Impaired Reproductive Function in Equines: From Genetics to Genomics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Mutations, Deletions and Genomic Rearrangements Associated with Infertility in Horses
3. Copy Number Abnormalities and Fertility: the Role of the Sex Chromosome Pair
4. Copy Number Variants: A New Field for Horse Genomics and Fertility
5. Inbreeding, Molecular Homozygosity and Reproduction in Horses
6. Association Studies and Fertility in Horses
7. Conclusions and New Approaches for Studying the Genes Involved in Equine Reproductive Problems
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mahon, G.A.T.; Cunningham, E.P. Inbreeding and the inheritance of fertility in the thoroughbred mare. Livest. Prod. Sci. 1982, 9, 743–754. [Google Scholar] [CrossRef]
- Valera, M.; Blesa, F.; Dos Santos, R.; Molina, A. Genetic study of gestation length in Andalusian and Arabian mares. Anim. Reprod. Sci. 2006, 95, 75–96. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, J.; Stock, K.F.; Wulf, M.; Aurich, C. Maternal lineage of Warmblood mares contributes to variation of gestation length and bias of foal sex ratio. PLoS ONE 2015, 10, e0139358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, J.A.; Gonçalves, A.R.; Antunes, L.; Bettencourt, E.V.; Gama, L.T. Genetic and Environmental Factors Influencing Gestation Length in Lusitano Horses. J. Equine Vet. Sci. 2020, 84, 102850. [Google Scholar] [CrossRef]
- Gómez, M.D.; Sánchez, M.J.; Bartolomé, E.; Cervantes, I.; Poyato-Bonilla, J.; Demyda-Peyrás, S.; Valera, M. Phenotypic and genetic analysis of reproductive traits in horse populations with different breeding purposes. Animal 2020, 14, 1351–1361. [Google Scholar] [CrossRef]
- Gottschalk, M.; Sieme, H.; Martinsson, G.; Distl, O. Analysis of breed effects on semen traits in light horse, warmblood, and draught horse breeds. Theriogenology 2016, 85, 1375–1381. [Google Scholar] [CrossRef]
- Gottschalk, M.; Sieme, H.; Martinsson, G.; Distl, O. Heritability of semen traits in German Warmblood stallions. Anim. Reprod. Sci. 2016, 170, 10–14. [Google Scholar] [CrossRef]
- Greiser, T.; Sieme, H.; Martinsson, G.; Distl, O. Genetic parameters and estimated breeding values for traits of raw and frozen-thawed semen in German Warmblood stallions. Anim. Reprod. Sci. 2019, 210. [Google Scholar] [CrossRef]
- Pirosanto, Y.; Valera, M.; Molina, A.; Dorado, J.; Demyda-Peyrás, S. Sperm quality of Pure Spanish stallions is affected by inbreeding coefficient and age. Reprod. Fertil. Dev. 2020, 32, 137-137. [Google Scholar] [CrossRef]
- Dini, P.; Bartels, T.; Revah, I.; Claes, A.N.; Stout, T.A.E.; Daels, P. A retrospective study on semen quality parameters from four different Dutch horse breeds with different levels of inbreeding. Theriogenology 2020, 157, 18–23. [Google Scholar] [CrossRef]
- Freeman, J.L.; Perry, G.H.; Feuk, L.; Redon, R.; McCarroll, S.A.; Altshuler, D.M.; Aburatani, H.; Jones, K.W.; Tyler-Smith, C.; Hurles, M.E.; et al. Copy number variation: New insights in Genome. diversity. Genome. Res. 2006, 16, 949–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McQuillan, R.; Leutenegger, A.L.; Abdel-Rahman, R.; Franklin, C.S.; Pericic, M.; Barac-Lauc, L.; Smolej-Narancic, N.; Janicijevic, B.; Polasek, O.; Tenesa, A.; et al. Runs of homozygosity in European populations. Am. J. Hum. Genet. 2008, 83, 359–372. [Google Scholar] [CrossRef] [Green Version]
- Visscher, P.M.; Brown, M.A.; McCarthy, M.I.; Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 2012, 90, 7–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raudsepp, T.; Finno, C.J.; Bellone, R.R.; Petersen, J.L. Ten years of the horse reference genome: Insights into equine biology, domestication and population dynamics in the post-genome era. Anim. Genet. 2019, 50, 569–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pailhoux, E.; Cribiu, E.P.; Parma, P.; Cotinot, C. Molecular analysis of an XY mare with gonadal dysgenesis. Hereditas 1995, 122, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Kent, J.; Wheatley, S.C.; Andrews, J.E.; Sinclair, A.H.; Koopman, P. A male-specific role for SOX9 in vertebrate sex determination. Development 1996, 122, 2813. [Google Scholar] [PubMed]
