Characteristics of Cowsheds in Vietnamese Smallholder Dairy Farms and Their Associations with Microclimate—A Preliminary Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farm Visits and Measurements of Altitude, Latitude and Microclimate Data
2.1.1. Farm Visits
2.1.2. Altitude, Latitude and Microclimate Data
Tdp = (237.3 ° b)/(1.0 − b);
b = [log(RH/100.0) + (17.27 × AT)/(237.3 + AT)]/17.27
When GT < 25, HLI = 10.66 + 2.8 × RH + 1.3 × GT−AS,
AHLU at 06:00 h (the first time point of measurement) = AHLUIncrement at 06:00 h,
AHLUIncrement = 0, if 77 ≤ HLICurrent ≤ 86
AHLUIncrement = HLICurrent − 86, if HLICurrent > 86
2.2. Farm Observation and Barn Measurements
2.3. Data Analysis
2.3.1. Statistical Comparisons
2.3.2. Hierarchical Clustering on Principal Components
2.3.3. Multivariate Linear Regression
3. Results
3.1. Microclimate within the Cow Sheds
3.2. Housing Design
3.2.1. Summary of Housing Management Variables
3.2.2. Factor Analysis and Clustering Analyses
3.3. Multivariate Models Identifying Factors Associated with Cow Shed Microclimate
4. Discussion
4.1. Shed Microclimate
4.2. Associations between Housing Management and Cowshed Microclimate
4.3. Tie-Up, Floor Space and Mat Use
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moran, J.B. Addressing the key constraints to increasing milk production from small holder dairy farms in tropical Asia. Int. J. Agric. Biosci. 2013, 2, 90–98. [Google Scholar]
- Lam, V.; Wredle, E.; Thao, N.T.; van Man, N.; Svennersten-sjaunja, K.; Nguyen, T.T.; Ngo, V.M.; Svennersten-sjaunja, K.; Thao, N.T.; van Man, N.; et al. Smallholder dairy production in Southern Vietnam: Production, management and milk quality problems. Afr. J. Agric. Res. 2010, 5, 2668–2675. [Google Scholar]
- Polsky, L.; von Keyserlingk, M.A. Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef] [Green Version]
- Kadzere, C.; Murphy, M.; Silanikove, N.; Maltz, E. Heat stress in lactating dairy cows: A review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- Hansen, P.J. Exploitation of genetic and physiological determinants of embryonic resistance to elevated temperature to improve embryonic survival in dairy cattle during heat stress. Theriogenology 2007, 68, S242–S249. [Google Scholar] [CrossRef]
- Gaughan, J.B.; Mader, T.L.; Holt, S.M.; Lisle, A. A new heat load index for feedlot cattle1. J. Anim. Sci. 2008, 86, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Herbut, P.; Angrecka, S.; Walczak, J. Environmental parameters to assessing of heat stress in dairy cattle—A review. Int. J. Biometeorol. 2018, 62, 2089–2097. [Google Scholar] [CrossRef] [Green Version]
- Zimbleman, R.B.; Rhoads, R.P.; Rhoads, M.L.; Duff, G.C.; Baumgard, L.H.; Collier, R.J. A Re-Valuation of The Impact of Temperature Humidity Index (Thi) and Black Globe Humidity Index (Bghi) on Milk Production in High Producing Dairy Cows. In Proceedings of the 24th Annual Southwest Nutrition and Management Conference, Savoy, IL, USA, 26–27 February 2009; pp. 158–168. [Google Scholar]
- Collier, R.; Dahl, G.E.; van Baale, M.J. Major advances associated with environmental effects on dairy cattle. J. Dairy Sci. 2006, 89, 1244–1253. [Google Scholar] [CrossRef]
- Ambazamkandi, P.; Thyagarajan, G.; Sambasivan, S.; Davis, J.; Shanmugam, S.; Joseph, B.A. Shelter Design for Different Livestock from a Climate Change Perspective. In Climate Change Impact on Livestock: Adaptation and Mitigation; Springer: New Delhi, India, 2015; pp. 399–424. [Google Scholar]
