Effects of Dietary Supplementation with Mushroom or Vitamin D2-Enriched Mushroom Powders on Gastrointestinal Health Parameters in the Weaned Pig
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Animal Management and Diets
2.2. Housing and Animal Management
2.3. Feed Analysis
2.4. Sample Collection
2.5. Gut Morphological Analysis
2.6. Gene Expression in the Small Intestine
2.6.1. RNA Extraction and cDNA Synthesis
2.6.2. Quantitative Real-Time Polymerase Chain Reaction (QPCR)
2.7. Volatile Fatty Acid Analysis
2.8. Microbiological Analyses
2.8.1. Microbial DNA Extraction
2.8.2. Illumina Sequencing
2.8.3. Bioinformatic and Statistical Analysis
3. Results
3.1. Growth Performance, Faecal Scores and Mortality Rates
3.2. Small Intestinal Morphology
3.3. Effects of Mushroom Powder Supplementation on the Caecal Microbiota
3.3.1. Bacterial Richness and Diversity
3.3.2. Differential Bacterial Abundance Analysis
3.4. Volatile Fatty Acids
3.5. Gene Expression in the Small Intestine
3.5.1. Nutrient Transporter Gene Expression
3.5.2. Expression of Genes Involved in Inflammation and the Epithelial Barrier
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sales, J. Effects of pharmacological concentrations of dietary zinc oxide on growth of post-weaning pigs: A meta-analysis. Biol. Trace Elem. Res. 2013, 152, 343–349. [Google Scholar] [CrossRef]
- Hu, C.H.; Xiao, K.; Luan, Z.S.; Song, J. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci. 2013, 91, 1094–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, T.; Lai, W.; Han, M.; Han, M.; Ma, X.; Zhang, L. Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget 2017, 8, 64878–64891. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Lv, H.; Chen, Z.; Wang, L.; Wu, X.; Chen, Z.; Jiang, Z. Dietary zinc oxide modulates antioxidant capacity, small intestine development, and jejunal gene expression in weaned piglets. Biol. Trace Elem. Res. 2017, 175, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Starke, I.C.; Pieper, R.; Neumann, K.; Zentek, J.; Vahjen, W. The impact of high dietary zinc oxide on the development of the intestinal microbiota in weaned piglets. FEMS Microbiol. Ecol. 2014, 87, 416–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickinson, A.W.; Power, A.; Hansen, M.; Brandt, K.; Piliposian, G.; Appleby, P.; Koskella, B. Heavy metal pollution and co-selection for antibiotic resistance: A microbial palaeontology approach. Environ. Int. 2019, 132, 105117. [Google Scholar] [CrossRef]
- Ren, L.; Perera, C.; Hemar, Y. Antitumor activity of mushroom polysaccharides: A review. Food Funct. 2012, 3, 1118–1130. [Google Scholar] [CrossRef]
- Lindequist, U.; Niedermeyer, T.H.J.; Jülich, W.D. The pharmacological potential of mushrooms. Evidence-based complementary and alternative medicine. Evid. Based Complement. Altern. Med. 2005, 2, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Hu, Z.; Fu, H.; Hu, M.; Xu, X.; Chen, J. Chemical analysis and antioxidant activity in vitro of a β-D-glucan isolated from Dictyophora indusiata. Int. J. Biol. Macromol. 2012, 51, 70–75. [Google Scholar] [CrossRef]
- Du, B.; Lin, C.; Bian, Z.; Xu, B. An insight into anti-inflammatory effects of fungal beta-glucans. Trends Food Sci. Technol. 2015, 41, 49–59. [Google Scholar] [CrossRef]
- Giannenas, I.; Tontis, D.; Tsalie, E.; Chronis, E.F.; Doukas, D.; Kyriazakis, I. Influence of dietary mushroom Agaricus bisporus on intestinal morphology and microflora composition in broiler chickens. Res. Vet. Sci. 2010, 89, 78–84. [Google Scholar] [CrossRef]
- Giannenas, I.; Tsalie, E.; Chronis, E.; Mavridis, S.; Tontis, D.; Kyriazakis, I. Consumption of Agaricus bisporus mushroom affects the performance, intestinal microbiota composition and morphology, and antioxidant status of turkey poults. J. Anim. Feed Sci. 2011, 165, 218–229. [Google Scholar] [CrossRef]