- Raudsepp, T.; Durkin, K.; Lear, T.L.; Das, P.J.; Avila, F.; Kachroo, P.; Chowdhary, B.P. Molecular heterogeneity of XY sex reversal in horses. Anim. Genet. 2010, 41 (Suppl. 2), 41–52. [Google Scholar] [CrossRef]
- Villagómez, D.A.F.; Lear, T.L.; Chenier, T.; Lee, S.; McGee, R.B.; Cahill, J.; Foster, R.A.; Reyes, E.; St John, E.; King, W.A. Equine disorders of sexual development in 17 mares including XX, SRY-negative, XY, SRY-negative and XY, SRY-positive genotypes. Sex. Dev. 2011, 5, 16–25. [Google Scholar] [CrossRef]
- Anaya, G.; Moreno-Millán, M.; Bugno-Poniewierska, M.; Pawlina, K.; Membrillo, A.; Molina, A.; Demyda-Peyrás, S. Sex reversal syndrome in the horse: Four new cases of feminization in individuals carrying a 64,XY SRY negative chromosomal complement. Anim. Reprod. Sci. 2014, 151, 22–27. [Google Scholar] [CrossRef]
- Ghosh, S.; Qu, Z.; Das, P.J.; Fang, E.; Juras, R.; Cothran, E.G.; McDonell, S.; Kenney, D.G.; Lear, T.L.; Adelson, D.L.; et al. Copy Number Variation in the Horse Genome. PLoS Genet. 2014, 10, e1004712. [Google Scholar] [CrossRef] [Green Version]
- Villagomez, D.A.F.; Welsford, E.G.; King, W.A.; Revay, T. Androgen receptor gene variants in new cases of equine androgen insensitivity syndrome. Genes 2020, 11, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revay, T.; Quach, A.T.; Maignel, L.; Sullivan, B.; King, W.A. Copy number variations in high and low fertility breeding boars. BMC Genom. 2015, 16, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Carden, C.F.; Juras, R.; Mendoza, M.N.; Jevit, M.J.; Castaneda, C.; Phelps, O.; Dube, J.; Kelley, D.E.; Varner, D.D.; et al. Two Novel Cases of Autosomal Translocations in the Horse: Warmblood Family Segregating t(4;30) and a Cloned Arabian with a de novo t(12;25). Cytogenet. Genome. Res. 2020. [Google Scholar] [CrossRef]
- Révay, T.; Villagómez, D.A.F.; Brewer, D.; Chenier, T.; King, W.A. GTG Mutation in the Start Codon of the Androgen Receptor Gene in a Family of Horses with 64,XY Disorder of Sex Development. Sex. Dev. 2012, 6, 108–116. [Google Scholar] [CrossRef]
- Bolzon, C.; Joonè, C.J.; Schulman, M.L.; Harper, C.K.; Villagómez, D.A.F.; King, W.A.; Révay, T. Missense Mutation in the Ligand-Binding Domain of the Horse Androgen Receptor Gene in a Thoroughbred Family with Inherited 64,XY (SRY+) Disorder of Sex Development. Sex. Dev. 2016, 10, 37–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rižner, T.L.; Penning, T.M. Role of aldo–keto reductase family 1 (AKR1) enzymes in human steroid metabolism. Steroids 2014, 79, 49–63. [Google Scholar] [CrossRef] [Green Version]
- Lear, T.L.; Lundquist, J.; Zent, W.W.; Fishback, J.W.D.; Clark, A. Three autosomal chromosome translocations associated with repeated early embryonic loss (REEL) in the domestic horse (Equus caballus). Cytogenet. Genome. Res. 2008, 120, 117–122. [Google Scholar] [CrossRef]
- Lear, T.L.; Raudsepp, T.; Lundquist, J.M.; Brown, S.E. Repeated Early Embryonic Loss in a Thoroughbred Mare with a Chromosomal Translocation 64,XX,t(2;13). J. Equine Vet. Sci. 2014, 34, 805–809. [Google Scholar] [CrossRef]
- Lear, T.L.; Layton, G. Use of Zoo-FISH to characterise a reciprocal translocation in a Thoroughbred mare: t(1;16)(q16;q21.3). Equine Vet. J. 2002, 34, 207–209. [Google Scholar] [CrossRef]
- Alkan, C.; Coe, B.P.; Eichler, E.E. genome structural variation discovery and genotyping. Nat. Rev. Genet. 2011, 12, 363–376. [Google Scholar] [CrossRef]