- Fournel, S.; Ouellet, V.; Charbonneau, É. Practices for alleviating heat stress of dairy cows in humid continental climates: A literature review. Animals 2017, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Hayes, D. Vietnam takes off. Dairy Ind. Int. 2012, 77, 26–27. [Google Scholar]
- Duteurtre, G.; Cesaro Nguyen, J.-D.; Huong, M.; Duy, P.; Nguyen, K.; Luan, N. Multiscale Assessment of the Livestock Development Pathways in Vietnam the Th Milk Company (Vietnam): Is Such a Large-Scale Investment Sustainable; REVALTER Research Team in Livestock Trasition in Vietnam; Report of a Visit Conducted: Nghĩa Đàn District, Vietnam, October 2015. [Google Scholar]
- Moran, J.; Chamberlain, P. Blueprints for Tropical Dairy Farming: Increasing Domestic Milk Production in Developing Countries; CSIRO Publishing: Clayton, Victoria, Australia, 2017. [Google Scholar]
- Bewley, J.; Robertson, L.; Eckelkamp, E. A 100-year review: Lactating dairy cattle housing management. J. Dairy Sci. 2017, 100, 10418–10431. [Google Scholar] [CrossRef] [PubMed]
- Flaba, J.; Georg, H.; Graves, R.E.; Lensink, J.; Loynes, J.; Ofner-schrock, E.; Ryan, T.; Ventorp, M.; Zappavigna, P. The Design of Dairy Cow and Replacement Heifer Housing; Report of the CIGR Section II Working Group, CIGR International Commission of Agriculture and Biosystems Engineering: Gainesville, FL, USA, 2014. [Google Scholar]
- Moran, J.; Doyle, R. Cow Talk: Understanding Dairy Cow Behaviour to Improve Their Welfare on Asian Farms; CSIRO Publishing: Clayton, Victoria, Australia, 2015. [Google Scholar]
- Assured Food Standards. Red Tractor Assurance for Farms Dairy Standards; Assured Food Standards: London, UK, 2017. [Google Scholar]
- Royal Society for the Prevention of Cruelty to Animals (RSPCR). RSPCA Welfare Standards for Dairy Cattle; Royal Society for the Prevention of Cruelty to Animals: London, UK, 2018. [Google Scholar]
- National Farm Animal Care Council (NFACC). NFACC Code of Practice for the Care and Handling of Dairy Cattle; National Farm Animal Care Council (NFACC): Ottawa, ON, Canada, 2009. [Google Scholar]
- The British Columbia Society for the Prevention of Cruelty to Animals. Bc Spca Standards for the Raising and Handling of Dairy Cattle; The British Columbia Society for the Prevention of Cruelty to Animals: Vancouver, BC, Canada, 2018. [Google Scholar]
- Moran, J. Improving livestock welfare in developing countries: Bringing Australian export dairy heifers into the “welfare tent”. Agric. Sci. 2015, 27, 56–62. [Google Scholar]
- Ashbaugh, H.R.B.A. A Descriptive Survey of Dairy Farmers in Vinh Thinh Commune, Vietnam; The Ohio State University: Columbus, OH, USA, 2010. [Google Scholar]
- Phong, L.V.; Thu, N.V. Investigation of growth, production and dairy techniques at Song Hau Farm, Long Hoa and Evergrowth Dairy Cow Cooperative in the Mekong Delta. Can Tho Uni. J. Sci. 2016, 2, 48–55. [Google Scholar] [CrossRef]
- Chu, T.K.L.; Yokogawa, H.; Kawaguchi, T. An analysis of the factors affecting dairy cow production in the South east of Vietnam. J. Fac. Agric. Kyushu Univ. 2005, 50, 271–294. [Google Scholar]
- Trach, N.X.; Thom, M.T.; Ban, L.V. Textbook of Cattle and Buffalo Production; Agriculture Publishing House: Hanoi, Vietnam, 2007. [Google Scholar]
- Van Cai, D.; Long, V.N. Investigation of the Status of the Use of Dairy Sires and Semen Straws in the Southern Vietnam. 2002. Available online: https://www.dairyvietnam.com/vn/Cac-thong-tin-tinh-bo-trong-va-ngoai-nuoc/Dieu-tra-hien-trang-su-dung-tinh-va-duc-giong-bo-huong-sua-tai-phia-Nam-2269.html (accessed on 27 September 2019).