- Shirvani, S.S.; Nouri, M.; Sakhinia, E.; Babaloo, Z.; Mohammadzaeh, A.; Alipour, S.; Khabbazi, A. The molecular and clinical evidence of vitamin D signaling as a modulator of the immune system: Role in Behçet’s disease. Immunol. Lett. 2019, 210, 10–19. [Google Scholar] [CrossRef]
- Bashir, M.; Prietl, B.; Tauschmann, M.; Mautner, S.I.; Kump, P.K.; Treiber, G.; Pieber, T.R. Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract. Eur. J. Nutr. 2016, 55, 1479–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holick, M.F.; Chen, T.C.; Lu, Z.; Sauter, E. Vitamin D and skin physiology: AD-lightful story. J. Bone Miner. Res. 2007, 22, V28–V33. [Google Scholar] [CrossRef]
- Singdevsachan, S.K.; Auroshree, P.; Mishra, J.; Baliyarsingh, B.; Tayung, K.; Thatoi, H. Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: A review. Bioact. Carbohydr. Diet. Fibre 2016, 7, 1–14. [Google Scholar] [CrossRef]
- Elsayed, E.A.; El Enshasy, H.; Wadaan, M.A.M.; Aziz, R. Mushrooms: A potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm. 2014, 805841. [Google Scholar] [CrossRef] [PubMed]
- Cardwell, G.; Bornman, J.F.; James, A.P.; Black, L.J. A review of mushrooms as a potential source of dietary vitamin D. Nutrients 2018, 10, 1498. [Google Scholar] [CrossRef] [Green Version]
- Duffy, S.K.; Kelly, A.K.; Rajauria, G.; Jakobsen, J.; Clarke, L.C.; Monahan, F.J.; O’Doherty, J.V. The use of synthetic and natural vitamin D sources in pig diets to improve meat quality and vitamin D content. Meat Sci. 2018, 143, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Conway, E.; Sweeney, T.; Dowley, A.; Maher, S.; Rajauria, G.; Yadav, S.; Wilson, J.; Gabrielli, W.; O’Doherty, J.V. The effects of mushroom powder and vitamin D2-enriched mushroom powder supplementation on the growth performance and health of newly weaned pigs. J. Anim. Physiol. Anim. Nutr. 2021, 105, 1–11. [Google Scholar] [CrossRef]
- Bouwhuis, M.; Sweeney, T.; Mukhopadhya, A.; Thornton, K.; McAlpine, P.; O’doherty, J. Zinc methionine and laminarin have growth-enhancing properties in newly weaned pigs influencing both intestinal health and diarrhoea occurrence. J. Anim. Physiol. Anim. 2017, 101, 1273–1285. [Google Scholar] [CrossRef] [PubMed]
- Chae, B.J.; Lohakare, J.D.; Moon, W.K.; Lee, S.L.; Park, Y.H.; Hahn, T.W. Effects of supplementation of β-glucan on the growth performance and immunity in broilers. Res. Vet. Sci. 2006, 80, 291–298. [Google Scholar] [CrossRef]
- Stepien, M.; O’Mahony, L.; O’Sullivan, A.; Collier, J.; Fraser, W.D.; Gibney, M.J.; Brennan, L. Effect of supplementation with vitamin D2-enhanced mushrooms on vitamin D status in healthy adults. J. Nutr. Sci. 2013, 2, e29. [Google Scholar] [CrossRef] [Green Version]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academic Press: Washington, DC, USA, 2012. [Google Scholar]
- Sauvant, D.; Perez, J.-M.; Tran, G. Tables of Composition and Nutritional Value of Feed Materials: Pigs, Poultry, Cattle, Sheep, Goats, Rabbits, Horses and Fish; Wageningen Academic Publishers: Amstelveen, The Netherlands, 2004. [Google Scholar]
- Walsh, A.M.; Sweeney, T.; O’Shea, C.J.; Doyle, D.N.; O’Doherty, J.V. Effect of supplementing varying inclusion levels of laminarin and fucoidan on growth performance, digestibility of diet components, selected faecal microbial populations and volatile fatty acid concentrations in weaned pigs. Anim. Feed Sci. Technol. 2013, 183, 151–159. [Google Scholar] [CrossRef]