- Bugno, M.; Słota, E.; Kościelny, M. Karyotype evaluation among young horse populations in Poland. Schweizer Archiv für Tierheilkunde 2007, 149, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Chandley, A.C.; Fletcher, J.; Rossdale, P.D.; Peace, C.K.; Ricketts, S.W.; McEnery, R.J.; Thorne, J.P.; Short, R.V.; Allen, W.R. Chromosome abnormalities as a cause of infertility in mares. J. Reprod. Fertil. 1975, 23, 377–383. [Google Scholar]
- Hughes, J.P.; Rommershausen-Smith, A.T. Infertility in the horse associated with chromosomal abnormalities. Aust. Vet. J. 1977, 53, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Power, M.M. Chromosomes of the horse. In Domestic Animal Cytogenetics; Academic Press, Inc.: San Diego, CA, USA, 1990; Volume 34, pp. 131–167. [Google Scholar]
- Gamo, S.; Tozaki, T.; Kakoi, H.; Hirota, K.I.; Nakamura, K.; Nishii, N.; Alumunia, J.; Takasu, M. X monosomy in the endangered Kiso horse breed detected by a parentage test using sex chromosome linked genes and microsatellites. J. Vet. Med. Sci. 2019, 81, 91–94. [Google Scholar] [CrossRef] [Green Version]
- Kjöllerström, H.J.; Collares-Pereira, M.J.; Oom, M.M. First evidence of sex chromosome mosaicism in the endangered Sorraia Horse breed. Livest. Sci. 2011, 136, 273–276. [Google Scholar] [CrossRef]
- Lear, T.L.; McGee, R.B. Disorders of sexual development in the domestic horse, Equus caballus. Sex. Dev. 2012, 6, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Bannasch, D.; Rinaldo, C.; Millon, L.; Latson, K.; Spangler, T.; Hubberty, S.; Galuppo, L.; Lowenstine, L. SRY negative 64,XX intersex phenotype in an American saddlebred horse. Vet. J. 2007, 173, 437–439. [Google Scholar] [CrossRef]
- Demyda-Peyras, S.; Bugno-Poniewierska, M.; Pawlina, K.; Anaya, G.; Moreno-Millán, M. The use of molecular and cytogenetic methods as a valuable tool in the detection of chromosomal abnormalities in horses: A Case of sex chromosome chimerism in a Spanish Purebred colt. Cytogenet. Genome. Res. 2013, 141, 277–283. [Google Scholar] [CrossRef]
- Dunn, H.O.; Smiley, D.; Duncan, J.R.; McEntee, K. Two equine true hermaphrodites with 64,XX/64,XY and 63,XO/64,XY chimerism. Cornell Vet. 1981, 71, 123–135. [Google Scholar]
- Bugno, M.; Zabek, T.; Golonka, P.; Pieńkowska-Schelling, A.; Schelling, C.; Słota, E. A case of an intersex horse with 63,X/64,XX/65,XX,del(Y)(q?) karyotype. Cytogenet. Genome. Res. 2008, 120, 123–126. [Google Scholar] [CrossRef]
- Lear, T.L.; Bailey, E. Equine clinical cytogenetics: The past and future. Cytogenet. Genome. Res. 2008, 120, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Anaya, G.; Molina, A.; Valera, M.; Moreno-Millan, M.; Azor, P.; Peral-Garcia, P.; Demyda-Peyras, S. Sex chromosomal abnormalities associated with equine infertility: Validation of a simple molecular screening tool in the Purebred Spanish Horse. Anim. Genet. 2017, 48, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Szczerbal, I.; Nowacka-Woszuk, J.; Kopp-Kuhlman, C.; Mackowski, M.; Switonski, M. Application of droplet digital PCR in diagnosing of X monosomy in mares. Equine Vet. J. 2020, 52, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Pirosanto, Y.; Laseca, N.; Valera, M.; Molina, A.; Bugno Poniewierska, M.; Ross, P.; Azor, P.; Demyda Peyrás, S. Screening and detection of chromosomal copy number alterations (CNA) in the domestic horse by SNP-array genotyping data. Anim. Genet. 2021, acepted in press. [Google Scholar]
- Redon, R.; Ishikawa, S.; Fitch, K.R.; Feuk, L.; Perry, G.H.; Andrews, T.D.; Fiegler, H.; Shapero, M.H.; Carson, A.R.; Chen, W.; et al. Global variation in copy number in the human genome. Nature 2006, 444, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Carrell, D.T.; Aston, K.I. The search for SNPs, CNVs, and epigenetic variants associated with the complex disease of male infertility. Syst. Biol. Reprod. Med. 2011, 57, 17–26. [Google Scholar] [CrossRef]