- General Statistics Office of Vietnam Statistics on Number of Domestic Animals and Animal Products of the Whole Country by 01/10/2017. Available online: http://nhachannuoi.vn/thong-ke-so-luong-va-san-luong-gia-suc-gia-cam-ca-nuoc-01102017/ (accessed on 27 July 2019).
- Lambertz, C.; Vu, N.H.; Gauly, M. Factors Influencing milk yield, quality and revenue of dairy farms in Southern Vietnam. Asian J. Anim. Sci. 2016, 10, 290–299. [Google Scholar] [CrossRef]
- Tuyen, D.K. Development Situation of Dairy Farming in Vietnam in the Period 2001–2009 and Forecast for 2010–2020 (in Vietnamese); Department of Livestock Production: Hanoi, Vietnam, 2009.
- Nga, B.T. An analysis of the fresh milk chain in Ha Nam province of Vietnam. Environ. Sci. Water Res. Technol. 2017, 1, 33–39. [Google Scholar]
- Nga, B.T. Efficiency of milk production in small holders of Cu Chi district, Ho Chi Minh city of Vietnam. Sch. J. Econ. Bus. Manag. 2017, 4, 527–531. [Google Scholar]
- Beede, D.; Collier, R.J. Potential nutritional strategies for intensively managed cattle during thermal stress. J. Anim. Sci. 1986, 62, 543–554. [Google Scholar] [CrossRef]
- Brouček, J.; Novák, P.; Vokřálová, J.; Šoch, M.; Kišac, P.; Uhrinčať, M. Effect of high temperature on milk production of cows from free-stall housing with natural ventilation. Slovak J. Anim. Sci. 2009, 42, 167–173. [Google Scholar]
- West, J.W. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Yousef, M.K. Stress Physiology in Livestock; CRC Press: Boca Raton, FL, USA, 1985. [Google Scholar]
- General Statistics Office of Vietnam Weather Data. Available online: http://www.gso.gov.vn/default_en.aspx?tabid=515&idmid=5&ItemID=19299 (accessed on 16 December 2019).
- World Weather Online. Available online: https://www.worldweatheronline.com/ (accessed on 23 August 2017).
- Moran, J. Managing High Grade Dairy Cows in the Tropics; CSIRO Publishing: Clayton, Victoria, Australia, 2012. [Google Scholar]
- The R Development Core Team. R: A Language and Environment for Statistical Computing; The R Development Core Team: Vienna, Austria, 2018. [Google Scholar]
- Revelle, W. “psych”: Procedures for Psychological, Psychometric, and Personality Research; R package version 1.9.12. 2019. Available online: https://personality-project.org/r/psych (accessed on 29 December 2019).
- McDonald, J.H. Handbook of Biological Statistics, 3rd ed.; Sparky House Publishing: Baltimore, MD, USA, 2014. [Google Scholar]
- Ogle, D.; Wheeler, P.; Dinno, A. “FSA”: Simple fisheries stock assessment methods; R package version 0.8.26. 2019. Available online: https://rdrr.io/cran/FSA/man/FSA.html (accessed on 29 December 2019).
- De Mendiburu, F. “agricolae”: Statistical procedures for agricultural research; R package version 1.3-1. 2019. Available online: https://cran.r-project.org/web/packages/agricolae/index.html (accessed on 4 May 2019).
- Mangiafico, S. “rcompanion”: Functions to support extension education program evaluation; R package version 2.3.7. 2019. Available online: https://cran.r-project.org/web/packages/rcompanion/index.html (accessed on 28 October 2019).
