High Frequency and Diversity of Tetracycline Resistance Genes in the Microbiota of Broiler Chickens in Tunisia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Molecular Analysis
2.2.1. DNA Extraction
2.2.2. DNA Amplification and Sequencing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Llor, C.; Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Adv. Drug Safe 2014, 5, 229–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission Brussels. Ban of Antibiotics as Growth Promoters in Animal Feed Enters into Effect, P/05/1687. Available online: http://Europa.eu/rapid/pressrelease_IP-05-1687_en.htm (accessed on 22 December 2005).
- Abbassi, M.S.; Debbichi, N.; Mahrouki, S.; Hammami, S. Current epidemiology of nonβ-lactam antibiotics-resistance in Escherichia coli from animal origins in Tunisia: A paradigm of multidrug resistance. Arch. Clin. Microbiol. 2016, 7, 5. [Google Scholar]
- Mansour, W. Tunisian antibiotic resistance problems: Three contexts but one health. Afr. Health Sci. 2018, 18, 1202–1203. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossensh, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.who.int/news-room/q-a-detail/one-health (accessed on 23 January 2021).
- Abbassi, M.S.; Kilani, H.; Zouari, M.; Mansouri, R.; El Fekih, O.; Hammami, S.; Ben Chehida, N. Antimicrobial resistance in Escherichia coli isolates from healthy poultry, bovine and ovine in Tunisia: A real animal and human health threat. J. Clin. Microbiol. Biochem. Technol. 2017, 3, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Ljubojević, D.; Velhner, M.; Todorović, D.; Pajić, M.; Milanov, D. Tetracycline resistance in Escherichia coli isolates in poultry. Arh. Vet. Med. 2016, 9, 61–81. [Google Scholar] [CrossRef]
- Jouini, A.; Ben Slama, K.; Sáenz, Y.; Klibi, N.; Costa, D.; Vinué, L.; Zarazaga, M.; Boudabous, A.; Torres, C. Detection of multiple-antimicrobial resistance and characterization of the implicated genes in Escherichia coli isolates from foods of animal origin in Tunis. J. Food Prot. 2009, 72, 1082–1088. [Google Scholar] [CrossRef]
- Soufi, L.; Abbassi, M.S.; Sáenz, Y.; Vinué, L.; Somalo, S.; Zarazaga, M.; Abbas, A.; Dbaya, R.; Khanfir, L.; Ben Hassen, A.; et al. Prevalence and diversity of integrons and associated resistance genes in Escherichia coli isolates from poultry meat in Tunisia. Foodborne Pathog. Dis. 2009, 6, 1067–1073. [Google Scholar] [CrossRef]
- Soufi, L.; Sáenz, Y.; de Toro, M.; Abbassi, M.S.; Rojo-Bezares, B.; Vinué, L.; Bouchami, O.; Touati, A.; Ben Hassen, A.; Hammami, S.; et al. Phenotypic and genotypic characterization of Salmonella enterica recovered from poultry meat in Tunisia and identification of new genetic traits. Vector Borne Zoonotic Dis. 2012, 12, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Kilani, H.; Abbassi, M.S.; Ferjani, S.; Mansouri, R.; Sghaier, S.; Salem, B.R.; Jaouani, I.; Douja, G.; Brahim, S.; Hammami, S.; et al. Occurrence of blaCTX-M-1, qnrB1 and virulence genes in avian ESBL producing Escherichia coli isolates from Tunisia. Front. Cell Infect. Microbiol. 2015, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- Badi, S.; Cremonesi, P.; Abbassi, M.S.; Ibrahim, C.; Snoussi, M.; Bignoli, G.; Luini, M.; Castiglioni, B.; Hassen, A. Antibiotic resistance phenotypes and virulence associated genes in Escherichia coli isolated from animals and animal food products in Tunisia. FEMS Microbiol. Lett. 2017, 365, fny088. [Google Scholar] [CrossRef] [PubMed]
- Gharbi, M.; Béjaoui, A.; Ben Hamda, C.; Jouini, A.; Ghedira, K.; Zrelli, C.; Hamrouni, S.; Aouadhi, C.; Bessoussa, G.; Ghram, A.; et al. Prevalence and antibiotic resistance patterns of Campylobacter spp. isolated from broiler chickens in the North of Tunisia. Biomed. Res. Int. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klibi, N.; Ben Saida, L.; Jouinia, A.; Ben Slamaa, K.; Maria López, M.; Ben Sallem, R.; Boudabousa, A.; Torres, C. Species distribution, antibiotic resistance and virulence traits in enterococci from meat in Tunisia. Meat. Sci. 2013, 93, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, application, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, F.; Starosta, A.L.; Arenz, S.; Sohmen, D.; Donhofer, A.; Wilson, D.N. Tetracycline antibiotics and resistance mechanisms. Biol. Chem. 2014, 395, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.C. Mechanism of Resistance for Characterized tet and otr Genes. 2020. Available online: http://faculty.washington.edu/marilynr/tetweb1.Pdf (accessed on 23 January 2021).