- Doan, R.; Cohen, N.; Harrington, J.; Veazy, K.; Juras, R.; Cothran, G.; McCue, M.E.; Skow, L.; Dindot, S.V. Identification of copy number variants in horses. Genome. Res. 2012, 22, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Sole, M.; Ablondi, M.; Binzer-Panchal, A.; Velie, B.D.; Hollfelder, N.; Buys, N.; Ducro, B.J.; Francois, L.; Janssens, S.; Schurink, A.; et al. Inter- and intra-breed genome-wide copy number diversity in a large cohort of European equine breeds. BMC Genom. 2019, 20, 759. [Google Scholar] [CrossRef] [Green Version]
- Gottschalk, M.; Metzger, J.; Martinsson, G.; Sieme, H.; Distl, O. Genome-wide association study for semen quality traits in German Warmblood stallions. Anim. Reprod. Sci. 2016, 171, 81–86. [Google Scholar] [CrossRef]
- Schrimpf, R.; Dierks, C.; Martinsson, G.; Sieme, H.; Distl, O. Genome-wide association study identifies phospholipase C zeta 1 (PLCz1) as a stallion fertility locus in Hanoverian warmblood horses. PLoS ONE 2014, 9, e109675. [Google Scholar] [CrossRef]
- Raudsepp, T.; McCue, M.E.; Das, P.J.; Dobson, L.; Vishnoi, M.; Fritz, K.L.; Schaefer, R.; Rendahl, A.K.; Derr, J.N.; Love, C.C.; et al. Genome-Wide Association Study Implicates Testis-Sperm Specific FKBP6 as a Susceptibility Locus for Impaired Acrosome Reaction in Stallions. PLoS Genet. 2012, 8, e1003139. [Google Scholar] [CrossRef] [PubMed]
- Schrimpf, R.; Gottschalk, M.; Metzger, J.; Martinsson, G.; Sieme, H.; Distl, O. Screening of whole Genome. sequences identified high-impact variants for stallion fertility. BMC Genom. 2016, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurgul, A.; Jasielczuk, I.; Semik-Gurgul, E.; Pawlina-Tyszko, K.; Stefaniuk-Szmukier, M.; Szmatola, T.; Polak, G.; Tomczyk-Wrona, I.; Bugno-Poniewierska, M. A genome-wide scan for diversifying selection signatures in selected horse breeds. PLoS ONE 2019, 14, e0210751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metzger, J.; Karwath, M.; Tonda, R.; Beltran, S.; Águeda, L.; Gut, M.; Gut, I.G.; Distl, O. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. BMC Genom. 2015, 16, 764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ablondi, M.; Viklund, Å.; Lindgren, G.; Eriksson, S.; Mikko, S. Signatures of selection in the Genome of Swedish warmblood horses selected for sport performance. BMC Genom. 2019, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Todd, E.T.; Thomson, P.C.; Hamilton, N.A.; Ang, R.A.; Lindgren, G.; Viklund, Å.; Eriksson, S.; Mikko, S.; Strand, E.; Velie, B.D. A genome-wide scan for candidate lethal variants in Thoroughbred horses. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Mau, C.; Poncet, P.A.; Bucher, B.; Stranzinger, G.; Rieder, S. Genetic mapping of dominant white (W), a homozygous lethal condition in the horse (Equus caballus). J. Anim. Breed. Genet. 2004, 121, 374–383. [Google Scholar] [CrossRef]
- Schrimpf, R.; Metzger, J.; Martinsson, G.; Sieme, H.; Distl, O. Implication of FKBP6 for Male Fertility in Horses. Reprod. Domest. Anim. 2015, 50, 195–199. [Google Scholar] [CrossRef]
- Giese, A.; Jude, R.; Kuiper, H.; Piumi, F.; Schambony, A.; Guérin, G.; Distl, O.; Töpfer-Petersen, E.; Leeb, T. Molecular characterization of the equine AEG1 locus. Gene 2002, 292, 65–72. [Google Scholar] [CrossRef]
- Hamann, H.; Jude, R.; Sieme, H.; Mertens, U.; Töpfer-Petersen, E.; Distl, O.; Leeb, T. A polymorphism within the equine CRISP3 gene is associated with stallion fertility in Hanoverian warmblood horses. Anim. Genet. 2007, 38, 259–264. [Google Scholar] [CrossRef]
- Liu, M.; Fang, L.; Liu, S.; Pan, M.G.; Seroussi, E.; Cole, J.B.; Ma, L.; Chen, H.; Liu, G.E. Array CGH-based detection of CNV regions and their potential association with reproduction and other economic traits in Holsteins. BMC Genom. 2019, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, D.; Willis, J.H. The genetics of inbreeding depression. Nat. Rev. Genet. 2009, 10, 783–796. [Google Scholar] [CrossRef] [PubMed]