- Husson, F.; Josse, A.J.; Jérôme, A.; Agrocampus, P. Principal Component Methods-Hierarchical Clustering-Partitional Clustering: Why Would We Need to Choose for Visualizing Data; Applied Mathematics Department: Rennes Cedex, France, 2010. [Google Scholar]
- Kaiser, H.F. A note on Guttman’s lower bound for the number of common factors. Br. J. Stat. Psychol. 1961, 14, 1–2. [Google Scholar] [CrossRef]
- Kuivanen, K.S.; Alvarez, S.; Michalscheck, M.; Adjei-Nsiah, S.; Descheemaeker, K.; Mellon-Bedi, S.; Groot, J.C.J. Characterising the diversity of smallholder farming systems and their constraints and opportunities for innovation: A case study from the Northern Region, Ghana. NJAS Wageningen J. Life Sci. 2016, 78, 153–166. [Google Scholar] [CrossRef]
- Husson, F.; Josse, J.; Le, S.; Mazet, J. “FactoMineR”: Multivariate exploratory data analysis and data mining; R package version 2.0. 2019. Available online: http://factominer.free.frEncoding (accessed on 27 December 2019).
- Kassambara, A.; Mundt, F. “factoextra”: Extract and Visualize the Results of Multivariate Data Analyses; R package version 1.0.6. 2019. Available online: http://www.sthda.com/english/rpkgs/factoextra (accessed on 27 December 2019).
- Husson, F.; Josse, J. Multivariate Data Analysis: Special Focus on Clustering and Multiway Methods. In Proceedings of the UseR! the R User Conference, Gaithersburg, MD, USA, 20–23 July 2010. [Google Scholar]
- Kock, N.; Lynn, G.S. Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. J. Assoc. Inf. Syst. 2012, 13, 546–580. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Vanleeuwen, J.; Shepelo, G.; Karuoya Gitau, G.; Kamunde, C.; Uehlinger, F.; Wichtel, J. Associations of farm management practices with annual milk sales on smallholder dairy farms in Kenya. Vet. World 2014, 8, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Meat and Livestock Australia. Tips and Tools: Heat Load in Feedlot Cattle; Meat and Livestock Australia: Sidney, NSW, Australia, 2006. [Google Scholar]
- The Dairyland Initiative Heat Abatement and Ventilation of Adult Cow Facilities. Available online: https://thedairylandinitiative.vetmed.wisc.edu/home/housing-module/adult-cow-housing/ventilation-and-heat-abatement/ (accessed on 15 March 2020).
- Curt, B.; Mcfarland, D. Key considerations in fan cooling fan attributes. Dairy Bus. Holst. World 2017, 24–25. [Google Scholar]
- Blackshaw, J.K.; Blackshaw, A.W. Heat stress in cattle and the effect of shade on production and behaviour: A review. Aust. J. Exp. Agric. 1994, 34, 285–295. [Google Scholar] [CrossRef]
- Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Dikmen, S.; Hansen, P.J. Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? J. Dairy Sci. 2009, 92, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, M.; Berg, W.; Ammon, C.; Loebsin, C.; Sanftleben, P.; Samer, M.; von Bobrutzki, K.; Kiwan, A.; Saha, C.K. Air velocity measurements using ultrasonic anemometers in the animal zone of a naturally ventilated dairy barn. Biosyst. Eng. 2013, 116, 276–285. [Google Scholar] [CrossRef]
- Trewin, B. Essay 1: The Climates of the Tropics, and How They are Changing. In State of the Tropics 2014 Report; Harding, S., McComiskie, R., Wolff, M., Trewin, D., Hunter, S., Eds.; James Cook University: Douglas, QLD, Australia, 2014; pp. 39–52. [Google Scholar]
- Hatem, M.H.; Sadek, R.R.; Samer, M. Cooling, shed height, and shed orientation affecting dairy cows microclimate. Misr J. Agric. Eng. 2004, 21, 714–726. [Google Scholar]
- Popescu, S.; Borda, C.; Diugan, E.A.; Niculae, M.; Stefan, R.; Sandru, C.D. The effect of the housing system on the welfare quality of dairy cows. Ital. J. Anim. Sci. 2014, 13, 2940. [Google Scholar] [CrossRef]
- Veissier, I.; Andanson, S.; Dubroeucq, H.; Pomiès, D. The motivation of cows to walk as thwarted by tethering. J. Anim. Sci. 2008, 86, 2723–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bickert, W.G.; Light, R.G. Housing systems. J. Dairy Sci. 1982, 65, 502–508. [Google Scholar] [CrossRef]
- National Animal Welfare Advisory Committee. Code of Welfare: Dairy Cattle; Ministry for Primary Industries: Wellington, New Zealand, 2018.
