Haemonchosis: A Challenging Parasitic Infection of Sheep and Goats
Abstract
:Simple Summary
Abstract
1. Background: The Haemonchus Parasites
2. Challenge I: The Changing Face of the Infection
2.1. Tropical and Subtropical Regions
2.2. Warm Temperate and Summer Rainfall Regions
2.3. Mediterranean Climatic Regions
2.4. Cool and Cold Temperate Regions
2.5. Arid Regions
2.6. Current Situation
3. Challenge II: The Development of Anthelmintic Resistance
3.1. Resistance to Benzimidazoles
3.2. Resistance to Imidazothiazoles
3.3. Resistance to Macrocyclic Lactones
3.4. Resistance to Closantel
3.5. Resistance to Amino-Acetonitrile Derivatives
3.6. Multi-Drug Resistance
4. Challenge III: The Diagnostic Approaches
4.1. Clinical Symptoms
4.2. Post-Mortem Findings
4.3. Results of Laboratory Tests
4.4. Outcomes of Molecular Methods
5. Challenge IV: Future Control
5.1. Pharmaceutical Control
5.2. Non-Chemical Means of Control
5.3. Vaccination
6. Concluding Remarks: Should We Worry?
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Haemonchus Species | Ruminant Species from Which They Have Been Recovered | Geographical Distribution |
H. bedfordi | african buffaloes, giraffes, goats, sheep | Mainly Africa |
H. contortus | antelopes, bovines, cervidae, giraffes, goats, sheep, wild ruminants | Universal |
H. dinniki | wild ruminants | Mainly Africa |
H. horaki | wild ruminants | Mainly Africa |
H. krugeri | wild ruminants | Mainly Africa |
H. lawrencei | wild ruminants | Mainly Africa |
H. longistipes | antelopes, cattle, camels | Mainly Africa, Europe, Asia |
H. mitchelli | goats, wild ruminants | Mainly Africa |
H. okapiae | wild ruminants | Mainly Africa |
H. placei | antelopes, buffaloes, cattle, cervidae, sheep, wild ruminants | Universal |
H. similis | bisons, buffaloes, cattle, cervidae, sheep, wild ruminants | Universal |
H. vegliai | goats, wild ruminants | Mainly Africa |
References
- Soulsby, E.J.L. Helminths, Arthropods and Protozoa of Domestic Animals, 7th ed.; Bailliere Tindall: London, UK, 1968. [Google Scholar]
- Urquhart, G.M.; Armour, J.; Duncan, J.L.; Dunn, A.M.; Jennings, F.W. Veterinary Parasitology, 2nd ed.; Blackwell Science: London, UK, 1996. [Google Scholar]
- Brasil, B.S.A.F.; Ronaldo, L.; Nunes, R.L.; Bastianetto, E.; Drummond, M.G.; Carvalho, D.C.; Leite, R.C.; Molento, M.B.; Oliveira, D.A.A. Genetic diversity patterns of Haemonchus placei and Haemonchus contortus populations isolated from domestic ruminants in Brazil. Int. J. Parasitol. 2012, 42, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Periasamy, K.; Nadeem, A.; Ellahi, M.B.; Pichler, R.; Diallo, A. Sympatric species distribution, genetic diversity and population structure of Haemonchus isolates from domestic ruminants in Pakistan. Vet. Parasitol. 2014, 206, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Akkari, H.; Jebali, J.; Gharbi, M.; Mhadhbi, M.; Awadi, S.; Darghouth, M.A. Epidemiological study of sympatric Haemonchus species and genetic characterization of Haemonchus contortus in domestic ruminants in Tunisia. Vet. Parasitol. 2013, 193, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, M.C.; Amarante, M.R.V.; Amarante, A.F.T. Is there competition between Haemonchus contortus and Haemonchus placei in a pasture grazed by only sheep? Vet. Parasitol. 2020, 279, 109054. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.A.; Coop, R.L.; Wall, R.L. Veterinary Parasitology, 3rd ed.; Blackwell Publishing: London, UK, 2007. [Google Scholar]
- Fetterer, R.H.; Rhoads, M.L. A hemolytic factor from Haemonchus contortus alters erythrocyte morphology. Vet. Parasitol. 1998, 80, 37–45. [Google Scholar] [CrossRef]
- Fthenakis, G.C.; Papadopoulos, E. Impact of parasitism in goat productions. Small Rumin. Res. 2018, 163, 21–23. [Google Scholar] [CrossRef]
- Miller, J.E.; Kaplan, R.M.; Pugh, D.G. Internal parasites. In Sheep and Goat Medicine, 2nd ed.; Pugh, D.G., Baird, A.N., Eds.; Saunders: Philadelphia, PA, USA, 2011; pp. 106–125. [Google Scholar]
- McRae, K.; McEwan, J.C.; Dodds, K.G.; Gemmell, N.J. Signatures of selection in sheep bred for resistance or susceptibility to gastrointestinal nematodes. Genomics 2014, 15, 637. [Google Scholar] [CrossRef] [Green Version]
- Gordon, H.M. The epidemiology of parasitic diseases with special reference to studies with nematode parasites of sheep. Aust. Vet. J. 1948, 24, 17–44. [Google Scholar] [CrossRef]
- Rossanigo, C.E.; Gruner, L. Moisture and temperature requirements in faeces for the development of free-living stages of gastrointestinal nematodes of sheep, cattle and deer. J. Helminthol. 1995, 69, 357–362. [Google Scholar] [CrossRef]
- Silverman, P.H.; Campell, J.A. Studies on parasitic worms of sheep in Scotland. I. Embryonic and larval development of Haemonchus contortus at constant conditions. Parasitology 1959, 49, 23–38. [Google Scholar] [CrossRef]
- Eysker, M.; Kooyman, F.N. Notes on necropsy and herbage processing techniques for gastrointestinal nematodes of ruminants. Vet. Parasitol. 1993, 46, 205–213. [Google Scholar] [CrossRef]
- Waller, P.J.; Thomas, R.J. Field studies on inhibition of Haemonchus contortus. Parasitology 1975, 71, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Allonby, E.W.; Urquhart, G.M. The epidemiology and pathogenic significance of haemonchosis in a Merino flock in East Africa. Vet. Parasitol. 1975, 1, 129–143. [Google Scholar] [CrossRef]
- Barger, I.A. The role of epidemiological knowledge and grazing management for helminth control in small ruminants. Int. J. Parasitol. 1999, 29, 41–47. [Google Scholar] [CrossRef]
- Dorny, P.; Symoens, C.; Jalila, A.; Vercruysse, J.; Sani, R. Strongyle infections in sheep and goats under the traditional husbandry system in peninsular Malaysia. Vet. Parasitol. 1995, 56, 121–136. [Google Scholar] [CrossRef]
- Cheah, T.S.; Rajamanickam, C. Epidemiology of gastro-intestinal nematodes of sheep in wet tropical conditions in Malaysia. Trop. Anim. Health Prod. 1997, 29, 165–173. [Google Scholar] [CrossRef]
- Chandrawathani, P. Problems in the Control of Nematode Parasites of Small Ruminants on Malaysia: Resistance to Anthelmintics and the Biological Control Alternatives. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2004. [Google Scholar]
- Vercruysse, J. A survey of seasonal changes in nematode faecal egg count levels of sheep and goats in Senegal. Vet. Parasitol. 1983, 13, 239–244. [Google Scholar] [CrossRef]
- Fritsche, T.; Kaufman, J.; Pfister, K. Parasite spectrum and seasonal epidemiology of gastrointestinal nematodes of small ruminants in the Gambia. Vet. Parasitol. 1993, 49, 279–283. [Google Scholar] [CrossRef]
- Ndamukong, K.J.N.; Ngone, M.M. Development and survival of Haemonchus contortus and Trichostrongylus sp. on pasture in Cameroon. Trop. Anim. Health Prod. 1996, 28, 193–198. [Google Scholar] [CrossRef]
- Nginyi, J.M.; Duncan, J.L.; Mellor, D.J.; Stear, M.J.; Wanyangu, S.W.; Bain, R.K.; Gatongi, P.M. Epidemiology of parasitic gastrointestinal nematode infections of ruminants on smallholder farms in central Kenya. Res. Vet. Sci. 2001, 70, 33–39. [Google Scholar] [CrossRef]
- Nwosu, C.O.; Madu, P.P.; Richards, W.S. Prevalence and seasonal changes in the population of gastrointestinal nematodes of small ruminants in the semi-arid zone of north-eastern Nigeria. Vet. Parasitol. 2007, 144, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Sissay, M.M.; Uggla, A.; Waller, P.J. Epidemiology and seasonal dynamics of gastrointestinal nematode infections of sheep in a semi-arid region of eastern Ethiopia. Vet. Parasitol. 2007, 143, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Bolajoko, M.B.; Morgan, E.R. Relevance of improved epidemiological knowledge to sustainable control of Haemonchus contortus in Nigeria. Anim. Health Res. Rev. 2012, 13, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Blackie, S. A review of the epidemiology of gastrointestinal nematode infections in sheep and goats in Ghana. J. Agric. Sci. 2014, 6, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Vercruysse, J. The seasonal prevalence of inhibited development of Haemonchus contortus in sheep in Senegal. Vet. Parasitol. 1985, 17, 159–163. [Google Scholar] [CrossRef]
- Okon, E.D.; Enyenihi, U.K. Development and survival of Haemonchus contortus on pastures in Ibadan. Trop. Anim. Health Prod. 1977, 9, 7–10. [Google Scholar] [CrossRef]
- Pandey, V.S. Haemonchus contortus with low inhibited development in sheep from the Highveld of Zimbabwe. Vet. Parasitol. 1990, 36, 347–351. [Google Scholar] [CrossRef]
- Miller, J.E.; Bahirathan, M.; Lemarie, S.L.; Hembry, F.G.; Kearney, M.T.; Barras, S.R. Epidemiology of gastrointestinal nematode parasitism in Suffolk and Gulf Coast Native sheep with special emphasis on relative susceptibility to Haemonchus contortus infection. Vet. Parasitol. 1998, 74, 55–74. [Google Scholar] [CrossRef]
- Southcott, W.H.; Major, G.W.; Barger, I.A. Seasonal pasture contamination and availability of nematodes for grazing sheep. Aust. J. Agric. Res. 1976, 27, 277–286. [Google Scholar] [CrossRef]
- Bailey, J.N.; Kahn, L.P.; Walkden-Brown, S.W. Availability of gastro-intestinal nematode larvae to sheep following winter contamination of pasture with six nematode species on the Northern Tablelands of New South Wales. Vet. Parasitol. 2009, 160, 89–99. [Google Scholar] [CrossRef]
- Swan, R.A. The epizootiology of haemonchosis in sheep. Aust. Vet. J. 1970, 45, 485–492. [Google Scholar] [CrossRef] [PubMed]
- De Chaneet, G.C.; Mayberry, C.J. Ovine Haemonchosis: A Review and Report of Epizootics in North-West Western Australia and of a Trial at Esperance Western Australia; Bulletin 41; Department of Agriculture: Perth, WA, Australia, 1978.