- Keller, L.F.; Waller, D.M. Inbreeding effects in wild populations. Trends Ecol. Evol. 2002, 17, 230–241. [Google Scholar] [CrossRef]
- González-Recio, O.; López de Maturana, E.; Gutiérrez, J.P. Inbreeding Depression on Female Fertility and Calving Ease in Spanish Dairy Cattle. J. Dairy Sci. 2007, 90, 5744–5752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curik, I.; Ferenčaković, M.; Sölkner, J. Modeling perspectives in the estimation of inbreeding depression based on genomic information: Lessons from the bull fertility. In Proceedings of the 6th Conference of the Genetic Society of Slovenia, Maribor, Slovenia, 26–29 September 2012. [Google Scholar]
- Avdi, M.; Banos, G. Genetic diversity and inbreeding in the Greek Skyros horse. Livest. Sci. 2008, 114, 362–365. [Google Scholar] [CrossRef] [Green Version]
- Gamboa, S.; Machado-Faria, M.; Ramalho-Santos, J. Seminal traits, suitability for semen preservation and fertility in the native Portuguese horse breeds Puro Sangue Lusitano and Sorraia: Implications for stallion classification and assisted reproduction. Anim. Reprod. Sci. 2009, 113, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Perdomo-González, D.I.; Sánchez-Guerrero, M.J.; Molina, A.; Valera, M. Genetic Structure Analysis of the Pura Raza Español Horse Population through Partial Inbreeding Coefficient Estimation. Animals 2020, 10, 1360. [Google Scholar] [CrossRef]
- Azcona, F.; Valera, M.; Molina, A.; Trigo, P.; García, P.P.; Solé, M.; Demyda-Peyrás, S. Impact of reproductive biotechnologies on genetic variability of Argentine Polo horses. Livest. Sci. 2019. [Google Scholar] [CrossRef]
- Todd, E.T.; Ho, S.Y.W.; Thomson, P.C.; Ang, R.A.; Velie, B.D.; Hamilton, N.A. Founder-specific inbreeding depression affects racing performance in Thoroughbred horses. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Gómez, M.D.; Valera, M.; Molina, A.; Gutiérrez, J.P.; Goyache, F. Assessment of inbreeding depression for body measurements in Spanish Purebred (Andalusian) horses. Livest. Sci. 2009, 122, 149–155. [Google Scholar] [CrossRef]
- Lencz, T.; Lambert, C.; DeRosse, P.; Burdick, K.E.; Morgan, T.V.; Kane, J.M.; Kucherlapati, R.; Malhotra, A.K. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc. Natl. Acad. Sci. USA 2007, 104, 19942–19947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kardos, M.; Luikart, G.; Allendorf, F.W. Measuring individual inbreeding in the age of genomics: Marker-based measures are better than pedigrees. Heredity 2015, 115, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Curik, I.; Ferenčaković, M.; Sölkner, J. Inbreeding and runs of homozygosity: A possible solution to an old problem. Livest. Sci. 2014, 166, 26–34. [Google Scholar] [CrossRef]
- Ceballos, F.C.; Joshi, P.K.; Clark, D.W.; Ramsay, M.; Wilson, J.F. Runs of homozygosity: Windows into population history and trait architecture. Nat. Rev. Genet. 2018, 19, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Aurich, C.; Achmann, R.; Aurich, J.E. Semen parameters and level of microsatellite heterozygosity in Noriker draught horse stallions. Theriogenology 2003, 60, 371–378. [Google Scholar] [CrossRef]
- Velie, B.D.; Solé, M.; Fegraeus, K.J.; Rosengren, M.K.; Røed, K.H.; Ihler, C.F.; Strand, E.; Lindgren, G. Genomic measures of inbreeding in the Norwegian-Swedish Coldblooded Trotter and their associations with known QTL for reproduction and health traits. Genet. Sel. Evol. 2019, 51. [Google Scholar] [CrossRef] [Green Version]
- Laseca, N.; Perdomo-González, D.I.; Valera, M.; Molina, A.; Sanchez-Guerrero, M.J.; Azcona, F.; Pirosanto, Y.; Demyda-Peyrás, S. Foaling number are highly affected by the genomic homozygosity in the Pura Raza Spanish mares. J. Equine Vet. Sci. 2020, 89, 103098. [Google Scholar] [CrossRef]