- O’shea, C.; McAlpine, P.; Sweeney, T.; Varley, P.; O’doherty, J. Effect of the interaction of seaweed extracts containing laminarin and fucoidan with zinc oxide on the growth performance, digestibility and faecal characteristics of growing piglets. Br. J. Nutr. 2014, 111, 798–807. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemist (AOAC). Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; O’Doherty, J.V.; Tiwari, B.K.; Sweeney, T.; Rajauria, G. Enhancing the extraction of polysaccharides and antioxidants from macroalgae using sequential hydrothermal-assisted extraction followed by ultrasound and thermal technologies. Mar. Drugs 2019, 17, 457. [Google Scholar] [CrossRef] [Green Version]
- Mattila, P.H.; Piironen, V.I.; Uusi-Rauva, E.J.; Koivistoinen, P.E. Vitamin D contents in edible mushrooms. J. Agric. Food Chem. 1994, 42, 2449–2453. [Google Scholar] [CrossRef]
- Rattigan, R.; Sweeney, T.; Maher, S.; Thornton, K.; Rajauria, G.; O’Doherty, J. Laminarin rich extract improves growth performance, small intestinal morphology, gene expression of nutrient transporters, and the large intestinal microbial composition of piglets during the critical post-weaning period. Br. J. Nutr. 2019, 123, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Rattigan, R.; O’Doherty, J.V.; Vigors, S.; Ryan, M.T.; Sebastiano, R.S.; Callanan, J.J.; Thornton, K.; Rajauria, G.; Margassery, L.M.; Dobson, A.D.W. The effects of the marine-derived polysaccharides laminarin and chitosan on aspects of colonic health in pigs challenged with dextran sodium sulphate. Mar. Drugs 2020, 18, 262. [Google Scholar] [CrossRef] [PubMed]
- Clarke, L.; Sweeney, T.; Curley, E.; Gath, V.; Duffy, S.K.; Vigors, S.; O’Doherty, J. Effect of β-glucanase and β-xylanase enzyme supplemented barley diets on nutrient digestibility, growth performance and expression of intestinal nutrient transporter genes in finisher pigs. Anim. Feed Sci. Technol. 2018, 238, 98–110. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Knight, R. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [Green Version]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. Peer J. 2016, 4, e2584. [Google Scholar] [CrossRef]
- Eren, A.M.; Maignien, L.; Sul Sul, W.J.; Murphy, L.G.; Grim, S.L.; Morrison, H.G.; Sogin, M.L. Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol. 2013, 4, 1111–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eren, A.M.; Morrison, H.G.; Lescault, P.J.; Reveillaud, J.; Vineis, J.H.; Sogin, M.L. Minimum entropy decomposition: Unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 2015, 9, 968–979. [Google Scholar] [CrossRef]
- Angly, F.E.; Dennis, P.G.; Skarshewski, A.; Vanwonterghem, I.; Hugenholtz, P.; Tyson, G.W. CopyRighter: A rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction. Microbiome 2014, 2, 1–13. [Google Scholar] [CrossRef]
- Hamady, M.; Lozupone, C.; Knight, R. Fast UniFrac: Facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 2010, 4, 17–27. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- Dong, G.; Pluske, J. The low feed intake in newly-weaned pigs: Problems and possible solutions. Asian-australas. J. Anim. Sci. 2007, 20, 440–452. [Google Scholar] [CrossRef] [Green Version]
- Majesty, D.; Ijeoma, E.; Winner, K.; Prince, O. Nutritional, anti-nutritional and biochemical studies on the oyster mushroom, Pleurotus ostreatus. EC Nutr. 2019, 14, 36–59. [Google Scholar]
- Cheung, P.C.K. Mini-review on edible mushrooms as source of dietary fiber: Preparation and health benefits. Food Sci. Hum. Wellness 2013, 2, 162–166. [Google Scholar] [CrossRef] [Green Version]
- Vetter, J. Chitin content of cultivated mushrooms Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes. Food Chem. 2007, 102, 6–9. [Google Scholar] [CrossRef]