- Rossiter, L.W. The epizootiology of nematode parasites of sheep in the coastal area of the Eastern Province. Onderstepoort J. Vet. Res. 1964, 31, 143–150. [Google Scholar]
- Muller, G.L. The epizootiology of helminth infestations of sheep in the South-Western districts of the Cape. Onderstepoort J. Vet. Res. 1968, 35, 159–194. [Google Scholar] [PubMed]
- Uriarte, J.; Valderrabano, J. An epidemiological study of parasitic gastroenteritis in sheep under an intensive grazing system. Vet. Parasitol. 1989, 31, 71–81. [Google Scholar] [CrossRef]
- Brunsdon, R.V. Seasonal changes in the level and composition of nematode worm burdens in young sheep. N. Z. Vet. J. 1970, 13, 126–148. [Google Scholar] [CrossRef]
- Vlassoff, A. Seasonal availability of infective trichostrongyle larvae on pasture grazed by lambs. N. Z. J. Exp. Agric. 1973, 1, 293–301. [Google Scholar]
- Brunsdon, R.V. Inhibited development of Haemonchus contortus in naturally acquired infections in sheep. N. Z. Vet. J. 1973, 25, 125–126. [Google Scholar] [CrossRef]
- McKenna, P.B. The persistence and fate of inhibited Haemonchus contortus larvae in young sheep. N. Z. Vet. J. 1974, 22, 122–127. [Google Scholar] [CrossRef]
- Waller, P.J.; Rudby-Martin, L.; Ljungstrom, B.L.; Rydzik, A. The epidemiology of abomasal nematodes of sheep in Sweden, with particular reference to over-winter survival strategies. Vet. Parasitol. 2004, 122, 207–220. [Google Scholar] [CrossRef]
- Sargison, N.D.; Wilson, D.J.; Bartley, D.J.; Penny, C.D.; Jackson, F. Haemonchosis and teladorsagiosis in a Scottish sheep flock putatively associated with the overwintering of hypobiotic fourth stage larvae. Vet. Parasitol. 2007, 147, 326–331. [Google Scholar] [CrossRef]
- Viljoen, J.H. Further studies on the epizootiology of nematode parasites of sheep in the Karoo. Onderstepoort J. Vet. Res. 1969, 36, 233–264. [Google Scholar] [PubMed]
- Biggs, H.C.; Anthonissen, M. The seasonal incidences of helminth parasites and Oestrus ovis in Karakul sheep in the Kalahari region of South West Africa-Namibia. Onderstepoort. J. Vet. Res. 1982, 49, 73–77. [Google Scholar] [PubMed]
- El-Azazy, O.M.E. Seasonal changes and inhibited development of the abomasal nematodes of sheep and goats in Saudi Arabia. Vet. Parasitol. 1995, 58, 91–98. [Google Scholar] [CrossRef]
- Jacquiet, P.; Humbert, J.F.; Comes, A.M.; Cabaret, J.; Thiam, A.; Cheikh, D. Ecological, morphological and genetic characterization of sympatric Haemonchus spp. parasites of domestic ruminants in Mauritania. Parasitology 1995, 110, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Altaif, K.I.; Yakoob, A.Y. Development and survival of Haemonchus contortus larvae on pasture in Iraq. Trop. Anim. Health Prod. 1987, 19, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Eysker, M.; Bakker, N.; Kooyman, F.N.J.; Van der Linden, D.; Schrama, C.; Ploeger, H.W. Consequences of the unusually warm and dry summer of 2003 in The Netherlands: Poor development of free living stages, normal survival of infective larvae and long survival of adult gastrointestinal nematodes of sheep. Vet. Parasitol. 2005, 133, 313–321. [Google Scholar] [CrossRef]
- Kenyon, F.; Sargison, N.D.; Skuce, P.; Jackson, F. Sheep helminth parasitic disease in south eastern Scotland arising as a possible consequence of climate change. Vet. Parasitol. 2009, 163, 293–297. [Google Scholar] [CrossRef]
- Polley, L.; Hoberg, E.; Kutz, S. Climate change, parasites and shifting boundaries. Acta Vet. Scand. 2010, 52 (Suppl. 1), S1. [Google Scholar] [CrossRef] [Green Version]
- Kotze, A.C.; Prichard, R.K. Anthelmintic resistance in Haemonchus contortus: History, mechanisms and diagnosis. Adv. Parasitol. 2016, 93, 397–428. [Google Scholar]
- Lacey, E.; Prichard, R.K. Interactions of benzimidazoles (BZ) with tubulin from BZ-sensitive and BZ-resistant isolates of Haemonchus contortus. Mol. Biochem. Parasitol. 1986, 19, 171–181. [Google Scholar] [CrossRef]
- Lubega, G.W.; Prichard, R.K. Specific interaction of benzimidazole anthelmintics with tubulin: High-affinity binding and benzimidazole resistance in Haemonchus contortus. Mol. Biochem. Parasitol. 1990, 38, 221–232. [Google Scholar] [CrossRef]
- Kwa, M.S.G.; Veenstra, J.G.; Roos, M.H. Benzimidazole resistance in Haemonchus contortus is correlated with a conserved mutation at amino acid 200 in [beta]-tubulin isotype-1. Mol. Biochem. Parasitol. 1994, 63, 299–303. [Google Scholar] [CrossRef]
- Kwa, M.S.; Veenstra, J.G.; Van Dijk, M.; Roos, M.H. Beta-tubulin genes from the parasitic nematode Haemonchus contortus modulate drug resistance in Caenorhabditis elegans. J. Mol. Biol. 1995, 246, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Elard, L.; Comes, A.M.; Humbert, J.F. Sequences of beta-tubulin cDNA from benzimidazole-susceptible and -resistant strains of Teladorsagia circumcincta, a nematode parasite of small ruminants. Mol. Biochem. Parasitol. 1996, 79, 249–253. [Google Scholar] [CrossRef]
- Elard, L.; Cabaret, J.; Humbert, J.F. PCR diagnosis of benzimidazole-susceptibility or -resistance in natural populations of the small ruminant parasite, Teladorsagia circumcincta. Vet. Parasitol. 1999, 80, 231–237. [Google Scholar] [CrossRef]
- Prichard, R. Genetic variability following selection of Haemonchus contortus with anthelmintics. Trends Parasitol. 2001, 17, 445–453. [Google Scholar] [CrossRef]
- Pape, M.; Posedi, J.; Failing, K.; Schnieder, T.; von Samson-Himmelstjerna, G. Analysis of the beta-tubulin codon 200 genotype distribution in a benzimidazole susceptible and resistant cyathostome population. Parasitology 2003, 127, 53–59. [Google Scholar] [CrossRef]
- Williamson, S.M.; Storey, B.; Howell, S.; Harper, K.M.; Kaplan, R.M.; Wolstenholme, A.J. Candidate anthelmintic resistance-associated gene expression and sequence polymorphisms in a triple-resistant field isolate of Haemonchus contortus. Mol. Biochem. Parasitol. 2011, 180, 99–105. [Google Scholar] [CrossRef]
- Ghisi, M.; Kaminsky, R.; Maser, P. Phenotyping and genotyping of Haemonchus contortus isolates reveals a new putative candidate mutation for benzimidazole resistance in nematodes. Vet. Parasitol. 2007, 144, 313–320. [Google Scholar] [CrossRef]
- Kotze, A.C.; Cowling, K.; Bagnall, N.H.; Hines, B.M.; Ruffell, A.P.; Hunt, P.W.; Coleman, G.T. Relative level of thiabendazole resistance associated with the E198A and F200Y SNPs in larvae of a multi-drug resistant isolate of Haemonchus contortus. Int. J. Parasitol. Drugs Drug Resist. 2012, 2, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Mottier, M.L.; Prichard, R.K. Genetic analysis of a relationship between macrocyclic lactone and benzimidazole anthelmintic selection on Haemonchus contortus. Pharmacogenet. Genom. 2008, 18, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Barrere, V.; Alvarez, L.; Suarez, G.; Ceballos, L.; Moreno, L.; Lanusse, C.; Prichard, R.K. Relationship between increased albendazole systemic exposure and changes in single nucleotide polymorphisms on the beta-tubulin isotype 1 encoding gene in Haemonchus contortus. Vet. Parasitol. 2012, 186, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, A.; Sauve, C.; Corter, J.; Cabaret, J. Contrasting genetic structures of two parasitic nematodes, determined on the basis of neutral microsatellite markers and selected anthelmintic resistance markers. Mol. Ecol. 2009, 18, 5086–5100. [Google Scholar] [CrossRef] [PubMed]
- Geary, T.G.; Nulf, S.C.; Favreau, M.A.; Tang, L.; Prichard, R.K.; Hatzenbuhler, N.T.; Shea, M.H.; Alexander, S.J.; Klein, R.D. Three beta-tubulin cDNAs from the parasitic nematode Haemonchus contortus. Mol. Biochem. Parasitol. 1992, 50, 295–306. [Google Scholar] [CrossRef]
