner, J.M. Analysis of bacterial diversity in the canine duodenum, jejunum, ileum, and colon by comparative 16S rRNA gene analysis. FEMS Microbiol. Ecol. 2008, 66, 567–578. [Google Scholar] [CrossRef]
- Middelbos, I.S.; Boler, B.M.V.; Qu, A.; White, B.A.; Swanson, K.S.; Fahey, G.C., Jr. Phylogenetic Characterization of Fecal Microbial Communities of Dogs Fed Diets with or without Supplemental Dietary Fiber Using 454 Pyrosequencing. PLoS ONE 2010, 5, e9768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laflamme, D. Development and validation of a body condition score system for dogs: A clinical tool. Canine Pract. 1997, 22, 10–15. [Google Scholar]
- Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. [Google Scholar] [CrossRef] [Green Version]
- Turnbaugh, P.J.; Bäckhed, F.; Fulton, L.; Gordon, J.I. Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host Microbe 2008, 3, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef]
- Benno, Y.; Nakao, H.; Uchida, K.; Mitsuoka, T. Impact of the Advances in Age on the Gastrointestinal Microflora of Beagle Dogs. J. Vet.-Med. Sci. 1992, 54, 703–706. [Google Scholar] [CrossRef] [Green Version]
- Johnston, K.L.; Swift, N.C.; Hijfte, M.F.-V.; Rutgers, H.C.; Lamport, A.; Ballavre, O.; Batt, R.M. Comparison of the bacterial flora of the duodenum in healthy cats and cats with signs of gastrointestinal tract disease. J. Am. Vet.-Med. Assoc. 2001, 218, 48–51. [Google Scholar] [CrossRef]
- Mentula, S.; Harmoinen, J.; Heikkila, M.; Westermarck, E.; Rautio, M.; Huovinen, P. Comparison between Cultured Small-Intestinal and Fecal Microbiotas in Beagle Dogs. Appl. Environ. Microbiol. 2005, 71, 4169–4175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, N.; Yamashita, T.; Osone, T.; Hosooka, T.; Shinohara, M.; Kitahama, S.; Sasaki, K.; Sasaki, D.; Yoneshiro, T.; Suzuki, T.; et al. Bacteroides spp. promotes branched-chain amino acid catabolism in brown fat and inhibits obesity. iScience 2021, 24, 103342. [Google Scholar] [CrossRef]
- Neis, E.P.J.G.; DeJong, C.H.C.; Rensen, S.S. The Role of Microbial Amino Acid Metabolism in Host Metabolism. Nutrients 2015, 7, 2930–2946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilmore, M.S. Microbiology: The Thin Line between Gut Commensal and Pathogen. Science 2003, 299, 1999–2002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wexler, H.M. Bacteroides: The Good, the Bad, and the Nitty-Gritty. Clin. Microbiol. Rev. 2007, 20, 593–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatments | |||
---|---|---|---|
BD 1 | BD + HFMBs 2 | BD + HFMT 3 | |
Ingredients (g/kg) | |||
Basal diet | 100 | 100 | 100 |
HFMBs | 0 | 10 | 0 |
HFMT | 0 | 0 | 10 |
Chemical composition (g/kg) | |||
Dry matter | 967 | 964 | 964 |
Mineral matter | 88 | 83 | 82 |
Crude protein | 271 | 327 | 326 |
Ether extract | 130 | 124 | 126 |
Crude fiber | 52 | 47 | 47 |
Gross energy, J/kg | 20,359 | 20,602 | 20,735 |
Items | Diets 1 | ||||
---|---|---|---|---|---|
BD | BD + HFMBs | BD + HFMT | SEM 2 | p-Value 3 | |
Body weight, kg | |||||
Initial | 11.4 | 11.2 | 11.2 | 0.429 | 0.984 |