- Shamsi, S.; Seidavi, A.; Rahati, M.; Nieto, J.Á. Edible mushroom powder (Agaricus bisporus) and flavophospholipol improve performance and blood parameters of broilers. Rev. Colomb. Cienc. Pecu. 2015, 28, 291–302. [Google Scholar] [CrossRef]
- Egan, A.; O’Doherty, J.; Vigors, S.; Sweeney, T. Prawn shell chitosan exhibits anti-obesogenic potential through alterations to appetite, affecting feeding behaviour and satiety signals in vivo. PLoS ONE 2016, 11, e0149820. [Google Scholar] [CrossRef] [Green Version]
- Egan, Á.M.; Sweeney, T.; Hayes, M.; O’Doherty, J.V. Prawn shell chitosan has anti-obesogenic properties, influencing both nutrient digestibility and microbial populations in a pig model. PLoS ONE 2015, 10, e0144127. [Google Scholar] [CrossRef] [PubMed]
- Walsh, A.M.; Sweeney, T.; Bahar, B.; O’Doherty, J.V. Multi-functional roles of chitosan as a potential protective agent against obesity. PLoS ONE 2013, 8, e53828. [Google Scholar] [CrossRef]
- Lalles, J.P.; Boudry, G.; Favier, C.; Floch, N.; Le Huërou-Luron, I.; Montagne, L.; Sève, B. Gut function and dysfunction in young pigs. Physiology 2004, 53. [Google Scholar] [CrossRef] [Green Version]
- Daneshmand, A.; Sadeghi, G.H.; Karimi, A.; Vaziry, A. Effect of oyster mushroom (Pleurotus ostreatus) with and without probiotic on growth performance and some blood parameters of male broilers. J. Anim. Feed Sci. 2011, 170, 91–96. [Google Scholar] [CrossRef]
- Shao, Y.; Guo, Y.; Wang, Z. β-1, 3/1, 6-Glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Poult. Sci. 2013, 92, 1764–1773. [Google Scholar] [CrossRef]
- Pié, S.; Lallès, J.P.; Blazy, F.; Laffitte, J.; Sève, B.; Oswald, I.P. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 2004, 134, 641–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabay, C. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 2006, 8, S3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrat, F.J.; Cua, D.J.; Boonstra, A.; Richards, D.F.; Crain, C.; Savelkoul, H.F.; O’Garra, A. In vitro generation of interleukin 10–producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)– and Th2-inducing cytokines. J. Exp. Med. 2002, 195, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Bøhle, L.A.; Brede, D.A.; Diep, D.B.; Holo, H.; Nes, I.F. Specific degradation of the mucus adhesion-promoting protein (MapA) of Lactobacillus reuteri to an antimicrobial peptide. Appl. Environ. 2010, 76, 7306–7309. [Google Scholar] [CrossRef] [Green Version]
- Pessione, E. Lactic acid bacteria contribution to gut microbiota complexity: Lights and shadows. Front. Cell. Infect. Microbiol. 2012, 2. [Google Scholar] [CrossRef] [Green Version]
- Upadhaya, S.D.; Kim, Y.M.; Lee, K.Y.; Kim, I.H. Use of protected zinc oxide in lower doses in weaned pigs in substitution for the conventional high dose zinc oxide. J. Anim. Feed Sci. 2018, 240, 1–10. [Google Scholar] [CrossRef]
- Barbáchano, A.; Fernández-Barral, A.; Ferrer-Mayorga, G.; Costales-Carrera, A.; Larriba, M.J.; Muñoz, A. The endocrine vitamin D system in the gut. Mol. Cell. Endocrinol. 2017, 453, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Špoljarić, D.; Srečec, S.; Kardum Paro, M.M.; Čop, M.J.; Mršić, G.; Šimpraga, B.; Popović, M. The effects of feed supplemented with Agaricus bisporus on health and performance of fattening broilers. Vet. Arh. 2015, 85, 309–322. [Google Scholar]
- Myer, P.R.; Freetly, H.C.; Wells, J.E.; Smith, T.P.L.; Kuehn, L.A. Analysis of the gut bacterial communities in beef cattle and their association with feed intake, growth, and efficiency. J. Anim. Sci. 2017, 95, 3215–3224. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yang, M.; Fang, S.; Huang, X.; He, M.; Ke, S.; Huang, L. Evaluating the profound effect of gut microbiome on host appetite in pigs. BMC Microbiol. 2018, 18, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mach, N.; Berri, M.; Estellé, J.; Levenez, F.; Lemonnier, G.; Denis, C.; Lepage, P. Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ. Microbiol. Rep. 2015, 7, 554–569. [Google Scholar] [CrossRef] [PubMed]