- Beech, R.N.; Prichard, R.K.; Scott, M.E. Genetic variability of the beta-tubulin genes in benzimidazole-susceptible and -resistant strains of Haemonchus contortus. Genetetics 1994, 138, 103–110. [Google Scholar] [CrossRef]
- Lubega, G.W.; Klein, R.D.; Geary, T.G.; Prichard, R.K. Haemonchus contortus: The role of two beta-tubulin gene subfamilies in the resistance to benzimidazole anthelmintics. Biochem. Pharmacol. 1994, 47, 1705–1715. [Google Scholar] [CrossRef]
- Saunders, G.I.; Wasmuth, J.D.; Beech, R.; Laing, R.; Hunt, M.; Naghra, H.; Cotton, J.A.; Berriman, M.; Britton, C.; Gilleard, J.S. Characterization and comparative analysis of the complete Haemonchus contortus b-tubulin gene family and implications for benzimidazole resistance in strongylid nematodes. Int. J. Parasitol. 2013, 43, 465–475. [Google Scholar] [CrossRef]
- Rufener, L.; Kaminsky, R.; Mäser, P. In vitro selection of Haemonchus contortus for benzimidazole resistance reveals a mutation at amino acid 198 of beta-tubulin. Mol. Biochem. Parasitol. 2009, 168, 120–122. [Google Scholar] [CrossRef]
- Sangster, N.C.; Davis, C.W.; Collins, G.H. Effects of cholinergic drugs on longitudinal contraction in levamisole-susceptible and -resistant Haemonchus contortus. Int. J. Parasitol. 1991, 21, 689–695. [Google Scholar] [CrossRef]
- Sangster, N.C.; Riley, F.L.; Wiley, L.J. Binding of [3H]m-aminolevamisole to receptors in l evamisole-susceptible and -resistant Haemonchus contortus. Int. J. Parasitol. 1998, 28, 707–717. [Google Scholar] [CrossRef]
- Sangster, N.C.; Gill, J. Pharmacology of anthelmintic resistance. Parasitol. Today 1999, 15, 141–146. [Google Scholar] [CrossRef]
- Sangster, N.C.; Redwin, J.M.; Bjorn, H. Inheritance of levamisole and benzimidazole resistance in an isolate of Haemonchus contortus. Int. J. Parasitol. 1998, 28, 503–510. [Google Scholar] [CrossRef]
- Neveu, C.; Charvet, C.; Fauvin, A.; Cortet, J.; Castagnone-Sereno, P.; Cabaret, J. Identification of levamisole resistance markers in the parasitic nematode Haemonchus contortus using a cDNA-AFLP approach. Parasitology 2007, 134, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Fauvin, A.; Charvet, C.; Issouf, M.; Cortet, J.; Cabaret, J.; Neveu, C. cDNA-AFLP analysis in levamisole-resistant Haemonchus contortus reveals alternative splicing in a nicotinic acetylcholine receptor subunit. Mol. Biochem. Parasitol. 2010, 170, 105–107. [Google Scholar] [CrossRef]
- Neveu, C.; Charvet, C.; Fauvin, A.; Cortet, J.; Beech, R.; Cabaret, J. Genetic diversity of levamisole receptor subunits in parasitic nematode species and abbreviated transcripts associated with resistance. Pharmacogenet. Genom. 2010, 20, 414–425. [Google Scholar] [CrossRef]
- Boulin, T.; Fauvin, A.; Charvet, C.; Cortet, J.; Cabaret, J.; Bessereau, J.-L.; Neveu, C. Functional reconstitution of Haemonchus contortus acetylcholine receptors in Xenopus oocytes provides mechanistic insights into levamisole resistance. Br. J. Pharmacol. 2011, 164, 1421–1432. [Google Scholar] [CrossRef] [Green Version]
- Barrere, V.; Beech, R.N.; Charvet, C.L.; Prichard, R.K. Novel assay for the detection and monitoring of levamisole resistance in Haemonchus contortus. Int. J. Parasitol. 2014, 44, 235–241. [Google Scholar] [CrossRef]
- Dos Santos, J.M.L.; Vasconcelos, J.F.; Frota, G.A.; de Freitas, E.P.; Teixeira, M.; da Silva Vieira, L.; Bevilaqua, C.M.L.; Monteiro, J.P. Quantitative molecular diagnosis of levamisole resistance in populations of Haemonchus contortus. Exp. Parasitol. 2019, 205, 107734. [Google Scholar] [CrossRef]
- Sarai, R.S.; Kopp, S.R.; Coleman, G.T.; Kotze, A.C. Acetylcholine receptor subunit and P-glycoprotein transcription patterns in levamisole-susceptible and -resistant Haemonchus contortus. Int. J. Parasitol. Drugs Drug Resist. 2013, 3, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Sarai, R.S.; Kopp, S.R.; Coleman, G.T.; Kotze, A.C. Drug-efflux and target-site gene expression patterns in Haemonchus contortus larvae able to survive increasing concentrations of levamisole in vitro. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Sarai, R.S.; Kopp, S.R.; Knox, M.R.; Coleman, G.T.; Kotze, A.C. In vitro levamisole selection pressure on larval stages of Haemonchus contortus over nine generations gives rise to drug resistance and target site gene expression changes specific to the early larval stages only. Vet. Parasitol. 2015, 211, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, S.P.; Birzin, E.T.; Eary, C.H.; Schaeffer, J.M.; Shoop, W.L. Ivermectin binding sites in sensitive and resistant Haemonchus contortus. J. Parasitol. 1994, 80, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Blackhall, W.J.; Pouliot, J.F.; Prichard, R.K.; Beech, R.N. Haemonchus contortus: Selection at a glutamate-gated chloride channel gene in ivermectin- and moxidectin selected strains. Exp. Parasitol. 1998, 90, 42–48. [Google Scholar] [CrossRef] [PubMed]
- McCavera, S.; Rogers, A.T.; Yates, D.M.; Woods, D.J.; Wolstenholme, A.J. An ivermectin-sensitive glutamate-gated chloride channel from the parasitic nematode Haemonchus contortus. Mol. Pharmacol. 2009, 75, 1347–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, X.P.; Hayashi, J.; Beech, R.N.; Prichard, R.K. Study of the nematode putative GABA type-A receptor subunits: Evidence for modulation by ivermectin. J. Neurochem. 2002, 83, 870–878. [Google Scholar] [CrossRef]
- Blackhall, W.J.; Prichard, R.K.; Beech, R.N. Selection at a gamma-aminobutyric acid receptor gene in Haemonchus contortus resistant to avermectins/milbemycins. Mol. Biochem. Parasitol. 2003, 131, 137–145. [Google Scholar] [CrossRef]
- Gill, J.H.; Lacey, E. Avermectin/milbemycin resistance in trichostrongyloid nematodes. Int. J. Parasitol. 1998, 28, 863–877. [Google Scholar] [CrossRef]
- Lynagh, T.; Lynch, J.W. A glycine residue essential for high ivermectin sensitivity in Cys-loop ion channel receptors. Int. J. Parasitol. 2010, 40, 1477–1481. [Google Scholar] [CrossRef]
- Hibbs, R.E.; Gouaux, E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 2011, 474, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Lynagh, T.; Lynch, J.W. Ivermectin binding sites in human and invertebrate Cys-loop receptors. Trends Pharmacol. Sci. 2012, 33, 432–441. [Google Scholar] [CrossRef] [Green Version]
- Lespine, A.; Ménez, C.; Bourguinat, C.; Prichard, R.K. P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: Prospects for reversing transport-dependent anthelmintic resistance. Int. J. Parasitol. Drugs Drug Resist. 2012, 2, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Blackhall, W.J.; Liu, H.Y.; Xu, M.; Prichard, R.K.; Beech, R.N. Selection at a P-glycoprotein gene in ivermectin and moxidectin-selected strains of Haemonchus contortus. Mol. Biochem. Parasitol. 1998, 95, 193–201. [Google Scholar] [CrossRef]
- Xu, M.; Molento, M.; Blackhall, W.; Ribeiro, P.; Beech, R.; Prichard, R. Ivermectin resistance in nematodes may be caused by alteration of P-glycoprotein homolog. Mol. Biochem. Parasitol. 1998, 91, 327–335. [Google Scholar] [CrossRef]
- Sangster, N.C.; Bannan, S.C.; Weiss, A.S.; Nulf, S.C.; Klein, R.D.; Geary, T.G. Haemonchus contortus: Sequence heterogeneity of inter-nucleotide binding domains from P-glycoproteins. Exp. Parasitol. 1999, 91, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Lloberas, M.; Alvarez, L.; Entrocasso, C.; Virkel, G.; Ballent, M.; Mate, L.; Lanusse, C.; Lifschitz, A. Comparative tissue pharmacokinetics and efficacy of moxidectin, abamectin and ivermectin in lambs infected with resistant nematodes: Impact of drug treatments on parasite P-glycoprotein expression. Int. J. Parasitol. Drugs Drug Resist. 2013, 3, 20–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartley, D.J.; McAllister, H.; Bartley, Y.; Dupuy, J.; Menez, C.; Alvinerie, M.; Jackson, F.; Lespine, A. P-glycoprotein interfering agents potentiate ivermectin susceptibility in ivermectin sensitive and resistant isolates of Teladorsagia circumcincta and Haemonchus contortus. Parasitology 2009, 136, 1081–1088. [Google Scholar] [CrossRef]