- Orlando, L.; Librado, P. Origin and evolution of deleterious mutations in horses. Genes 2019, 10, 649. [Google Scholar] [CrossRef] [Green Version]
- Davenport, C.B. Degeneration, albinism and inbreeding. Science 1908, 28, 454. [Google Scholar] [CrossRef] [Green Version]
- Azcona, F.; Alcala, A.M.; Valera, M.; Dorado, J.; Peyras, S.D. Impact of the use of large-scale embryo transfer programs in the increase of inbreeding and relativeness in the Argentinean Polo horse. Reprod. Domest. Anim. 2018, 53, 107-107. [Google Scholar]
- Gao, Y.; Li, S.; Lai, Z.; Zhou, Z.; Wu, F.; Huang, Y.; Lan, X.; Lei, C.; Chen, H.; Dang, R. Analysis of Long Non-Coding RNA and mRNA Expression Profiling in Immature and Mature Bovine (Bos taurus) Testes. Front. Genet. 2019, 10, 646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharmaa, A.; Lee, J.S.; Dang, C.G.; Sudrajad, P.; Kim, H.C.; Yeon, S.H.; Kang, H.S.; Lee, S.H. Stories and challenges of Genome. wide association studies in livestock—A review. Asian Australas. J. Anim. Sci. 2015, 28, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Cole, J.B.; Da, Y.; VanRaden, P.M. Symposium review: Genetics, genome-wide association study, and genetic improvement of dairy fertility traits. J. Dairy Sci. 2019, 102, 3735–3743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demars, J.; Fabre, S.; Sarry, J.; Rossetti, R.; Gilbert, H.; Persani, L.; Tosser-Klopp, G.; Mulsant, P.; Nowak, Z.; Drobik, W.; et al. Genome-Wide Association Studies Identify Two Novel BMP15 Mutations Responsible for an Atypical Hyperprolificacy Phenotype in Sheep. PLoS Genet. 2013, 9, e1003482. [Google Scholar] [CrossRef] [PubMed]
- Giesecke, K.; Hamann, H.; Stock, K.F.; Woehlke, A.; Sieme, H.; Distl, O. Evaluation of SPATA1-associated markers for stallion fertility. Anim. Genet. 2009, 40, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Giesecke, K.; Hamann, H.; Stock, K.F.; Klewitz, J.; Martinsson, G.; Distl, O.; Sieme, H. Evaluation of ACE, SP17, and FSHB as candidates for stallion fertility in Hanoverian warmblood horses. Anim. Reprod. Sci. 2011, 126, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Giesecke, K.; Hamann, H.; Sieme, H.; Distl, O. Evaluation of prolactin receptor (prlr) as candidate gene for male fertility in hanoverian warmblood horses. Reprod. Domest. Anim. 2010, 45, e124–e130. [Google Scholar] [CrossRef] [PubMed]
- Giesecke, K.; Hamann, H.; Sieme, H.; Distl, O. INHBA-Associated markers as candidates for stallion fertility. Reprod. Domest. Anim. 2010, 45, 342–347. [Google Scholar] [CrossRef] [PubMed]
- El-Sheikh Ali, H.; Boakari, Y.L.; Loux, S.C.; Dini, P.; Scoggin, K.E.; Esteller-Vico, A.; Kalbfleisch, T.; Ball, B.A. Transcriptomic analysis reveals the key regulators and molecular mechanisms underlying myometrial activation during equine placentitis. Biol. Reprod. 2020, 102, 1306–1325. [Google Scholar] [CrossRef]
- de Leon, P.M.M.; Campos, V.F.; Thurow, H.S.; Hartwig, F.P.; Selau, L.P.; Dellagostin, O.A.; Neto, J.B.; Deschamps, J.C.; Seixas, F.K.; Collares, T. Association between single nucleotide polymorphisms in p53 and abortion in Thoroughbred mares. Vet. J. 2012, 193, 573–575. [Google Scholar] [CrossRef]
- Kalbfleisch, T.S.; Rice, E.S.; DePriest, M.S.; Walenz, B.P.; Hestand, M.S.; Vermeesch, J.R.; O′Connell, B.L.; Fiddes, I.T.; Vershinina, A.O.; Saremi, N.F.; et al. Improved reference Genome for the domestic horse increases assembly contiguity and composition. Commun. Biol. 2018, 1, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGivney, B.A.; Han, H.; Corduff, L.R.; Katz, L.M.; Tozaki, T.; MacHugh, D.E.; Hill, E.W. Genomic inbreeding trends, influential sire lines and selection in the global Thoroughbred horse population. Sci. Rep. 2020, 10, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demir Eksi, D.; Shen, Y.; Erman, M.; Chorich, L.P.; Sullivan, M.E.; Bilekdemir, M.; Yllmaz, E.; Luleci, G.; Kim, H.G.; Alper, O.M.; et al. Copy number variation and regions of homozygosity analysis in patients with MÜLLERIAN aplasia. Mol. Cytogenet. 