- Vigors, S.; O’Doherty, J.V.; Rattigan, R.; McDonnell, M.J.; Rajauria, G.; Sweeney, T. Effect of a laminarin rich macroalgal extract on the caecal and colonic microbiota in the post-weaned pig. Mar. Drugs 2020, 18, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatments 1 | ||||
---|---|---|---|---|
Ingredients (g/kg unless Otherwise Stated) | Basal | Zinc Oxide | Mushroom | Vit D2 Mushroom |
Ground wheat | 355.4 | 352.3 | 353.4 | 353.4 |
Full-fat soya bean | 170 | 170 | 170 | 170 |
Soya bean meal (48% CP) | 105 | 105 | 105 | 105 |
Whey powder (900 g CP/kg) | 50 | 50 | 50 | 50 |
Mushroom Powder | 0 | 0 | 2 | 2 |
Zinc oxide | 0 | 3.1 | 0 | 0 |
Soya oil | 30 | 30 | 30 | 30 |
Soybean concentrate | 65 | 65 | 65 | 65 |
Flaked wheat | 130 | 130 | 130 | 130 |
Flaked maize | 70 | 70 | 70 | 70 |
L-Lysine-HCl | 4 | 4 | 4 | 4 |
DI-Methionine | 2 | 2 | 2 | 2 |
L-Threonine | 1.8 | 1.8 | 1.8 | 1.8 |
L-Tryptophan | 0.3 | 0.3 | 0.3 | 0.3 |
Sodium bicarbonate | 2 | 2 | 2 | 2 |
Monocalcium phosphate | 4 | 4 | 4 | 4 |
Vitamin and mineral premix 2 | 2.5 | 2.5 | 2.5 | 2.5 |
Calcium carbonate (limestone) | 6 | 6 | 6 | 6 |
Salt | 2 | 2 | 2 | 2 |
Analysed chemical analysis | ||||
Gross energy (MJ/kg) | 16.9 | 16.9 | 16.8 | 16.9 |
Dry matter | 899 | 899.5 | 897.5 | 898.1 |
Crude protein | 208 | 208.3 | 208.5 | 208.5 |
Lysine (%) 3 | 1.4 | 1.4 | 1.4 | 1.4 |
Threonine (%) 3 | 0.9 | 0.9 | 0.9 | 0.9 |
Methionine and cysteine (%) 3 | 0.8 | 0.8 | 0.8 | 0.8 |
Tryptophan (%) 3 | 0.3 | 0.3 | 0.3 | 0.3 |
Standardised ileal digestible lysine 3 | 13.0 | 13.0 | 13.0 | 13.0 |
Crude fat | 79.9 | 80.3 | 80.1 | 80 |
Crude fibre | 28 | 28 | 28.2 | 28.3 |
Neutral detergent fibre | 99 | 98.7 | 99.5 | 99.3 |
Ash | 46.2 | 46.1 | 46 | 46.2 |
Vitamin D3 (µg/kg) 3 | 50 | 50 | 50 | 50 |
Additional vitamin D2 (µg/kg) | 0 | 0 | 0 | 99 |
Β-glucan (mg/kg) | 0 | 0 | 198 | 205 |
Target Gene | Accession No. | Forward Primer (5’-3’) Reverse Primer (5’-3’) | Amplicon Length (bp) |
---|---|---|---|
IL6 | NM_214399.1 | F: GACAAAGCCACCACCCCTAA R: CTCGTTCTGTGACTGCAGCTTATC | 69 |
CXCL8 | NM_213867.1 | F: TGCACTTACTCTTGCCAGAACTG R: CAAACTGGCTGTTGCCTTCTT | 82 |
IL10 | NM_214041.1 | F: GCCTTCGGCCCAGTGAA R: AGAGACCCGGTCAGCAACAA | 71 |
IL17A | NM_001005729.1 | F: CCCTGTCACTGCTGCTTCTG R: TCATGATTCCCGCCTTCAC | 57 |
IFNG | NM_213948.1 | F: TCTAACCTAAGAAAGCGGAAGAGAA R: TTGCAGGCAGGATGACAATTA | 81 |
TNF | NM_214022.1 | F: TGGCCCCTTGAGCATCA R: CGGGCTTATCTGAGGTTTGAGA | 68 |
TGFB1 | NM_214015.1 | F: AGGGCTACCATGCCAATTTCT R: CGGGTTGTGCTGGTTGTACA | 101 |
TLR4 | NM_001293317.1 | F: TGCATGGAGCTGAATTTCTACAA R: GATAAATCCAGCACCTGCAGTTC | 140 |
MUC1 | XM_001926883.1 | F: ACACCCATGGGCGCTATGT R: GCCTGCAGAAACCTGCTCAT | 68 |
MUC2 | XM_021082584.1 | F: CAACGGCCTCTCCTTCTCTGT R: GCCACACTGGCCCTTTGT | 70 |
ZOI | XM_005659811.1 | F: TGAGAGCCAACCATGTCTTGAA R: CTCAGACCCGGCTCTCTGTCT | 76 |
CLND3 | NM_001160075.1 | F: GAGGGCCTGTGGATGAACTG R: GAGTCGTACACTTTGCACTGCAT | 65 |
CCK | NM_214237.2 | F: GGACCCCAGCCACAGAATAA R: GCGCCGGCCAAAATC | |
FABP2 | NM_001031780.1 | F: CAGCCTCGCAGACGGAACTGAA R: GTGTTCTGGGCTGTGCTCCAAGA | 102 |
SLC2A1/GLUT1 | XM_003482115.1 | F: TGCTCATCAACCGCAATGA R: GTTCCGCGCAGCTTCTTC | 72 |
SLC2A2/GLUT2 | NM_001097417.1 | F: CCAGGCCCCATCCCCTGGTT R: GCGGGTCCAGTTGCTGAATGC | 96 |
SLC2A5/GLUT5 | XM_021095282.1 | F: CCCAGGAGCCGGTCAAG R: TCAGCGTCGCCAAAGCA | 60 |
SLC5A1/SGLT1 | NM_001164021 | F: GGCTGGACGAAGTATGGTG R: ACAACCACCCAAATCAGAGC | |