- Heckler, R.P.; Almeida, G.D.; Santos, L.B.; Borges, D.G.; Neves, J.P.; Onizuka, M.K.; Borges, F.A. P-gp modulating drugs greatly potentiate the in vitro effect of ivermectin against resistant larvae of Haemonchus placei. Vet. Parasitol. 2014, 205, 638–645. [Google Scholar] [CrossRef]
- Raza, A.; Kopp, S.R.; Jabbar, A.; Kotze, A.C. Effects of third generation P-glycoprotein inhibitors on the sensitivity of drug-resistant and -susceptible isolates of Haemonchus contortus to anthelmintics in vitro. Vet. Parasitol. 2015, 211, 80–88. [Google Scholar] [CrossRef]
- Lifschitz, A.; Entrocasso, C.; Alvarez, L.; Lloberas, M.; Ballent, M.; Manazza, G.; Virkel, G.; Borda, B.; Lanusse, C. Interference with P-glycoprotein improves ivermectin activity against adult resistant nematodes in sheep. Vet. Parasitol. 2010, 172, 291–298. [Google Scholar] [CrossRef]
- Gill, J.H.; Kerr, C.A.; Shoop, W.L.; Lacey, E. Evidence of multiple mechanisms of avermectin resistance in Haemonchus contortus comparison of selection protocols. Int. J. Parasitol. 1998, 28, 783–789. [Google Scholar] [CrossRef]
- Rothwell, J.; Sangster, N.C. Haemonchus contortus: The uptake and metabolism of closantel. Int. J. Parasitol. 1997, 27, 313–319. [Google Scholar] [CrossRef]
- Kwa, M.S.; Okoli, M.N.; Schulz-Key, H.; Okongkwo, P.O.; Roos, M.H. Use of P-glycoprotein gene probes to investigate anthelmintic resistance in Haemonchus contortus and comparison with Onchocerca volvulus. Int. J. Parasitol. 1998, 28, 1235–1240. [Google Scholar] [CrossRef]
- Kaminsky, R.; Ducray, P.; Jung, M.; Clover, R.; Rufener, L.; Bouvier, J.; Weber, S.S.; Wenger, A.; Wieland-Berghausen, S.; Goebel, T.; et al. A new class of anthelmintics effective against drug-resistant nematodes. Nature 2008, 452, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Mederos, A.E.; Ramos, Z.; Banchero, G.E. First report of monepantel Haemonchus contortus resistance on sheep farms in Uruguay. Parasites Vectors 2014, 7, 598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Brom, R.; Moll, L.; Kappert, C.; Vellema, P. Haemonchus contortus resistance to monepantel in sheep. Vet. Parasitol. 2015, 209, 278–280. [Google Scholar] [CrossRef] [PubMed]
- Bagnall, N.H.; Ruffell, A.; Raza, A.; Elliott, T.P.; Lamb, J.L.; Hunt, P.W.; Kotzea, A.C. Mutations in the Hco-mptl-1 gene in a field-derived monepantel-resistant isolate of Haemonchus contortus. Int. J. Parasitol. Drugs Drug Resist. 2017, 7, 236–240. [Google Scholar] [CrossRef]
- Van Wyk, J.A.; Malan, F.S. Resistance of field strains of Haemonchus contortus to ivermectin, closantel, rafoxanide and the benzimidazoles in South Africa. Vet. Rec. 1988, 123, 226–228. [Google Scholar] [CrossRef]
- Love, S.C.J.; Neilson, F.J.A.; Biddle, A.J.; McKinnon, R. Moxidectin resistant Haemonchus contortus in sheep in northern New South Wales. Aust. Vet. J. 2003, 81, 359–360. [Google Scholar] [CrossRef]
- Cezar, A.S.; Toscan, G.; Camillo, G.; Sangioni, L.A.; Ribas, H.O.; Vogel, F.S. Multiple resistance of gastrointestinal nematodes to nine different drugs in a sheep flock in southern Brazil. Vet. Parasitol. 2010, 173, 157–160. [Google Scholar] [CrossRef]
- Tsotetsi, A.M.; Njiro, S.; Katsande, T.C.; Moyo, G.; Baloyi, F.; Mpofu, J. Prevalence of gastrointestinal helminths and anthelmintic resistance on small-scale farms in Gauteng Province, South Africa. Trop. Anim. Health Prod. 2013, 45, 751–761. [Google Scholar] [CrossRef]
- Veríssimo, C.J.; Niciura, S.C.; Alberti, A.L.; Rodrigues, C.F.; Barbosa, C.M.; Chiebao, D.P.; Cardoso, D.; da Silva, G.S.; Pereira, J.R.; Margatho, L.F.; et al. Multidrug and multispecies resistance in sheep flocks from Sao Paulo state, Brazil. Vet. Parasitol. 2012, 187, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Falzon, L.C.; Menzies, P.I.; Shakya, K.P.; Jones-Bitton, A.; Vanleeuwen, J.; Avula, J.; Stewart, H.; Jansen, J.T.; Taylor, M.A.; Learmount, J.; et al. Anthelmintic resistance in sheep flocks in Ontario, Canada. Vet. Parasitol. 2013, 193, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Prasad, A.; Yadav, N.; Latchumikanthan, A.; Rakesh, R.L.; Praveen, K.; Khobra, V.; Subramani, K.V.; Misri, J.; Sankar, M. Status of benzimidazole resistance in Haemonchus contortus of goats from different geographic regions of Uttar Pradesh, India. Vet. Parasitol. 2015, 208, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Playford, M.C.; Smith, A.N.; Love, S.; Besier, R.B.; Kluver, P.; Bailey, J.N. Prevalence and severity of anthelmintic resistance in ovine gastrointestinal nematodes in Australia (2009–2012). Aust. Vet. J. 2014, 92, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, E.; Gallidis, E.; Ptochos, S. Anthelmintic resistance in sheep in Europe: A selected review. Vet. Parasitol. 2012, 189, 85–88. [Google Scholar] [CrossRef]
- Cazajous, T.; Prevot, F.; Kerbiriou, A.; Milhes, M.; Grisez, C.; Tropee, A.; Godart, C.; Aragon, A.; Jacquiet, P. Multiple resistance to ivermectin and benzimidazoles of a Haemonchus contortus population in a sheep flock from mainland France, first report. Vet. Parasitol. Reg. Stud. Rep. 2018, 14, 103–105. [Google Scholar] [CrossRef]
- Eng, J.K.L.; Blackhall, W.J.; Osei-Atweneboana, M.Y.; Bourguinat, C.; Galazzo, D.; Beech, R.N.; Unnasch, T.R.; Awadzi, K.; Lubega, G.W.; Prichard, R.K. Ivermectin selection on b-tubulin: Evidence in Onchocerca volvulus and Haemonchus contortus. Mol. Biochem. Parasitol. 2006, 150, 229–235. [Google Scholar] [CrossRef]
- Ashraf, S.; Beech, R.N.; Hancock, M.A.; Prichard, R.K. Ivermectin binds to Haemonchus contortus tubulins and promotes stability of microtubules. Int. J. Parasitol. 2015, 45, 647–654. [Google Scholar] [CrossRef]
- Besier, R.B.; Kahn, L.P.; Sargison, N.D.; Van Wyk, J.A. The pathophysiology, ecology and epidemiology of Haemonchus contortus infection in small ruminants. Adv. Parasitol. 2016, 93, 95–143. [Google Scholar]
- Levine, N.D. Nematode Parasites of Domestic Animals and of Man, 2nd ed.; Burgess Publishing: Minneapolis, MN, USA, 1980. [Google Scholar]
- Veglia, F.; Union of South Africa, Department of Agriculture. The Anatomy and Life History of the Haemonchus contortus (Rud.); Government Printer and Stationery Office: Pretoria, South Africa, 1916; pp. 347–500. [Google Scholar]
- Monnig, H.O. Veterinary Helminthology and Entomology, 3rd ed.; Balliere, Tindall & Cox: London, UK, 1950. [Google Scholar]
- Hunter, A.R.; McKenzie, G. The pathogenesis of a single challenge dose of Haemonchus contortus in lambs under six months of age. J. Helminthol. 1982, 56, 135–144. [Google Scholar] [CrossRef]
- Clark, C.H.; Kiesel, G.K.; Goby, C.H. Measurements of blood loss caused by Haemonchus contortus infection in sheep. Am. J. Vet. Res. 1962, 23, 977–980. [Google Scholar] [PubMed]
- Dargie, J.D.; Allonby, E.W. Pathophysiology of single challenge infections of Haemonchus contortus in Merino sheep: Studies on red cell kinetics and the “self-cure” phenomenon. Int. J. Parasitol. 1975, 5, 147–157. [Google Scholar] [CrossRef]
- Albers, G.A.; Le Jambre, L.F. Erythrocyte potassium concentration: A simple parameter for erythropoiesis in sheep infected with Haemonchus contortus. Res. Vet. Sci. 1983, 35, 273–276. [Google Scholar] [CrossRef]
- Le Jambre, L.F. Relationship of blood loss to worm numbers, biomass and egg production in Haemonchus contortus infected sheep. Int. J. Parasitol. 1995, 25, 269–273. [Google Scholar] [CrossRef]
- Dunn, A.M. Veterinary Helminthology, 2nd ed.; William Heinemann Medical Books: Portsmouth, NH, USA, 1978. [Google Scholar]