- Roberts, M.C. Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett. 2005, 245, 195–203. [Google Scholar] [CrossRef]
- Rôças, I.N.; Siqueira, J.F., Jr. Detection of antibiotic resistance genes in samples from acute and chronic endodontic infections and after treatment. Arch. Oral Biol. 2013, 58, 1123–1128. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Peña, K.; Esperón, F.; Torres-Mejía, A.M.; de la Torre, A.; de la Cruz, E.; Jiménez-Soto, M. Antimicrobial resistance genes in pigeons from public parks in Costa Rica. Zoonoses Public Health 2017, 64, e23–e30. [Google Scholar] [CrossRef]
- Di Francesco, A.; Renzi, M.; Borel, N.; Marti, H.; Salvatore, D. Detection of tetracycline resistance genes in European hedgehogs (Erinaceus europaeus) and crested porcupines (Hystrix cristata). J. Wildl. Dis. 2020, 56, 219–223. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.-G.; Johnson, T.A.; Sua, J.-Q.; Qiaob, M.; Guob, G.-X.; Stedtfeld, R.D.; Hashsham, S.A.; Tiedje, J.M. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 2013, 110, 3435–3440. [Google Scholar] [CrossRef] [Green Version]
- Singer, R.S.; Ward, M.P.; Maldonado, G. Can landscape ecology untangle the complexity of antibiotic resistance? Nat. Rev. Microbiol. 2007, 4, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Sundsfjord, A.; Simonsen, G.S.; Haldorsen, B.C.; Haaheim, H.; Hjelmevoll, S.-O.; Littauer, P.; Dahl, K.H. Genetic methods for detection of antimicrobial resistance. APMIS 2004, 112, 815–837. [Google Scholar] [CrossRef] [PubMed]
- Vittecoq, M.; Godreuil, S.; Prugnolle, F.; Durand, P.; Brazier, L.; Renaud, N.; Arnal, A.; Aberkane, S.; Jean-Pierre, H.; Gauthier-Clerc, M.; et al. Antimicrobial resistance in wildlife. J. Appl. Ecol. 2016, 53, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Ng, L.K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 2001, 15, 209–215. [Google Scholar] [CrossRef]
- Roberts, M.C. Distribution of tet Resistance Genes among Gram-Positive Bacteria, Mycobacterium, Mycoplasma, Nocardia, Streptomyces and Ureaplasma. Available online: https://faculty.washington.edu/marilynr/tetweb3.pdf (accessed on 1 February 2021).
- Roberts, M.C. Distribution of tet Resistance Genes among Gram-Negative Bacteria. Available online: https://faculty.washington.edu/marilynr/tetweb2.pdf (accessed on 1 February 2021).