- Angrecka, S.; Herbut, P.; Nawalany, G.; Sokołowski, P. The impact of localization and barn type on insolation of sidewall stalls during summer. J. Ecol. Eng. 2017, 18, 60–66. [Google Scholar] [CrossRef]
- Angrecka, S.; Herbut, P. Impact of barn orientation on insolation and temperature of stalls surface. Ann. Anim. Sci. 2016, 16. [Google Scholar] [CrossRef] [Green Version]
- Herbut, P. Temperature, humidity and air movement variations inside a free-stall barn during heavy frost. Ann. Anim. Sci. 2013, 13. [Google Scholar] [CrossRef] [Green Version]
Parameter | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SL | |||||||||||||
Rainfall (mm) | 2.3 | 10.8 | 11.1 | 63.5 | 171.9 | 181.7 | 211.3 | 184.0 | 189.3 | 215.4 | 52.9 | 22.5 | 129.6 |
AT, °C | 25.9 | 26.3 | 27.7 | 29.1 | 29.2 | 28.7 | 28.0 | 28.2 | 27.9 | 27.8 | 27.8 | 26.8 | 27.8 |
RH, % | 75.4 | 75.8 | 75.9 | 76.0 | 78.4 | 80.2 | 81.7 | 81.3 | 82.2 | 81.5 | 78.1 | 76.8 | 78.6 |
THI B | 75.6 | 76.2 | 78.1 | 80.1 | 80.3 | 79.6 | 78.8 | 79.0 | 78.6 | 78.5 | 78.3 | 76.9 | 78.3 |
SH | |||||||||||||
Rainfall (mm) | 8.1 | 24.0 | 77.6 | 167.8 | 225.2 | 201.8 | 225.7 | 244.7 | 306.4 | 235.7 | 93.1 | 33.4 | 156.8 |
AT, °C | 15.9 | 16.9 | 18.1 | 19.2 | 19.7 | 19.4 | 18.9 | 18.8 | 18.7 | 18.3 | 17.9 | 16.7 | 18.2 |
RH, % | 82.1 | 77.9 | 80.2 | 83.7 | 87.3 | 88.5 | 89.3 | 90.1 | 90.3 | 88.0 | 85.4 | 84.4 | 85.6 |
THI | 62.4 | 63.5 | 65.3 | 66.8 | 67.6 | 67.3 | 66.7 | 66.6 | 66.4 | 65.8 | 65.2 | 63.5 | 65.6 |
NL | |||||||||||||
Rainfall (mm) | 34.9 | 23.5 | 41.2 | 68.1 | 178.6 | 148.6 | 251.5 | 288.0 | 291.8 | 110.6 | 58.8 | 21.5 | 126.4 |
AT, °C | 16.3 | 18.3 | 20.4 | 24.4 | 27.9 | 29.9 | 29.6 | 28.7 | 27.6 | 25.7 | 22.5 | 18.3 | 24.1 |
RH, % | 82.9 | 86.7 | 87.7 | 86.5 | 82.1 | 79.4 | 80.8 | 84.7 | 84.5 | 80.9 | 80.2 | 79.3 | 83.0 |
THI | 62.9 | 65.7 | 68.6 | 74.0 | 78.6 | 81.2 | 80.9 | 79.8 | 78.3 | 75.6 | 71.2 | 65.6 | 73.5 |
NH | |||||||||||||
Rainfall (mm) | 37.8 | 20.9 | 46.8 | 120.0 | 170.4 | 200.0 | 276.9 | 264.7 | 146.7 | 53.0 | 37.7 | 34.1 | 119.4 |
AT, °C | 14.7 | 17.6 | 20.5 | 23.7 | 25.1 | 25.7 | 25.3 | 25.1 | 24.3 | 22.3 | 19.1 | 15.7 | 21.6 |
RH, % | 79.7 | 75.5 | 72.9 | 74.9 | 77.7 | 83.1 | 85.4 | 85.5 | 83.5 | 80.9 | 80.7 | 79.7 | 80.0 |