- Suarez, V.H.; Cristel, S.L.; Busetti, M.R. Epidemiology and effects of gastrointestinal nematode infection on milk productions of dairy ewes. Parasite 2009, 16, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Albers, G.A.A.; Gray, G.D.; Le Jambre, L.F.; Piper, L.R.; Barger, I.A.; Barker, J.S.F. The effect of Haemonchus contortus on liveweight gain and wool growth in young Merino sheep. Aust. J. Agric. Res. 1989, 40, 419–432. [Google Scholar] [CrossRef]
- Van Wyk, J.A. Production trials involving use of the FAMACHA© system for haemonchosis in sheep: Preliminary results. Onderstepoort J. Vet. Res. 2008, 75, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Cobon, D.H.; O’Sullivan, B.M. Effect of Haemonchus contortus on productivity of ewes, lambs and weaners in a semi-arid environment. J. Agric. Sci. 1992, 118, 245–248. [Google Scholar] [CrossRef]
- Barger, I.A.; Cox, G.W. Wool production in sheep chronically infected with Haemonchus contortus. Vet. Parasitol. 1984, 15, 169–175. [Google Scholar] [CrossRef]
- Beriajaya; Copeman, D.B. Haemonchus contortus and Trichostrongylus colubriformis in pen-trials with Javanese thin tail sheep and Kacang cross Etawah goats. Vet. Parasitol. 2006, 135, 315–323. [Google Scholar] [CrossRef]
- Howlader, M.M.R.; Capitan, S.S.; Eduardo, S.L.; Roxas, N.P.; Sevilla, C.C. Performance of growing goats experimentally infected with stomach worm (Haemonchus contortus). Asian Australas. J. Anim. 1997, 10, 534–539. [Google Scholar] [CrossRef]
- Githigia, S.M.; Thamsborg, S.M.; Munyua, W.K.; Maingi, N. Impact of gastrointestinal helminths on production in goats in Kenya. Small Rumin. Res. 2001, 42, 21–29. [Google Scholar] [CrossRef]
- Malan, F.S.; Van Wyk, J.A.; Wessels, C.D. Clinical evaluation of anaemia in sheep: Early trials. Onderstepoort J. Vet. Res. 2001, 68, 165–174. [Google Scholar] [PubMed]
- Van Wyk, J.A.; Bath, G.F. The FAMACHA© system for managing haemonchosis in sheep and goats by clinically identifying individual animals for treatment. Vet. Res. 2002, 33, 509–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moors, E.; Gauly, M. Is the FAMACHA© chart suitable for every breed? Correlations between FAMACHA© scores and different traits of mucosa colour in naturally parasite infected breeds. Vet. Parasitol. 2009, 166, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, E.; Gallidis, E.; Ptochos, S.; Fthenakis, G.C. Evaluation of the FAMACHA© system for targeted selective anthelmintic treatments for potential use in small ruminants in Greece. Small Rumin. Res. 2013, 110, 124–127. [Google Scholar] [CrossRef]
- Van Wyk, J.A.; Mayhew, E. Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: A practical lab guide. Onderstepoort J. Vet. Res. 2013, 80, 1–14. [Google Scholar] [CrossRef]
- Roberts, J.L.; Swan, R.A. Quantitative studies of ovine haemonchosis. Relationship between total worm counts of Haemonchus contortus, haemoglobin values and bodyweight. Vet. Parasitol. 1982, 9, 217–222. [Google Scholar] [CrossRef]
- Beh, K.J.; Foley, R.C.; Goodwin, E.J. Restriction fragment length patterns of DNA from parasitic nematodes of sheep. Res. Vet. Sci. 1989, 46, 127–128. [Google Scholar] [CrossRef]
- Christensen, C.M.; Zarlenga, D.S.; Gasbarre, L.C. Ostertagia, Haemonchus, Cooperia, and Oesophagostomum: Construction and characterization of genus-specific DNA probes to differentiate important parasites of cattle. Exp. Parasitol. 1994, 78, 93–100. [Google Scholar] [CrossRef]
- Christensen, C.M.; Zarlenga, D.S.; Gasbarre, L.C. Identification of a Haemonchus placei-specific DNA probe. J. Helminthol. Soc. Wash. 1994, 61, 249–252. [Google Scholar]
- Stevenson, L.A.; Chilton, N.B.; Gasser, R.B. Differentiation of Haemonchus placei from H. contortus (Nematoda: Trichostrongylidae) by the ribosomal DNA second internal transcribed spacer. Int. J. Parasitol. 1995, 25, 483–488. [Google Scholar] [CrossRef]
- Troell, K.; Engstrom, A.; Morrison, D.A.; Mattsson, J.G.; Hoglund, J. Global patterns reveal strong population structure in Haemonchus contortus, a nematode parasite of domesticated ruminants. Int. J. Parasitol. 2006, 36, 1305–1316. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, U.; Redman, E.M.; Abbas, M.; Muthusamy, R.; Ashraf, K.; Gilleard, J.S. Genetic evidence for hybridisation between Haemonchus contortus and Haemonchus placei in natural field populations and its implications for interspecies transmission of anthelmintic resistance. Int. J. Parasitol. 2015, 45, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Roos, M.H.; Boersema, J.H.; Borgsteede, F.H.; Cornelissen, J.; Taylor, M.; Ruitenberg, E.J. Molecular analysis of selection for benzimidazole resistance in the sheep parasite Haemonchus contortus. Mol. Biochem. Parasitol. 1990, 43, 77–88. [Google Scholar] [CrossRef]
- Zarlenga, D.S.; Stringfellow, F.; Nobary, M.; Lichtenfels, J.R. Cloning and characterization of ribosomal RNA genes from three species of Haemonchus (Nematoda: Trichostrongyloidea) and identification of PCR primers for rapid differentiation. Exp. Parasitol. 1994, 78, 28–36. [Google Scholar] [CrossRef]
- Roos, M.H.; Grant, W.N. Species-specific PCR for the parasitic nematodes Haemonchus contortus and Trichostrongylus colubriformis. Int. J. Parasitol. 1993, 23, 419–421. [Google Scholar] [CrossRef]
- Heise, M.; Epe, C.; Schnieder, T. Differences in the second internal transcribed spacer (ITS-2) of eight species of gastrointestinal nematodes of ruminants. J. Parasitol. 1999, 85, 431–435. [Google Scholar] [CrossRef]
- Pichler, R.; Silbermayr, K.; Periasamy, K. A novel snapback primer probe assay for the detection and discrimination of sympatric Haemonchus species using DNA melting analysis. Vet. Parasitol. 2017, 237, 94–103. [Google Scholar] [CrossRef]
- Blouin, M.S.; Yowell, C.A.; Courtney, C.H.; Dame, J.B. Haemonchus placei and Haemonchus contortus are distinct species based on mtDNA evidence. Int. J. Parasitol. 1997, 27, 1383–1387. [Google Scholar] [CrossRef]
- Blouin, M.S.; Yowell, C.A.; Courtney, C.H.; Dame, J.B. Substitution bias, rapid saturation and the use of mtDNA for nematode systematics. Mol. Biol. Evol. 1998, 15, 1719–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roeber, F.; Jex, A.R.; Campbell, A.J.; Nielsen, R.; Anderson, G.A.; Stanley, K.K.; Gasser, R.B. Establishment of a robotic, high-throughput platform for the specific diagnosis of gastrointestinal nematode infections in sheep. Int. J. Parasitol. 2012, 42, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Demeler, J.; Ramunke, S.; Wolken, S.; Ianiello, D.; Rinaldi, L.; Gahutu, J.B.; Cringoli, G.; von Samson-Himmelstjerna, G.; Krucken, J. Discrimination of gastrointestinal nematode eggs from crude fecal egg preparations by inhibitor resistant conventional and real-time PCR. PLoS ONE 2013, 8, e61285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Samson-Himmelstjerna, G.; Harder, A.; Schnieder, T. Quantitative analysis of ITS2 sequences in trichostrongyle parasites. Int. J. Parasitol. 2002, 32, 1529–1535. [Google Scholar] [CrossRef]
- Siedek, E.M.; Burden, D.; von Samson-Himmelstjerna, G. Feasibility of genus-specific real-time PCR for the differentiation of larvae from gastrointestinal nematodes of naturally infected sheep. Berl. Munch. Tierarztl. Wochenschr. 2006, 119, 303–307. [Google Scholar] [PubMed]
- Harmon, A.F.; Williams, Z.B.; Zarlenga, D.S.; Hildreth, M.B. Real-time PCR for quantifying Haemonchus contortus eggs and potential limiting factors. Parasitol. Res. 2007, 101, 71–76. [Google Scholar] [CrossRef]
- Learmount, J.; Conyers, C.; Hird, H.; Morgan, C.; Craig, B.H.; von Samson-Himmelstjerna, G.; Taylor, M. Development and validation of real-time PCR methods for diagnosis of Teladorsagia circumcincta and Haemonchus contortus in sheep. Vet. Parasitol. 2009, 166, 268–274. [Google Scholar] [CrossRef]