2018, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Nandolo, W.; Utsunomiya, Y.T.; Mészáros, G.; Wurzinger, M.; Khayadzadeh, N.; Torrecilha, R.B.P.; Mulindwa, H.A.; Gondwe, T.N.; Waldmann, P.; Ferenčaković, M.; et al. Misidentification of runs of homozygosity islands in cattle caused by interference with copy number variation or large intermarker distances. Genet. Sel. Evol. 2018, 50, 1–13. [Google Scholar] [CrossRef] [Green Version]
Gene | Name | Position | Approach | Reference |
---|---|---|---|---|
HSD17B6 | Hydroxysteroid 17-beta dehydrogenase 6 | ECA7: 3,935,674-3,938,482 | CNV | [20] |
SOX9 | SRY-Box Transcription Factor 9 | ECA11: 9,224,053-9,229,840 | Mutations/Deletions | [16] |
SF1 | Splicing factor 1 | ECA12: 28,619,898- 28,632,463 | Mutations/Deletions | [16] |
AR | Androgen receptor | ECA12: 26,039,218-26,041,649 | Mutations/Deletions | [21,22] |
PHYH | Phytanoyl-CoA 2-Hydroxylase | ECA29: 22,540,934- 22,563,145 | CNV | [20] |
UCMA | Upper zone of growth plate and cartilage matrix associated | 29: 22,681,823- 22,691,596 | CNV | [20] |
AKR1C | Aldo-keto reductase family 1 member C | ECA29: 29,700,000- 29,900,000 | CNV | [20,23] |
CBRr | Campylobacter bile resistance regulator | ECA29: 32,837,886- 32,838,194 | CNV | [20] |
SRY | Sex determining region | ECAY | Mutations/Deletions | [15,17,18] |
Gene | Name | Position | Approach | Reference |
---|---|---|---|---|
BMPR1B | Bone morphogenetic protein receptor-1B | ECA3: 44,402,722- 44,692,141 | CNV | [20,48] |
ADCY1 | Adenylate cyclase 1 | ECA4: 16,027,025- 16,171,067 | ROH | [54] |
PRKACA | Protein kinase cAMP-activated catalytic subunit alpha | ECA7: 46,048,251- 46,065,141 | ROH | [54] |
ANAPC5 | Anaphase promoting complex subunit 5 | ECA8: 24,310,740- 24,348,719 | ROH | [54] |
ANAPC7 | Anaphase promoting complex subunit 7 | ECA8: 23,907,492- 23,927,512 | ROH | [54] |
LRRC6 | Leucine rich repeat containing 6 | ECA9: 75,402,662- 75,588,283 | Candidate gene | [50] |
ATP6V1E2 | ATPase H+ transporting V1 subunit E2 | ECA15: 53,416,247- 53,416,927 | Candidate gene | [50] |
Gene | Name | Position | Approach | Reference |
---|---|---|---|---|
MFGE8 | Milk fat globule EGF and factor V/VIII domain containing | ECA1:95,221,735- 95,253,405 | CNV | [49] |
Candidate gene | [50] | |||
FRAS1 | Fraser extracellular matrix complex subunit 1 | ECA3: 59,404,529- 59,818,746 | ROH | [55] |
ZPBP | Zona pellucida binding protein | ECA4: 19,776,870-19,907,352 | CNV | [20,49] |
ROH | [56] | |||
LY49B | Killer cell lectin-like receptor | ECA 6: 39,335,921- 39,347,553 | ROH | [57] |
UBBP4 | Ubiquitin B pseudogene 4 | ECA8: 24,467,333- 24,468,548 | CNV | [49] |
SP-1 | Sp1 transcription factor | ECA10: 14,480,982- 14,485,022 | CNV | [20] |
BSP2 | Binder of sperm 2 | ECA10: 14,481,079-14,506,004 | CNV | [20] |
SULT2A1 | Sulfotransferase family, cytosolic, 2A, dehydroepiandrosterone (DHEA)-preferring, member 1 | ECA10: 18,124,115- 18,322,483 | CNV | [20] |
BSPH1 | Binder of sperm protein homolog 1 | ECA10: 18,375,988- 18,377,065 | CNV | [20] |
ELSPBP1 | Epididymal Sperm Binding Protein 1 | ECA10: 18,397,898- 18,416,427 | CNV | [20] |
PLOD3 | Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 | ECA13: 9,454,913- 9,462,562 | CNV | [49] |
KITLG | KIT ligand | ECA28: 15,726,503- 15,807,871 | ROH | [55] |
Candidate gene | [58] |
Gene | Name | Position | Approach | Reference |
---|---|---|---|---|
HERC4 | HECT and RLD domain containing E3 ubiquitin protein ligase 4 | ECA1: 56,815,617- 56,954,039 | Candidate gene | [50] |
MFGE8 | Milk fat globule EGF and factor V/VIII domain containing | ECA1:95,221,735- 95,253,405 | CNV | [49] |
Candidate gene | [50] | |||