Final | 11.5 | 11.3 | 11.3 | ||
Daily intake, g/day | |||||
DM | 217.5 | 216.4 | 225.3 | 30.22 | 0.845 |
OM | 198.5 | 197.8 | 206.2 | 27.6 | 0.828 |
CP | 294.5 b | 367.8 a | 381.4 a | 47.0 | 0.010 |
Water consumption, mL/day | 442.6 | 445 | 439.4 | 101.8 | 0.995 |
Energy intake, J/day | |||||
DE | 3820 | 3839 | 4176 | 581,2 | 0.471 |
ME | 3550 | 3550 | 3837 | 535.1 | 0.544 |
Apparent total tract digestibility, % | |||||
DM | 79.89 | 75.46 | 78.61 | 2.422 | 0.013 |
OM | 84.09 a | 78.72 b | 82.48 a | 1.957 | 0.001 |
CP | 87.81 a | 74.81 b | 85.02 a | 3.052 | 0.001 |
Acid hydrolyzed fat | 89.37 | 87.13 | 87.73 | 2.745 | 0.366 |
Gross Energy | 83.96 a | 79.61 b | 83.09 a | 1.907 | 0.005 |
Nutritional value of diet, J/ kg | |||||
DE analysed | 17,092 b | 17,184 b | 18,079 a | 401.9 | 0.001 |
ME estimated 4 | 15,849 b | 15.853 b | 16.573 a | 381.9 | 0.004 |
Urinary and fecal characteristics | |||||
Total volume, mL/day | 243.4 | 247.5 | 297.8 | 82.41 | 0.427 |
pH urinary | 7.63 | 7.41 | 7.04 | 0.442 | 0.083 |
Urine density, g/L | 1.033 | 1.028 | 1.033 | 0.005 | 0.204 |
Urine energy, J/day | 7.88 | 7.07 | 5.47 | 1.44 | 0.578 |
Fecal score 5, 1 to 5 | 2.86 | 2.82 | 2.90 | 0.06 | 0.725 |
pH fecal | 6.64 | 6.78 | 6.84 | 0.390 | 0.672 |
Fecal DM, % | 36.63 | 35.61 | 34.98 | 1.522 | 0.183 |
Feces, g/day | 119.65 b | 148.68 a | 133.67 ab | 17.944 | 0.041 |
Feces, g/d (DM g/day) | 43.56 b | 52.87 a | 46.83 ab | 6.115 | 0.05 |
Amonia 6 (DM g/kg) | 2.090 b | 2.658 ab | 3.377 a | 0.850 | 0.045 |
Diet | Bacterial Counts (CFU/g) |
---|---|
BD | <10 |
HFMT | <10 |
HFMBs | 5.9 × 104 |
Feces | |
Dogs that received HFMBs | |
A 1 | 1.19 × 105 |
B 1 | 1.09 × 106 |
C 1 | 1.76 × 106 |
D 1 | 5.30 × 106 |
E 1 | 1.71 × 107 |
Dogs that received HFMT 2 | <10 |
Dogs that received DB 2 | <10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, G.S.; Correa, A.P.F.; Pires, P.G.d.S.; Marconatto, L.; Brandelli, A.; Kessler, A.d.M.; Trevizan, L. Determination of the Nutritional Value of Diet Containing Bacillus subtilis Hydrolyzed Feather Meal in Adult Dogs. Animals 2021, 11, 3553. https://doi.org/10.3390/ani11123553
Machado GS, Correa APF, Pires PGdS, Marconatto L, Brandelli A, Kessler AdM, Trevizan L. Determination of the Nutritional Value of Diet Containing Bacillus subtilis Hydrolyzed Feather Meal in Adult Dogs. Animals. 2021; 11(12):3553. https://doi.org/10.3390/ani11123553
Chicago/Turabian StyleMachado, Geruza Silveira, Ana Paula Folmer Correa, Paula Gabriela da Silva Pires, Letícia Marconatto, Adriano Brandelli, Alexandre de Mello Kessler, and Luciano Trevizan. 2021. "Determination of the Nutritional Value of Diet Containing Bacillus subtilis Hydrolyzed Feather Meal in Adult Dogs" Animals 11, no. 12: 3553. https://doi.org/10.3390/ani11123553
APA StyleMachado, G. S., Correa, A. P. F., Pires, P. G. d. S., Marconatto, L., Brandelli, A., Kessler, A. d. M., & Trevizan, L. (2021). Determination of the Nutritional Value of Diet Containing Bacillus subtilis Hydrolyzed Feather Meal in Adult Dogs. Animals, 11(12), 3553. https://doi.org/10.3390/ani11123553