- McNally, J.; Callan, D.; Andronicos, N.; Bott, N.; Hunt, P.W. DNA-based methodology for the quantification of gastrointestinal nematode eggs in sheep faeces. Vet. Parasitol. 2013, 198, 325–335. [Google Scholar] [CrossRef]
- Roeber, F.; Jex, A.R.; Gasser, R.B. Advances in the diagnosis of key gastrointestinal nematode infections of livestock, with an emphasis on small ruminants. Biotechnol. Adv. 2013, 31, 1135–1152. [Google Scholar] [CrossRef]
- Roeber, F.; Jex, A.R.; Gasser, R.B. Next-generation molecular-diagnostic tools for gastrointestinal nematodes of livestock, with an emphasis on small ruminants: A turning point? Adv. Parasitol. 2013, 83, 267–333. [Google Scholar]
- Preston, S.J.; Sandeman, M.; Gonzalez, J.; Piedrafita, D. Current status for gastrointestinal nematode diagnosis in small ruminants: Where are we and where are we going? J. Immunol. Res. 2014, 2014, 210350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeny, J.P.; Robertson, I.D.; Ryan, U.M.; Jacobson, C.; Woodgate, R.G. Comparison of molecular and McMaster microscopy techniques to confirm the presence of naturally acquired strongylid nematode infections in sheep. Mol. Biochem. Parasitol. 2011, 180, 62–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roeber, F.; Larsen, J.W.; Anderson, N.; Campbell, A.J.; Anderson, G.A.; Gasser, R.B.; Jex, A.R. A molecular diagnostic tool to replace larval culture in conventional faecal egg count reduction testing in sheep. PLoS ONE 2012, 7, e37327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmahalawy, S.T.; Halvarsson, P.; Skarin, M.; Höglund, J. Droplet digital polymerase chain reaction (ddPCR) as a novel method for absolute quantification of major gastrointestinal nematodes in sheep. Vet. Parasitol. 2018, 261, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kaminsky, R.; Gauvry, N.; Schorderet Weber, S.; Skripsky, T.; Bouvier, J.; Wenger, A.; Schroeder, F.; Desaules, Y.; Hotz, R.T.; Hosking, B.C.; et al. Identification of the amino-acetonitrile derivative monepantel (AAD 1566) as a new anthelmintic drug development candidate. Parasitol. Res. 2008, 103, 931–939. [Google Scholar] [CrossRef] [Green Version]
- Sager, H.; Hosking, B.; Bapst, B.; Stein, P.; Vanhoff, K.; Kaminsky, R. Efficacy of the amino-acetonitrile derivative, monepantel, against experimental and natural adult stage gastrointestinal nematode infections in sheep. Vet. Parasitol. 2009, 159, 49–54. [Google Scholar] [CrossRef]
- Besier, R.B.; Love, S.C.J. Anthelmintic resistance in sheep nematodes in Australia: The need for new approaches. Aust. J. Exp. Agri. 2003, 43, 1383–1391. [Google Scholar] [CrossRef]
- Cringoli, G.; Veneziano, V.; Jackson, F.; Vercruysse, J.; Greer, A.W.; Fedele, V.; Mezzino, L.; Rinaldi, L. Effects of strategic anthelmintic treatments on the milk production of dairy sheep naturally infected by gastrointestinal strongyles. Vet. Parasitol. 2008, 156, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Van Wyk, J.A.; Hoste, H.; Kaplan, R.M.; Besier, R.B. Targeted selective treatment for worm management-how do we sell rational programs to farmers? Vet. Parasitol. 2006, 139, 336–346. [Google Scholar] [CrossRef]
- Martin, P.J.; Le Jambre, L.F.; Claxton, J.H. The impact of refugia on the development of thiabendazole resistance in Haemonchus contortus. Int. J. Parasitol. 1981, 11, 35–41. [Google Scholar] [CrossRef]
- Torres-Acosta, J.F.; Hoste, H. Alternative or improved methods to limit gastrointestinal parasitism in grazing/browsing sheep and goats. Small Rumin. Res. 2008, 77, 159–173. [Google Scholar] [CrossRef]
- Hoste, H.; Le Frileux, Y.; Pommaret, A. Distribution and repeatability of faecal egg counts and blood parameters in dairy goats naturally infected with gastrointestinal nematodes. Res. Vet. Sci. 2001, 70, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Gaba, S.; Ginot, V.; Cabaret, J. Modelling macroparasite aggregation using a nematode-sheep system: The Weibull distribution as an alternative to the negative binomial distribution? Parasitology 2005, 131, 393–401. [Google Scholar] [CrossRef]
- Sréter, T.; Molnár, V.; Kassai, T. The distribution of nematode egg counts and larval counts in grazing sheep and their implications for parasite control. Int. J. Parasitol. 1994, 24, 103–108. [Google Scholar] [CrossRef]
- Cabaret, J. Pros and cons of targeted selective treatment against digestive-tract strongyles of ruminants. Parasite 2008, 15, 506–509. [Google Scholar] [CrossRef] [Green Version]
- Cabaret, J. Efficacy evaluation of anthelmintics: Which methods to use in the field? Parasitologia 2004, 46, 241–243. [Google Scholar]
- Stafford, K.A.; Morgan, E.R.; Coles, G.C. Weight-based targeted selective treatment of gastrointestinal nematodes in a commercial sheep flock. Vet. Parasitol. 2009, 164, 59–65. [Google Scholar] [CrossRef]
- Hoste, H.; Le Frileux, Y.; Pommaret, A. Comparison of selective and systematic treatments to control nematode infection of the digestive tract in dairy goats. Vet. Parasitol. 2002, 106, 345–355. [Google Scholar] [CrossRef]
- Leathwick, D.M.; Waghorn, T.S.; Miller, C.M.; Candy, P.M.; Oliver, A.M. Managing anthelmintic resistance—Use of a combination anthelmintic and leaving some lambs untreated to slow the development of resistance to ivermectin. Vet. Parasitol. 2012, 187, 285–294. [Google Scholar] [CrossRef]
- Cornelius, M.P.; Jacobson, C.; Dobson, R.; Besier, R.B. Computer modelling of anthelmintic resistance and worm control outcomes for refugia-based nematode control strategies in Merino ewes in Western Australia. Vet. Parasitol. 2016, 220, 59–66. [Google Scholar] [CrossRef]
- Bairden, K.; Armour, J.; Duncan, J.L. A 4-year study on the effectiveness of alternate grazing of cattle and sheep in the control of bovine parasitic gastroenteritis. Vet. Parasitol. 1995, 60, 119–132. [Google Scholar] [CrossRef]
- Hoste, H.; Guitard, J.P.; Pons, J.C. Paturage mixte entre ovins et bovines intereκt dans la gestion des strongyloses gastro intestinales. Fourrages 2003, 176, 425–436. [Google Scholar]
- Sayers, G.; Sweeney, T. Gastrointestinal nematode infection in sheep-a review of the alternatives to anthelmintics in parasite control. Anim. Health Res. Rev. 2005, 6, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Marley, C.L.; Fraser, M.D.; Davies, D.A.; Rees, M.E.; Vale, J.E.; Forbes, A.B. The effect of mixed or sequential grazing of cattle and sheep on the faecal egg counts and growth rates of weaned lambs when treated with anthelmintics. Vet. Parasitol. 2006, 142, 134–141. [Google Scholar] [CrossRef]
- Kyriazakis, I.; Houdijk, J. Immunonutrition: Nutritional control of parasites. Small Rumin. Res. 2006, 62, 79–82. [Google Scholar] [CrossRef]
- Strain, S.A.; Stear, M.J. The influence of protein supplementation on the immune response to Haemonchus contortus. Parasitol. Immunol. 2001, 23, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Eady, S.J.; Woolaston, R.R.; Barger, I.A. Comparison of genetic and nongenetic strategies for control of gastrointestinal nematodes of sheep. Livest. Prod. Sci. 2003, 81, 11–23. [Google Scholar] [CrossRef]
- Kahn, L.P.; Knox, M.; Gray, G. Enhancing immunity to nematode parasites in single-bearing Merino ewes through nutrition and genetic selection. Vet. Parasitol. 2003, 112, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Flores-Crespo, J.; Herrera-Rodríguez, D.; Mendoza de Gives, P.; Liébano-Hernández, E.; Vázquez-Prats, V.M.; López-Arellano, M.E. The predatory capability of three nematophagous fungi in the control of Haemonchus contortus infective larvae in ovine faeces. J. Helminthol. 2004, 77, 297–303. [Google Scholar] [CrossRef]