- Avrain, L.; Vernozy-Rozand, C.; Kempf, I. Evidence for natural horizontal transfer of tetO gene between Campylobacter jejuni strains in chickens. J. Appl. Microbiol. 2004, 97, 134–140. [Google Scholar] [CrossRef]
- Brenciani, A.; Ojo, K.K.; Monachetti, A.; Menzo, S.; Roberts, M.C.; Varaldo, P.E.; Giovanetti, E. A new genetic element, carrying tet(O) and mef(A) genes. J. Antimicrob. Chemother. 2004, 54, 991–998. [Google Scholar] [CrossRef] [Green Version]
- Kyselková, M.; Jirout, J.; Vrchotová, N.; Schmitt, H.; Elhottová, D. Spread of tetracycline resistance genes at a conventional dairy farm. Front. Microbiol. 2015, 6, 536. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.C.; Schwarz, S. Tetracycline and phenicol resistance genes and mechanisms: Importance for agriculture, the environment, and humans. J. Env. Qual. 2016, 45, 576–592. [Google Scholar] [CrossRef]
- Pons, M.; Torrents de la Peña, A.T.; Mensa, L.; Martón, P.; Ruiz-Roldán, L.; Martínez-Puchol, S.; Vila, J.; Gascón, J.; Ruiz, J. Differences in tetracycline resistance determinant carriage among Shigella flexneri and Shigella sonnei are not related to different plasmid Inc type carriage. JGAR 2018, 13, 131–134. [Google Scholar] [CrossRef]
- Martın, M.; Liras, P. Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu. Rev. Microbiol. 1989, 43, 173–206. [Google Scholar] [CrossRef]
- Radhouani, H.; Silva, N.; Poeta, P.; Torres, C.; Correia, S.; Igrejas, G. Potential impact of antimicrobial resistance in wildlife, environment and human health. Front. Microbiol. 2014, 5, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, H.; Donato, J.; Wang, H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2010, 8, 251–259. [Google Scholar] [CrossRef] [PubMed]
Tetracycline Resistance Gene | PCR Primer Sequence 5′–3′ | Amplicon Size (bp) |
---|---|---|
tet(A) | GCT ACA TCC TGC TTG CCT TC’ CAT AGA TCG CCG TGA AGA GG | 210 |
tet(B) | TTG GTT AGG GGC AAG TTT TG GTA ATG GGC CAA TAA CAC CG | 659 |
tet(C) | CTT GAG AGC CTT CAA CCC AG ATG GTC GTC ATC TAC CTG CC | 418 |
tet(D) | AAA CCA TTA CGG CAT TCT GC GAC CGG ATA CAC CAT CCA TC | 787 |
tet(E) | AAA CCA CAT CCT CCA TAC GC AAA TAG GCC ACA ACC GTC AG | 278 |
tet(G) | GCT CGG TGG TAT CTC TGC TC AGC AAC AGA ATC GGG AAC AC | 468 |
tet(K) | TCG ATA GGA ACA GCA GTA CAG CAG ATC CTA CTC CTT | 169 |
tet(L) | TCG TTA GCG TGC TGT CAT TC GTA TCC CAC CAA TGT AGC CG | 267 |
tet(M) | GTG GAC AAA GGT ACA ACG AG CGG TAA AGT TCG TCA CAC AC | 406 |
tet(O) | AAC TTA GGC ATT CTG GCT CAC TCC CAC TGT TCC ATA TCG TCA | 515 |
tet(S) | CAT AGA CAA GCC GTT GAC C ATG TTT TTG GAA CGC CAG AG | 667 |
tet(P) | CTT GGA TTG CGG AAG AAG AG ATA TGC CCA TTT AAC CAC GC | 676 |
tet(Q) | TTA TAC TTC CTC CGG CAT CG ATC GGT TCG AGA ATG TCC AC | 904 |