SLC15A1/PEPT1 | NM_214347.1 | F: GGATAGCCTGTACCCCAAGCT R: CATCCTCCACGTGCTTCTTGA | 73 |
VDR | NM_001097414.1 | F: CCTTCACCATGGACGACATG R:TGGCCACGTCGCTGACTT | 73 |
B2M | NM_213978.1 | F: CGGAAAGCCAAATTACCTGAAC R:TCTCCCCGTTTTTCAGCAAAT | 83 |
GAPDH | NM_001206359 | F: CAGCAATGCCTCCTGTACCA R: ACGATGCCGAAGTTGTCATG | 72 |
PPIA | NM_214353.1 | F: CGGGTCCTGGCATCTTGT R: TGGCAGTGCAAATGAAAAACT | 75 |
YWZHAZ | NM_001315726.1 | F: GGACATCGGATACCCAAGGA R:AAGTTGGAAGGCCGGTTAATTT | 71 |
Dietary Treatments 1 | SEM | p Values | ||||
---|---|---|---|---|---|---|
Control 2 | ZnO 2 | Mushroom 2 | Vit D2 Mushroom 2 | Treatment | ||
Initial body weight (kg) | 7.8 | 7.8 | 7.7 | 7.8 | 0.16 | 0.824 |
Final body weight (kg) | 31.3 b,c | 31.8 c | 30.4 a,b | 29.5 a | 0.49 | 0.007 |
ADG (kg/day) | 0.56 b,c | 0.57 c | 0.54 a,b | 0.52 a | 0.012 | <0.001 |
ADFI (kg/day) | 0.91 b | 0.96 c | 0.87 a | 0.88 a | 0.009 | <0.001 |
Gain:feed | 0.62 | 0.61 | 0.62 | 0.60 | 0.013 | 0.723 |
Faecal score3 | 3.00 b | 2.57 a | 3.07 b | 3.00 a | 0.067 | <0.001 |
Diarrhoea incidence % (day 1–14) * | 25.0 a | 2.8 b | 38.9 a | 36.1 a | 0.136 | <0.001 |
Intestinal Site | Treatments 1 | SEM | p-Values | ||||
---|---|---|---|---|---|---|---|
Control 2 | ZnO 2 | Mushroom 2 | Vit D2 Mushroom 2 | ||||
Duodenum | VH µm | 342.5 a | 391.6 b | 395.8 b | 381.4 b | 14.61 | <0.05 |
CD µm | 163.6 | 170.4 | 169.0 | 177.2 | 8.38 | 0.719 | |
VH:CD | 2.1 | 2.4 | 2.4 | 2.2 | 0.14 | 0.446 | |
Jejunum | VH µm | 288.0 a | 319.6 b | 302.3 a,b | 318.9 b | 10.52 | 0.12 |
CD µm | 167.3 b | 159.5 b | 133.6 a | 149.7 a,b | 9.02 | 0.064 | |
VH:CD | 1.8 a | 2.1 a,b | 2.3 b | 2.2 b | 0.14 | 0.068 | |
Ileum | VH µm | 289.7 a | 322.1 b | 306.8 a,b | 322.3 b | 10.14 | <0.05 |
CD µm | 167.3 b | 159.5 b | 133.6 a | 149.7 a,b | 9.01 | <0.05 | |
VH:CD | 1.8 a | 2.1 a,b | 2.4 b | 2.2 b | 0.14 | 0.059 |
Treatments 1 | SEM | p-Values | ||||
---|---|---|---|---|---|---|
Control 2 | ZnO 2 | Mushroom 2 | Vit D2 Mushroom 2 | |||
Observed | 23.00 | 24.00 | 25.00 | 26.00 | 2.021 | 0.237 |
Chao1 | 55.42 | 53.5 | 50.58 | 52.54 | 0.888 | 0.723 |
ACE | 22.37 | 20.87 | 24.27 | 25.72 | 1.593 | 0.517 |
Shannon | 6.84 | 5.89 | 6.93 | 6.51 | 0.208 | 0.272 |
Simpson | 3.76 | 3.73 | 3.61 | 3.68 | 0.027 | 0.479 |
InvSimpson | 0.97 | 0.97 | 0.96 | 0.97 | 0.001 | 0.388 |
Fisher | 32.53 | 31.23 | 27.73 | 30.54 | 1.037 | 0.301 |
Treatment 1 | SEM | p-Values | ||||
---|---|---|---|---|---|---|
Phylum | Control 2 | ZnO 2 | Mushroom 2 | Vit D2 Mushroom 2 | ||
Bacteroidetes | 33.4 | 29.07 | 30.08 | 29.74 | 1.596 | 0.239 |
Firmicutes | 64.72 | 68.76 | 67.8 | 67.84 | 2.368 | 0.649 |
Tenericutes | 0.11 | 0.04 | 0.17 | 0.06 | 0.085 | 0.763 |
Actinobacteria | 0.51 | 0.72 | 0.63 | 0.5 | 0.221 | 0.88 |
Proteobacteria | 0.54 | 1.03 | 0.32 | 1.01 | 0.24 | 0.15 |
Treatments 1 | SEM | p-Values | ||||
---|---|---|---|---|---|---|
Family | Control 2 | ZnO 2 | Mushroom 2 | Vit D2 Mushroom 2 | ||
Prevotellaceae | 33.10 b | 27.84 a | 29.65 a,b | 29.30 a,b | 1.58 | 0.130 |
Muribaculaceae | 0.11 | 0.46 | 0.14 | 0.14 | 0.126 | 0.273 |
Propionibacteriaceae | 0.03 | 0.12 | 0.01 | 0.03 | 0.057 | 0.728 |
Burkholderiaceae | 0.12 | 0.28 | 0.12 | 0.14 | 0.115 | 0.734 |
Tannerellaceae | 0.17 | 0.3 | 0.09 | 0.03 | 0.103 | 0.466 |
Lachnospiaceae | 15.87 | 14.65 | 13.91 | 16.47 | 1.126 | 0.376 |
Eubacteriaceae | 0.49 | 0.44 | 0.48 | 0.43 | 0.196 | 0.995 |
Ruminococcaceae | 23.67 | 23.61 | 22.36 | 23.06 | 1.390 | 0.902 |
Peptostreptococcaceae | 0.28 | 0.31 | 0.18 | 0.36 | 0.152 | 0.863 |
VAR15 | 3.92 | 5.16 | 5.39 | 4.72 | 0.631 | 0.388 |
Hungateiclostridiaceae | 0.16 | 0.27 | 0.08 | 0.15 | 0.114 | 0.735 |
Clostridiaceae | 3.17 | 3.66 | 4.14 | 3.90 | 0.556 | 0.643 |