- Waller, P.J.; Rydzik, A.; Ljungström, B.L.; Törnquist, M. Towards the eradication of Haemonchus contortus from sheep flocks in Sweden. Vet. Parasitol. 2004, 136, 367–372. [Google Scholar] [CrossRef]
- Athanasiadou, S.; Kyriazakis, I.; Jackson, F.; Coop, R.L. Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: In vitro and in vivo studies. Vet. Parasitol. 2001, 99, 205–219. [Google Scholar] [CrossRef]
- Butter, N.L.; Dawson, J.M.; Wakelin, D.; Buttery, P.J. Effect of dietary condensed tannins on gastrointestinal nematodes. J. Agric. Sci. 2001, 137, 461–469. [Google Scholar] [CrossRef]
- Paolini, V.; Dorchies, P.; Hoste, H. Effects of sainfoin hay on gastrointestinal nematode infections in goats. Vet. Rec. 2003, 152, 600–601. [Google Scholar] [CrossRef] [PubMed]
- Paolini, V.; De La Farge, F.; Prevot, F.; Dorchies, P.; Hoste, H. Effects of the repeated distribution of sainfoin hay on the resistance and the resilience of goats naturally infected with gastrointestinal nematodes. Vet. Parasitol. 2005, 127, 277–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahieu, M.; Aumont, G. Effects of sheep and cattle alternate grazing on sheep parasitism and production. Trop. Anim. Health Prod. 2009, 41, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Huidobro, C.; Sagot, L.; Lugagne, S.; Huang, Y.; Milhes, M.; Bordes, L.; Prévot, F.; Grisez, C.; Gautier, D.; Valadier, C.; et al. Cell grazing and Haemonchus contortus control in sheep: Lessons from a two-year study in temperate Western Europe. Scient. Rep. 2019, 9, 12699. [Google Scholar] [CrossRef]
- Colvin, A.F.; Walkden-Brown, S.W.; Knox, M.R.; Scott, M.J. Intensive rotational grazing assists control of gastrointestinal nematodosis of sheep in a cool temperate environment with summer-dominant rainfall. Vet. Parasitol. 2008, 153, 108–120. [Google Scholar] [CrossRef]
- Steel, J.W. Effects of protein supplementation on young sheep on resistance development and resilience to parasitic nematodes. Aust. J. Exp. Agric. 2003, 12, 1469–1476. [Google Scholar] [CrossRef]
- Coop, R.L.; Holmes, P.H. Nutrition and parasite interaction. Int. J. Parasitol. 1996, 26, 951–962. [Google Scholar] [CrossRef]
- Abbott, E.M.; Parkins, J.J.; Holmes, P.H. The effect of dietary protein on the pathogenesis of acute ovine haemonchosis. Vet. Parasitol. 1986, 20, 275–289. [Google Scholar] [CrossRef]
- Wallace, D.S.; Bairden, K.; Duncan, J.L.; Fishwick, G.; Gill, M.; Holmes, P.H.; McKellar, Q.A.; Murray, M.; Parkins, J.J.; Stear, M. Influence of soyabean meal supplementation on the resistance of Scottish Blackface lambs to haemonchosis. Res. Vet. Sci. 1996, 60, 138–143. [Google Scholar] [CrossRef]
- Nnadi, P.A.; Kamalu, T.N.; Onah, D.N. The effect of dietary protein on the productivity of West African Dwarf (WAD) goats infected with Haemonchus contortus. Vet. Parasitol. 2009, 161, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Houdijk, J.G.M.; Kyriazakis, I.; Kidanea, A.; Athanasiadou, S. Manipulating small ruminant parasite epidemiology through the combination of nutritional strategies. Vet. Parasitol. 2012, 186, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Hoste, H.; Aguilar-Caballero, A.J.; Camara-Sarmiento, R.; Alonso-Díaz, M.A. Nutritional manipulation of sheep and goats for the control of gastrointestinal nematodes under hot humid and subhumid tropical conditions. Small Rumin. Res. 2012, 103, 28–40. [Google Scholar] [CrossRef]
- Hoste, H.; Martínez-Ortiz-De-Montellano, C.; Manolaraki, F.; Brunet, S.; Ojeda-Robertos, N.; Fourquaux, I.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A. Direct and indirect effects of bioactive tannin-rich tropical and temperate legumes against nematode infections. Vet. Parasitol. 2012, 186, 18–27. [Google Scholar] [CrossRef]
- Athanasiadou, S.; Tzamaloukas, O.; Kyriazakis, I.; Jackson, F.; Coop, R.L. Testing for direct anthelmintic effects of bioactive forages against Trichostrongylus colubriformis in grazing sheep. Vet. Parasitol. 2005, 127, 233–243. [Google Scholar] [CrossRef]
- Waghorn, G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production—Progress and challenges. Anim. Feed Sci. Technol. 2008, 147, 116–139. [Google Scholar] [CrossRef]
- Waller, P.J.; Larsen, M. The role of nematophagous fungi in the biological control of nematode parasites of livestock. Int. J. Parasitol. 1993, 23, 539–546. [Google Scholar] [CrossRef]
- Kelly, P.; Good, B.; Hanrahan, J.P.; Fitzpatrick, R.; de Waal, T. Screening for the presence of nematophagous fungi collected from Irish sheep pastures. Vet. Parasitol. 2009, 165, 345–349. [Google Scholar] [CrossRef]
- Waller, P.J.; Knox, M.R.; Faedo, M. The potential of nematophagous fungi to control the free-living stages of nematodes of sheep: Feeding and block studies with Duddingtonia flagrans. Vet. Parasitol. 2009, 102, 321–330. [Google Scholar] [CrossRef]
- Chandrawathani, P.; Jamnah, O.; Adnan, M.; Waller, P.J.; Larsen, M.; Gillespie, A.T. Field studies on the biological control of nematode parasites of sheep in the tropics, using the microfungus Duddingtonia flagrans. Vet. Parasitol. 2004, 120, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Maingi, N.; Krecek, R.C.; Van Biljon, N. Control of gastrointestinal nematodes in goats on pastures in South Africa using nematophagous fungi Duddingtonia flagrans and selective anthelmintic treatments. Vet. Parasitol. 2006, 138, 328–336. [Google Scholar] [CrossRef]
- Mugambi, J.M.; Bain, R.K.; Wanyangu, S.W.; Ihiga, M.A.; Duncan, J.L.; Murray, M.; Stear, M.J. Resistance of four sheep breeds to natural and subsequent artificial Haemonchus contortus infection. Vet. Parasitol. 1997, 69, 265–273. [Google Scholar] [CrossRef]
- Terefe, G.; Lacroux, C.; Andreoletti, O.; Grisez, C.; Prevot, F.; Bergeaud, J.P.; Penicaud, J.; Rouillon, V.; Gruner, L.; Brunel, J.C.; et al. Immune response to Haemonchus contortus infection in susceptible (INRA 401) and resistant (Barbados Black Belly) breeds of lambs. Parasite Immunol. 2007, 29, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Benavides, M.V.; Sonstegard, T.S.; Kemp, S.; Mugambi, J.M.; Gibson, J.P.; Baker, R.L.; Hanotte, O.; Marshall, K.; Van Tassell, C. Identification of novel loci associated with gastrointestinal parasite resistance in a Red Maasai x Dorper backcross population. PLoS ONE 2015, 10, e0122797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa Toscano, J.H.; dos Santos, I.B.; von Haehling, M.B.; Giraldelo, L.A.; Lopes, L.G.; da Silva, M.H.; Figueiredo, A.; Esteves, S.N.; Souza Chagas, A.C. Morada Nova sheep breed: Resistant or resilient to Haemonchus contortus infection? Vet. Parasitol. X 2019, 2, 100019. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Reyes, Z.M.; Tsukahara, Y.; Amadeu, R.R.; Goetsch, A.L.; Gipson, T.A.; Sahlu, T.; Puchala, R.; Wang, Z.; Hart, S.P.; Mateescu, R.G. Signatures of selection for resistance to Haemonchus contortus in sheep and goats. BMC Genom. 2019, 20, 735. [Google Scholar] [CrossRef] [Green Version]
- Woolaston, R.R.; Baker, R.L. Prospects of breeding small ruminants for resistance to internal parasites. Int. J. Parasitol. 1996, 26, 845–855. [Google Scholar] [CrossRef]
- Aguerre, S.; Jacquiet, P.; Brodier, H.; Bournazel, J.P.; Grisez, C.; Prévot, F.; Michot, L.; Fidelle, F.; Astruc, J.M.; Moreno, C.R. Resistance to gastrointestinal nematodes in dairy sheep: Genetic variability and relevance of artificial infection of nucleus rams to select for resistant ewes on farms. Vet. Parasitol. 2018, 256, 16–23. [Google Scholar] [CrossRef]
- Becker, G.; Davenport, K.; Burke, J.M.; Lewis, R.M.; Miller, J.; Morgan, J.; Notter, D.; Murdoch, B. Genome-wide association study to identify genetic loci associated with gastrointestinal nematode resistance in Katahdin sheep. Anim. Gen. 2020, 51, 330–335. [Google Scholar] [CrossRef]