THI | 60.7 | 64.4 | 68.3 | 72.6 | 74.7 | 75.6 | 75.2 | 74.9 | 73.8 | 70.9 | 66.7 | 61.9 | 70.0 |
Region | Climatic Data Collection Period of Each Region | |||
---|---|---|---|---|
SL 24 Aug–1 Sep | SH 5–9 Sep and 3–7 Oct | NL 11–19 Sep | NH 22 Sep–1 Oct | |
AT, °C | ||||
SL | 28.4 (0.3) | 29.3 (0.4) | 29.6 (0.3) | 28.1 (0.3) |
SH | 21.0 (0.3) | 21.8 (0.4) | 21.9 (0.3) | 20.9 (0.3) |
NL | 29.3 (0.3) | 29.3 (0.4) | 29.8 (0.3) | 29.7 (0.3) |
NH | 27.8 (0.4) | 27.5 (0.4) | 28.0 (0.4) | 28.6 (0.3) |
RH, % | ||||
SL | 78.4 (1.2) | 73.6 (1.5) | 72.6 (1.3) | 80.5 (1.0) |
SH | 89.8 (1.2) | 85.0 (2.0) | 84.5 (1.4) | 91.4 (1.1) |
NL | 75.8 (1.4) | 76.8 (1.3) | 75.0 (1.4) | 73.5 (1.4) |
NH | 79.1 (1.6) | 79.5 (1.5) | 78.2 (1.6) | 73.6 (1.5) |
AS, m/s | ||||
SL | 3.0 (0.1) | 1.7 (0.1) | 2.8 (0.2) | 2.5 (0.2) |
SH | 1.1 (0.1) | 0.7 (0.1) | 1.2 (0.1) | 0.8 (0.1) |
NL | 2.8 (0.2) | 2.7 (0.1) | 3.2 (0.3) | 2.3 (0.1) |
NH | 1.4 (0.1) | 1.3 (0.1) | 1.6 (0.2) | 1.5 (0.1) |
Parameter A | Region B, Mean | pC | Mean ± SEM | |||
---|---|---|---|---|---|---|
SL | SH | NL | NH | |||
Altitude, m | 47 c | 967 a | 31c | 937 b | <0.001 | 496 ± 264 |
AT, °C | 29.5 a | 25.4 b | 29.7 a | 26 b | <0.001 | 27.7 ± 1.1 |
RH, % | 81.8 | 80.5 | 82.0 | 80.6 | 0.887 | 81.2 ± 0.4 |
AS, m/s | 0.44 | 0.36 | 0.47 | 0.33 | 0.543 | 0.40 ± 0.03 |
THI, units | 82.5 a | 75.5 b | 82.9 a | 76.7 b | <0.001 | 79.4 ± 1.9 |
HLI, units | 92.4 a | 80.0 b | 91.9 a | 81.2 b | <0.001 | 86.4 ± 3.3 |
AHLU, units | 42.6 a | 6.8 b | 41.7 a | 5.1 b | <0.001 | 24.1 ± 10.5 |
GT, °C | 30.0 a | 26.1 b | 29.9 a | 26.5 b | <0.001 | 28.1 ± 1.0 |
Twbg, °C | 27.5 a | 23.5 b | 27.8 a | 24.0 b | <0.001 | 25.7 ± 1.1 |
Tdp, °C | 26.4 a | 22.2 b | 26.7 a | 22.7 b | <0.001 | 24.5 ± 1.2 |
Twb, °C | 27.2 a | 23.1 b | 27.4 a | 23.6 b | <0.001 | 25.3 ± 1.1 |
Tnawb, °C | 26.6 a | 22.7 b | 27.0 a | 23.1 b | <0.001 | 24.8 ± 1.1 |
Parameter | Region A, Median or n B | pC | Overall D | |||
---|---|---|---|---|---|---|
SL | SH | NL | NH | |||
Qualitative variables | n (%) | |||||
Housing: Loose | 0 b | 8 a | 3 b | 8 a | <0.001 | 19 (59) |
Housing: Tie-up | 8 a | 0 b | 5 a | 0 b | 13 (41) | |
Roof type: Asbestos cement | 0 b | 1 b | 7 a | 3 a,b | <0.001 | 11 (34) |
Roof: Sheet metal | 8 a | 7 a | 1 b | 5 a,b | 21 (66) | |