Oscillospiraceae | 0.05 | 0.15 | 0.10 | 0.04 | 0.080 | 0.791 |
Mycoplasmataceae | 0.06 | 0.02 | 0.17 | 0.06 | 0.075 | 0.67 |
Coriobacteriaceae | 0.38 | 0.39 | 0.53 | 0.40 | 0.188 | 0.93 |
Enterobacteriaceae | 0.03 | 0.41 | 0.04 | 0.33 | 0.114 | 0.238 |
Succinivibrionaceae | 0.38 | 0.19 | 0.16 | 0.39 | 0.149 | 0.615 |
Veillonellaceae | 0.7 | 0.39 | 0.65 | 0.61 | 0.220 | 0.772 |
Selenomonadaceae | 1.1 | 1.02 | 1.22 | 1.27 | 0.31 | 0.934 |
Streptococcaceae | 4.41 | 4.6 | 5.68 | 5.94 | 0.654 | 0.271 |
Christensenellaceae | 0.02 | 0.02 | 0.08 | 0.03 | 0.053 | 0.852 |
Erysipelotrichaceae | 0.04 | 0.11 | 0.07 | 0.23 | 0.093 | 0.593 |
Lactobacillaceae | 10.58 a | 14.16 b | 9.92 a | 10.32 a | 1.000 | 0.022 |
Treatments 1 | SEM | p-Values | ||||
---|---|---|---|---|---|---|
Genus | Control 2 | ZnO 2 | Mushroom 2 | Vit D2 Mushroom 2 | ||
Prevotella | 29.06 b | 23.38 a | 24.90 a | 23.94 a | 1.451 | 0.035 |
Muribaculum | 0.11 | 0.39 | 0.13 | 0.12 | 0.119 | 0.363 |
Propionibacterium | 0.03 | 0.12 | 0.01 | 0.03 | 0.057 | 0.728 |
Ralstonia | 0.12 | 0.28 | 0.12 | 0.14 | 0.115 | 0.734 |
Parabacteroides | 0.17 | 0.30 | 0.09 | 0.03 | 0.103 | 0.466 |
Alloprevotella | 0.94 | 1.16 | 1.25 | 1.15 | 0.306 | 0.905 |
Prevotellamassilia | 3.05 | 3.30 | 3.51 | 4.2 | 0.540 | 0.482 |
Oribacterium | 0.32 | 0.30 | 0.24 | 0.22 | 0.149 | 0.956 |
Anaerobutyricum | 0.79 | 0.78 | 0.61 | 0.79 | 0.248 | 0.942 |
Dorea | 1.75 | 1.70 | 1.86 | 1.85 | 0.386 | 0.988 |
Coprococcus | 2.7 | 2.65 | 2.92 | 3.89 | 0.502 | 0.282 |
Lachnoclostridium | 0.35 | 0.09 | 0.06 | 0.24 | 0.117 | 0.395 |
Anaerostipes | 0.21 | 0.12 | 0.08 | 0.09 | 0.100 | 0.782 |
Blautia | 1.39 | 1.74 | 1.53 | 1.52 | 0.358 | 0.919 |
Lachnobacterium | 0.07 | 0.04 | 0.02 | 0.06 | 0.060 | 0.95 |
Roseburia | 3.29 | 2.79 | 3.01 | 3.42 | 0.510 | 0.817 |
Pseudobutyrivibrio | 2.89 | 2.20 | 1.91 | 2.99 | 0.454 | 0.284 |
Eubacterium | 0.49 | 0.44 | 0.48 | 0.43 | 0.196 | 0.995 |
Kineothrix | 0.14 | 0.31 | 0.15 | 0.09 | 0.117 | 0.642 |
Murimonas | 0.38 | 0.38 | 0.38 | 0.38 | 0.172 | 0.744 |
Gemmiger | 5.58 | 5.29 | 5.17 | 6.92 | 0.690 | 0.271 |
Faecalibacterium | 15.80 | 15.40 | 15.33 | 13.29 | 1.116 | 0.392 |
Peptoclostridium | 0.27 | 0.31 | 0.15 | 0.32 | 0.146 | 0.856 |
Clostridium | 1.24 | 1.35 | 2.04 | 1.87 | 0.366 | 0.356 |
Anaerobacterium | 0.15 | 0.26 | 0.08 | 0.12 | 0.110 | 0.703 |
Ruminococcus | 1.31 | 1.52 | 1.06 | 1.42 | 0.332 | 0.783 |
Neglecta | 0.03 | 0.04 | 0.02 | 0.07 | 0.056 | 0.946 |
Agathobaculum | 0.39 | 0.50 | 0.28 | 0.55 | 0.188 | 0.764 |
Butyricicoccus | 1.93 | 2.31 | 2.11 | 2.03 | 0.417 | 0.932 |
Oscillibacter | 0.05 | 0.15 | 0.10 | 0.04 | 0.112 | 0.791 |
Sporobacter | 0.20 | 0.43 | 0.19 | 0.43 | 0.158 | 0.589 |
Intestinimonas | 0.09 | 0.13 | 0.26 | 0.18 | 0.115 | 0.784 |
Mycoplasma | 0.06 | 0.02 | 0.17 | 0.06 | 0.075 | 0.670 |
Succinivibrio | 0.38 | 0.19 | 0.16 | 0.39 | 0.149 | 0.615 |
Megasphaera | 0.15 | 0.17 | 0.19 | 0.13 | 0.114 | 0.984 |
Dialister | 0.55 | 0.22 | 0.46 | 0.48 | 0.187 | 0.657 |
Mitsuokella | 0.04 | 0.03 | 0.03 | 0.01 | 0.047 | 0.983 |
Anaerovibrio | 1.06 | 0.99 | 1.19 | 1.26 | 0.306 | 0.920 |
Lactococcus | 0.01 | 0.01 | 0.03 | 0.02 | 0.038 | 0.968 |
Streptococcus | 4.40 | 4.59 | 5.64 | 5.92 | 0.653 | 0.282 |
Beduinibacterium | 0.02 | 0.02 | 0.08 | 0.03 | 0.053 | 0.852 |
Turicibacter | 0.04 | 0.11 | 0.07 | 0.23 | 0.093 | 0.593 |
Lactobacillus | 10.58 a | 14.16 b | 9.92 a | 10.32 a | 1.000 | 0.022 |
Treatments 1 | SEM | p-Value | ||||
---|---|---|---|---|---|---|
Control 2 | ZnO 2 | Mushroom 2 | Vit D2 Mushroom 2 | |||
Total VFA (mmol/g digesta) | 185.25 a | 172.10 a | 194.00 a | 231.73 b | 12.684 | 0.014 |
Molar proportions (%) | ||||||
Acetate | 68.40 | 71.39 | 69.43 | 71.28 | 1.244 | 0.262 |