- Kelly, G.A.; Kahn, L.P.; Walkden-Brown, S.W. Measurement of phenotypic resilience to gastro-intestinal nematodes in Merino sheep and association with resistance and production variables. Vet. Parasitol. 2013, 193, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Emery, D.L.; Hunt, P.W.; Le Jambre, L.F. Haemonchus contortus: The then and now, and where to from here? Int. J. Parasitol. 2016, 46, 755–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nisbet, A.J.; Meeusen, E.N.; Gonzalez, J.F.; Piedrafita, D.M. Immunity to Haemonchus contortus and vaccine development. Adv. Parasitol. 2016, 93, 353–396. [Google Scholar] [PubMed]
- Tian, X.; Ly, M.; Jia, C.; Bu, Y.; Aimulajiang, K.; Zhang, Y.; Li, C.; Yan, R.; Xu, L.; Song, X.; et al. Haemonchus contortus transthyretin domain containing protein (HcTTR): A promising vaccine candidate against Haemonchus contortus infection. Vet. Parasitol. 2020, 279, 109045. [Google Scholar] [CrossRef]
- Andrews, S.J.; Rolph, T.P.; Munn, E.A. Duration of protective immunity against ovine haemonchosis following vaccination with the nematode gut membrane antigen H11. Res. Vet. Sci. 1997, 62, 223–227. [Google Scholar] [CrossRef]
- Bassetto, C.C.; Picharillo, M.E.; Newlands, G.F.J.; Smith, W.D.; Fernandes, S.; Siqueira, E.R.; Amarante, A.F.T. Attempts to vaccinate ewes and their lambs against natural infection with Haemonchus contortus in a tropical environment. Int. J. Parasitol. 2014, 44, 1049–1054. [Google Scholar] [CrossRef]
- Besier, R.B.; Smith, W.D. A new approach to the control of barbers poe worm. In Proceedings of the 2014 Conference of Australian Sheep Veterinarians, Perth, Australia, 25–30 May 2014; pp. 11–16. [Google Scholar]
- Morgan, E.R.; Aziz, N.A.A.; Blanchard, A.; Charlier, J.; Charvet, C.; Claerebout, E.; Geldhof, P.; Greer, A.W.; Hertzberg, H.; Hodgkinson, J.; et al. 100 Questions in livestock helminthology research. Trends Parasitol. 2019, 35, 52–71. [Google Scholar] [CrossRef] [Green Version]
- Hoberg, E.P.; Lichtenfels, J.R.; Gibbons, L.M. Phylogeny for species of Haemonchus (Nematoda: Trichostrongyloidea): Considerations of their evolutionary history and global biogeography among Camelidae and Pecora (Artiodactyla). J. Parasitol. 2004, 90, 1085–1102. [Google Scholar] [CrossRef] [Green Version]
Climatic Zones | Regions | Ecological Features | Parasite Epidemiology |
---|---|---|---|
Tropical and subtropical regions | Tropical regions of Africa and America, tropical islands of the Pacific Ocean, southern and south-east Asia, northern part of Australia, southern USA, the Caribbean | L3 not surviving on pasturelands for long; moisture allowing larval development during dry seasons; increased period of larval survival and development when adequate moisture | Larval populations developing constantly, and animals continuously challenged; in dry weather, L3 increasing seasonally; hypobiotic L4 developing during dry seasons |
Warm temperate and summer rainfall regions | Parts of southern USA and South America, southern and eastern Asia, southern Africa, eastern Australia | Combination of high temperature/moisture supporting development of L3; under cold conditions, larval survival and development slowing down | Significant problem, depending on rainfalls; when mild temperatures during winter, L3 potentially throughout a year; in areas with low temperatures, outbreaks depending on seasonality; hypobiosis predominating during cold winters |
Mediterranean climatic regions | South-west cape of South Africa, para-Mediterranean basin, south-east Australia, western Australia | Suspension of survival and development of free-living stages; larval populations reaching peak numbers in autumn and spring; during mild temperature in winter, possible survival of L3 | Highest populations from late autumn to early winter and late spring to early summer; varying hypobiosis, in accord with duration and intensity of hot/dry conditions |
Cool and cold temperate regions | Northern USA and Canada, New Zealand, south east-Australia, northern Europe | Cessation of larval development until the onset of milder environmental conditions | Low risk, limited to warmer months; hypobiosis permitting overwintering; high temperatures favouring rapid development of hypobiotic larvae |
Arid regions | Deserts of southern and sub-Saharan Africa, continental Australia, Middle East | Lack of moisture limiting survival and development of larval populations, favoured during rainfall periods | Not a significant threat; rainfall periods increasing larval availability; hypobiosis of varying importance; hot conditions reducing L3 |
Class of Anthelmintic Drugs | Target in Helminth | Mechanism |
---|---|---|
Benzimidazoles | β-tubulin (isotype-1) | Point mutation at codon 200 leading to a phenylalanine to tyrosine substitution |
Point mutation at codon 167 leading to a phenylalanine to tyrosine substitution | ||
Point mutation at codon 198 leading to an alanine to glutamic acid substitution | ||
β-tubulin (isotype-2) | Attribution to polymorphism(s) | |
Imidazothiazoles | Nicotinic acetylcholine receptor genes | Mutated genes (Hco-unc-63, Hco-acr-8) expressing production of a protein, binding to the nicotinic acetyl-choline receptors, preventing binding of drug on them |
Under-expression of certain genes (Hco-unc-63a, Hco-unc-29.3, etc.) encoding the nicotinic acetylcholine receptors | ||
Macrocyclic lactones | Glutamate-gated chloride ion channels | Presence of glycine residue in the gene encoding these channels enhancing susceptibility of H. contortus; mutation of this glycine residue on HEK293 cells, resulting in loss of H. contortus drug-sensitivity |
P-glycoprotein gene | Polymorphisms or over-expression of P-glycoprotein genes | |
Closantel | Resistance attributed to reduced closantel intake by resistant helminths, to strong binding of the drug to albumins in the intestine of helminths and to increased excretion of the drug from resistant helminths | |
Monepantel | Nicotinic acetylcholine receptor genes | Mutated genes (Hco-des-2H, Hco-acr-23H, Hco-MPTL-1) associated with resistance |
Features | |
---|---|
Hyperacute | Severe anaemia, sudden deaths, paleness of mucous membranes, weakness, un-willingness to move, subcutaneous oedemas, dry, dark faeces of reduced quantity |
Acute | Stage I: Death of affected animals, mild anaemia in surviving animals |
Stage II: Temporary recovery due to activation of the haematopoietic process by host | |
Stage III: Severe and persistent anaemia due to iron deficiency | |
Subacute | Decreased growth rate, reduced milk, meat, wool production |
Long-standing | Features of malnutrition, e.g., low body condition score, decreased growth rate, reduced milk, meat, wool production |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arsenopoulos, K.V.; Fthenakis, G.C.; Katsarou, E.I.; Papadopoulos, E. Haemonchosis: A Challenging Parasitic Infection of Sheep and Goats. Animals 2021, 11, 363. https://doi.org/10.3390/ani11020363
Arsenopoulos KV, Fthenakis GC, Katsarou EI, Papadopoulos E. Haemonchosis: A Challenging Parasitic Infection of Sheep and Goats. Animals. 2021; 11(2):363. https://doi.org/10.3390/ani11020363
Chicago/Turabian StyleArsenopoulos, Konstantinos V., George C. Fthenakis, Eleni I. Katsarou, and Elias Papadopoulos. 2021. "Haemonchosis: A Challenging Parasitic Infection of Sheep and Goats" Animals 11, no. 2: 363. https://doi.org/10.3390/ani11020363
APA StyleArsenopoulos, K. V., Fthenakis, G. C., Katsarou, E. I., & Papadopoulos, E. (2021). Haemonchosis: A Challenging Parasitic Infection of Sheep and Goats. Animals, 11(2), 363. https://doi.org/10.3390/ani11020363