Cowshed has roof vents | 0 b | 1 b | 8 a | 3 a,b | <0.001 | 12 (38) |
Cool cows with sprinklers | 0 | 0 | 2 | 0 | 0.226 | 2 (6) |
Cool roof with soakers | 0 b | 0 b | 7 a | 0 b | <0.001 | 7 (22) |
Quatitative variables | Mean ± SE | |||||
Floor area, m2/cow | 5.2 b | 7.5 b | 6.7 b | 12.5 a | <0.001 | 8.0 ± 1.6 |
Mat area, m2/cow | 0.6 | 0.0 | 1.4 | 1.4 | 0.698 | 0.9 ± 0.3 |
Ridge roof height, m | 3.3 | 3.3 | 4.1 | 3.6 | 0.118 | 3.6 ± 0.2 |
Eave roof height, m | 2.6 b | 2.3 b | 3.4 a | 2.8 a,b | 0.008 | 2.8 ± 0.2 |
Shed sides open, % | 75 | 87 | 75 | 90 | 0.064 | 81.8 ± 3.9 |
Fans per farm | 1 b | 0 b | 8 a | 0 b | <0.001 | 2.1 ± 1.8 |
Fans per cow | 0.1 b | 0.0 b | 0.8 a | 0.0 b | <0.001 | 0.2 ± 0.2 |
Hosing cows and floor, times/d | 2 | 2 | 2 | 2 | 0.169 | 2 ± 0 |
Cluster | Most Significant Variables | Group Mean (SD) or % | Overall Mean (SD) or % | V-Test | pA |
---|---|---|---|---|---|
C1 | Mat area, m2/cow | 2.88 (0.82) | 1.17 (1.09) | 3.75 | <0.001 |
Ridge roof height, m | 3.00 (0.25) | 3.71 (0.74) | −2.31 | 0.021 | |
C2 | Shed sides open, % | 88.25 (8.54) | 74.92 (20.12) | 2.49 | 0.013 |
Mat area, m2/cow | 0.57 (0.76) | 1.17 (1.09) | −2.08 | 0.038 | |
Fans per cow | 0.00 (0.00) | 0.23 (0.34) | −2.47 | 0.014 | |
Housing = Loose | 100 | 59.38 | 3.19 | 0.001 | |
Roof type = Sheet metal | 90.00 | 59.38 | 2.3 | 0.021 | |
C3 | Floor area, m2/cow | 5.31 (1.01) | 8.67 (4.24) | −2.55 | 0.011 |
Housing = Tie-up | 87.50 | 40.63 | 2.93 | 0.003 | |
Roof type = Sheet metal | 100 | 59.38 | 2.69 | 0.007 | |
Cowshed has roof vents =No | 100 | 62.5 | 2.51 | 0.012 | |
Housing = Loose | 12.5 | 59.38 | −2.93 | 0.003 | |
C4 | Floor area, m2/cow | 21.26 (0.00) | 8.67 (4.24) | 2.97 | 0.003 |
C5 | Cool cows with sprinklers = Yes | 100 | 6.25 | 3.09 | 0.002 |
Cool roof with soakers = Yes | 100 | 21.88 | 2.03 | 0.042 | |
C6 | Hosing cows and floor | 5.00 (0.00) | 2.13 (0.6) | 4.8 | <0.001 |
Ridge roof height, m | 6.00 (0.00) | 3.71 (0.74) | 3.09 | 0.002 | |
Fans per cow | 1.00 (0.00) | 0.23 (0.34) | 2.25 | 0.024 | |
C7 | Fans per cow | 0.79 (0.16) | 0.23 (0.34) | 3.96 | <0.001 |
Eave roof height, m | 3.59 (0.31) | 2.84 (0.61) | 2.94 | 0.003 | |
Cool roof with soakers = Yes | 100 | 21.88 | 3.88 | <0.001 | |