Propionate | 21.54 | 19.80 | 20.83 | 20.11 | 0.763 | 0.390 |
Butyrate | 7.49 a,b | 7.75 b | 7.71 a,b | 6.47 a | 0.405 | 0.145 |
Isovalerate | 0.58 a,b | 0.70 a | 0.63 a | 0.41 b | 0.076 | 0.069 |
Isobutyrate | 0.36 b | 0.37 b | 0.32 a,b | 0.24 a | 0.039 | 0.116 |
Valerate | 1.62 | 1.63 | 1.68 | 1.22 | 0.183 | 0.270 |
Treatments 1 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|
Gene | Control 2 | ZnO 2 | Mushroom 2 | Vit D2 Mushroom 2 | |||
Duodenum | |||||||
Nutrient transporters | SLC15A1/PEPT1 | 0.81 a | 1.22 b | 1.20 b | 1.10 b | 0.090 | 0.012 |
FABP2 | 0.79 a | 1.31 b | 1.13 b | 1.19 b | 0.119 | 0.026 | |
VDR | 0.94 a | 0.94 a | 1.11 a,b | 1.22 b | 0.095 | 0.122 | |
SLC2A1/GLUT1 | 1.16 | 0.98 | 1.08 | 1.10 | 0.117 | 0.766 | |
Tight junctions and immune markers | TNF | 1.16 a | 0.78 b | 1.03 a, b | 0.99 a,b | 0.119 | 0.174 |
CXCL8 | 0.90 a | 1.21 b | 1.05 a,b | 0.97 a | 0.099 | 0.163 | |
IL6 | 1.22 a | 0.72 b | 1.05 a,b | 0.78 b | 0.153 | 0.098 | |
IL10 | 1.15 | 1.01 | 0.92 | 1.04 | 0.120 | 0.629 | |
IFNG | 1.13 | 0.99 | 1.06 | 0.98 | 0.112 | 0.807 | |
ZO1 | 1.02 | 1.02 | 1.09 | 0.95 | 0.062 | 0.465 | |
MUC2 | 1.19 | 1.00 | 1.22 | 0.97 | 0.144 | 0.497 | |
Ileum | |||||||
Nutrient transporters | FABP2 | 1.40 | 1.00 | 1.35 | 1.16 | 0.235 | 0.611 |
SLC15A1/PEPT1 | 1.36 | 0.81 | 1.23 | 1.19 | 0.205 | 0.276 | |
VDR | 1.39 | 1.09 | 1.12 | 1.10 | 0.241 | 0.804 | |
SLC5A1/SGLT1 | 1.33 | 0.87 | 1.28 | 1.43 | 0.192 | 0.189 | |
SLC2A1/GLUT1 | 1.36 | 0.90 | 0.92 | 1.03 | 0.136 | 0.087 | |
SLC2A2/GLUT2 | 1.80 a | 0.71 b | 1.31 a,b | 1.37 a,b | 0.273 | 0.06 | |
SLC2A5/GLUT5 | 1.61 | 1.03 | 1.14 | 1.17 | 0.276 | 0.517 | |
Tight junctions and immune markers | TNF | 2.98 | 1.21 | 1.09 | 1.13 | 0.126 | 0.652 |
CXCL8/IL8 | 0.98 a,b | 1.12 a,b | 0.86 a | 1.19 b | 0.114 | 0.191 | |
IL6 | 0.97 | 1.24 | 1.16 | 1.32 | 0.170 | 0.532 | |
IL10 | 0.89 a | 0.96 a | 1.17 a,b | 1.34 b | 0.131 | 0.078 | |
TGFB | 0.98 | 1.12 | 1.06 | 1.13 | 0.109 | 0.772 | |
IL17 | 0.90 | 1.43 | 1.05 | 1.23 | 0.197 | 0.274 | |
TLR4 | 1.02 | 0.95 | 1.14 | 1.21 | 0.110 | 0.337 | |
CLDN3 | 1.82 | 1.11 | 1.19 | 1.35 | 0.292 | 0.341 | |
CLDN1 | 1.03 a | 1.00 a | 1.40 b | 0.86 a | 0.129 | 0.032 | |
MUC1 | 1.4 | 1.03 | 0.91 | 1.26 | 0.195 | 0.298 | |
MUC2 | 1.36 | 1.04 | 1.3 | 1.56 | 0.261 | 0.578 | |
Appetite regulators | CCK | 0.95 | 1.07 | 0.79 | 1.02 | 0.127 | 0.389 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dowley, A.; Sweeney, T.; Conway, E.; Vigors, S.; Yadav, S.; Wilson, J.; Gabrielli, W.; O’Doherty, J.V. Effects of Dietary Supplementation with Mushroom or Vitamin D2-Enriched Mushroom Powders on Gastrointestinal Health Parameters in the Weaned Pig. Animals 2021, 11, 3603. https://doi.org/10.3390/ani11123603
Dowley A, Sweeney T, Conway E, Vigors S, Yadav S, Wilson J, Gabrielli W, O’Doherty JV. Effects of Dietary Supplementation with Mushroom or Vitamin D2-Enriched Mushroom Powders on Gastrointestinal Health Parameters in the Weaned Pig. Animals. 2021; 11(12):3603. https://doi.org/10.3390/ani11123603
Chicago/Turabian StyleDowley, Alison, Torres Sweeney, Eadaoin Conway, Stafford Vigors, Supriya Yadav, Jude Wilson, William Gabrielli, and John V. O’Doherty. 2021. "Effects of Dietary Supplementation with Mushroom or Vitamin D2-Enriched Mushroom Powders on Gastrointestinal Health Parameters in the Weaned Pig" Animals 11, no. 12: 3603. https://doi.org/10.3390/ani11123603
APA StyleDowley, A., Sweeney, T., Conway, E., Vigors, S., Yadav, S., Wilson, J., Gabrielli, W., & O’Doherty, J. V. (2021). Effects of Dietary Supplementation with Mushroom or Vitamin D2-Enriched Mushroom Powders on Gastrointestinal Health Parameters in the Weaned Pig. Animals, 11(12), 3603. https://doi.org/10.3390/ani11123603