tet(X) | CAA TAA TTG GTG GTG GAC CC TTC TTA CCT TGG ACA TCC CG | 468 |
Lot/Farm | Active Efflux | Ribosomal Protection | Enzymatic Inactivation | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tet(A) | tet(B) | tet(C) | tet(D) | tet(E) | tet(G) | tet(K) | tet(L) | tet(P) | tet(M) | tet(O) | tet(Q) | tet(S) | tet(X) | |
1/A | 14 | 13 | 1 | 1 | 0 | 0 | 13 | 13 | 0 | 13 | 14 | 13 | 9 | 13 |
2/A | 15 | 14 | 4 | 2 | 1 | 0 | 14 | 15 | 0 | 15 | 15 | 15 | 12 | 12 |
3/B | 15 | 13 | 2 | 6 | 1 | 0 | 15 | 15 | 0 | 15 | 15 | 15 | 8 | 14 |
4/C | 14 | 11 | 8 | 0 | 0 | 0 | 15 | 15 | 0 | 15 | 15 | 14 | 11 | 15 |
5/D | 14 | 11 | 3 | 0 | 0 | 0 | 13 | 15 | 1 | 15 | 15 | 15 | 2 | 8 |
6/C | 15 | 10 | 8 | 6 | 3 | 1 | 13 | 15 | 1 | 15 | 15 | 12 | 10 | 12 |
7/E | 11 | 12 | 6 | 7 | 0 | 0 | 15 | 15 | 8 | 15 | 15 | 14 | 2 | 6 |
8/D | 11 | 11 | 8 | 7 | 0 | 0 | 15 | 15 | 4 | 15 | 15 | 14 | 6 | 9 |
9/F | 13 | 10 | 0 | 0 | 0 | 0 | 12 | 15 | 0 | 14 | 15 | 11 | 7 | 11 |
10/D | 15 | 11 | 1 | 0 | 0 | 0 | 12 | 13 | 1 | 15 | 15 | 6 | 1 | 9 |
11/F | 13 | 10 | 6 | 6 | 0 | 0 | 11 | 15 | 0 | 15 | 15 | 12 | 2 | 12 |
12/D | 12 | 8 | 7 | 1 | 0 | 0 | 12 | 15 | 0 | 15 | 14 | 9 | 4 | 10 |
13/B | 14 | 15 | 0 | 0 | 0 | 0 | 13 | 15 | 0 | 15 | 14 | 6 | 9 | 10 |
Total N (%) | 176 (90.2) | 149 (76.4) | 54 (27.7) | 36 (18.4) | 5 (2.5) | 1 (0.5) | 173 (88.7) | 191 (98) | 15 (7.7) | 192 (98.4) | 192 (98.4) | 156 (80) | 83 (42.5) | 141 (72.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Francesco, A.; Salvatore, D.; Sakhria, S.; Catelli, E.; Lupini, C.; Abbassi, M.S.; Bessoussa, G.; Ben Yahia, S.; Ben Chehida, N. High Frequency and Diversity of Tetracycline Resistance Genes in the Microbiota of Broiler Chickens in Tunisia. Animals 2021, 11, 377. https://doi.org/10.3390/ani11020377
Di Francesco A, Salvatore D, Sakhria S, Catelli E, Lupini C, Abbassi MS, Bessoussa G, Ben Yahia S, Ben Chehida N. High Frequency and Diversity of Tetracycline Resistance Genes in the Microbiota of Broiler Chickens in Tunisia. Animals. 2021; 11(2):377. https://doi.org/10.3390/ani11020377
Chicago/Turabian StyleDi Francesco, Antonietta, Daniela Salvatore, Sonia Sakhria, Elena Catelli, Caterina Lupini, Mohamed Salah Abbassi, Ghaith Bessoussa, Salma Ben Yahia, and Noureddine Ben Chehida. 2021. "High Frequency and Diversity of Tetracycline Resistance Genes in the Microbiota of Broiler Chickens in Tunisia" Animals 11, no. 2: 377. https://doi.org/10.3390/ani11020377
APA StyleDi Francesco, A., Salvatore, D., Sakhria, S., Catelli, E., Lupini, C., Abbassi, M. S., Bessoussa, G., Ben Yahia, S., & Ben Chehida, N. (2021). High Frequency and Diversity of Tetracycline Resistance Genes in the Microbiota of Broiler Chickens in Tunisia. Animals, 11(2), 377. https://doi.org/10.3390/ani11020377