Roof type = Asbestos cement | 100 | 34.38 | 3.05 | 0.002 | |
Cowshed has roof vents =Yes | 100 | 37.5 | 2.88 | 0.004 | |
Housing = Tie-up | 100 | 40.63 | 2.73 | 0.006 |
Variable | AT | AS | HLI | THI | ||||
---|---|---|---|---|---|---|---|---|
Coef (SE) B | pC | Coef (SE) | p | Coef (SE) | p | Coef (SE) | p | |
Intercept | 33.86 (1.56) | <0.001 | 0.02 (0.17) | 0.916 | 107.1 (3.41) | <0.001 | 88.01 (1.81) | <0.001 |
Altitude, m | −0.004 (0.001) | <0.001 | -- | ns | −0.013 (0.001) | <0.001 | −0.008 (0.001) | <0.001 |
Latitude: North | Reference | Reference | Reference | |||||
Latitude: South | −1.43 (0.58) | 0.019 | -- | ns | −2.46 (1.08) | 0.030 | −1.57 (0.61) | 0.016 |
Eave roof height, m | −0.87 (0.41) | 0.047 | 0.14 (0.06) | 0.026 | −3.31 (0.93) | 0.001 | −1.42 (0.52) | 0.011 |
Floor area, m2/cow | −0.12 (0.07) | 0.094 | -- | ns | -- | ns | -- | ns |
Shed sides open, % | -- | ns | -- | ns | −0.05 (0.02) | 0.052 | -- | ns |
R2, % | 79 | 15 | 88 | 86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bang, N.N.; Gaughan, J.B.; Hayes, B.J.; Lyons, R.E.; Chanh, N.V.; Trach, N.X.; Khang, D.N.; McNeill, D.M. Characteristics of Cowsheds in Vietnamese Smallholder Dairy Farms and Their Associations with Microclimate—A Preliminary Study. Animals 2021, 11, 351. https://doi.org/10.3390/ani11020351
Bang NN, Gaughan JB, Hayes BJ, Lyons RE, Chanh NV, Trach NX, Khang DN, McNeill DM. Characteristics of Cowsheds in Vietnamese Smallholder Dairy Farms and Their Associations with Microclimate—A Preliminary Study. Animals. 2021; 11(2):351. https://doi.org/10.3390/ani11020351
Chicago/Turabian StyleBang, Nguyen N., John B. Gaughan, Ben J. Hayes, Russell E. Lyons, Nguyen V. Chanh, Nguyen X. Trach, Duong N. Khang, and David M. McNeill. 2021. "Characteristics of Cowsheds in Vietnamese Smallholder Dairy Farms and Their Associations with Microclimate—A Preliminary Study" Animals 11, no. 2: 351. https://doi.org/10.3390/ani11020351
APA StyleBang, N. N., Gaughan, J. B., Hayes, B. J., Lyons, R. E., Chanh, N. V., Trach, N. X., Khang, D. N., & McNeill, D. M. (2021). Characteristics of Cowsheds in Vietnamese Smallholder Dairy Farms and Their Associations with Microclimate—A Preliminary Study. Animals, 11(2), 351. https://doi.org/10.3390/ani11020351