SPATA48 | Spermatogenesis associated 48 | ECA4: 19,909,625- 19,963,732 | ROH | [56] |
MIER1 | MIER1 transcriptional regulator | ECA5: 91,061,840- 91,119,716 | Candidate gene | [50] |
L1TD1 | LINE1 type transposase domain containing | ECA5: 95,020,437- 95,025,347 | CNV | [20] |
IFT81 | Intraflagellar transport protein 81 homolog | ECA8: 24,053,812- 24,132,668 | CNV | [20] |
YES1 | YES proto-oncogene 1, Src family tyrosine kinase | ECA8: 44,273,501- 44,304,857 | ROH | [55] |
FKBP6 | FKBP prolyl isomerase 6 | ECA13: 11,350,401- 11,378,073 | CNV | [49] |
Candidate gene | [52,59] | |||
DNAH7 | Dynein axonemal heavy chain 7 | ECA18: 71,435,145- 71,669,919 | CNV | [49] |
ZNF331 | Zinc finger protein 331 | ECA20: 28,318,795- 28,329,094 | CNV | [20] |
CRISP3 | Cysteine-rich secretory protein 2 | ECA20: 48,708,574- 48,761,076 | Candidate gene | [50,60,61] |
CRISP1 | Cysteine rich secretory protein 1 | ECA20: 48,856,838- 48,887,485 | Candidate gene | [50] |
SPATA25 | Spermatogenesis associated 25 | ECA22: 35,747,531- 35,748,590 | ROH | [55] |
ADAM20 | ADAM metallopeptidase domain 20 | ECA24: 16,539,958- 16,547,675 | CNV | [20] |
SOHLH1 | Spermatogenesis and oogenesis specific basic helix-loop-helix 1 | ECA25: 38,791,446- 38,797,028 | CNV | [49] |
GLIPR1L1 | GLIPR1 like 1 | ECA28: 4,284,550-4,323,990 | Candidate gene | [50] |
Gene | Name | Position | Approach | Reference |
---|---|---|---|---|
GJA4 | Gap junction protein alpha 4 | ECA2: 22,443,340-22,444,341 | Candidate gene | [91] |
CXCL2 | Chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha) | ECA3: 63,470,014-63,586,176 | Candidate gene | [91] |
INHBA | Inhibin subunit beta A | ECA4: 12,760,757-12,808,658 | Candidate gene | [90] |
CFTR | CF transmembrane conductance regulator | ECA4: 74,741,421-74,918,780 | Candidate gene | [53] |
PTGS2 | Prostaglandin-endoperoxide synthase 2 | ECA5: 20,490,127-20,497,264 | Candidate gene | [91] |
S100A8 | S100 calcium binding protein A8 | ECA5: 40,744,248-40,744,667 | Candidate gene | [91] |
S100A9 | S100 calcium binding protein A9 | ECA5: 40,778,743-40,821,668 | Candidate gene | [91] |
OVGP1 | Oviductal glycoprotein 1 | ECA5:53,508,181- 53,522,618 | Candidate gene | [53] |
SPATA1 | Spermatogenesis associated 1 | ECA5: 76,122,099-76,165,463 | Candidate gene | [87] |
PTGER3 | Prostaglandin E receptor 3 | ECA5: 87,780,622-87,951,028 | Candidate gene | [91] |
PLCz1 | Phospholipase C zeta 1 | ECA6: 46,812,109-46,852,694 | Candidate gene | [51] |
RETN | Resistin | ECA7: 5,460,957-5,462,512 | Candidate gene | [91] |
MMP1 | Matrix metallopeptidase 1 | ECA7: 13,098,650-13,176,364 | Candidate gene | [91] |
SP17 | Sperm autoantigenic protein 17 | ECA7: 34,254,555-34,264,346 | Candidate gene | [88] |
RLN | Relaxin 3 RLN 3 | ECA7: 46,105,165-46,106,720 | Candidate gene | [91] |
FSHB | Follicle stimulating hormone beta subunit | ECA7: 98,422,248-98,424,267 | Candidate gene | [88] |
FBXO43 | F-box protein 43 | ECA9:45,973,733-45,985,463 | Candidate gene | [53] |
ACE | Angiotensin I converting enzyme | ECA11: 15,802,359-15,822,526 | Candidate gene | [88] |
FKBP6 | FKBP prolyl isomerase 6 | ECA13: 11,350,401-11,378,073 | Candidate gene | [52,59] |
PKD1 | Polycystin 1, transient receptor potential channel interacting | ECA13: 41,880,905-41,926,116 | Candidate gene | [53] |
FOXP1 | Forkhead box P1 | ECA16: 20,353,146-20,717,328 | Candidate gene | [53] |
TCP11 | T-complex 11 | ECA20: 36,147,583-36,279,044 | Candidate gene | [53] |
TSSK6 | Testis specific serine kinase | ECA21: 4,554,495-4,555,316 | Candidate gene | [53] |
PRLR | Prolactin receptor | ECA21: 31,054,801-31,107,331 | Candidate gene | [89] |
P53 | P53 and DNA damage regulated 1 | ECA22: 23,560,441-23,566,500 | Candidate gene | [92] |
PI3 | Peptidase inhibitor 3 | ECA22: 35,155,086-35,157,165 | Candidate gene | [91] |
NOTCH1 | Notch receptor 1 | ECA25: 38,056,617-38,104,337 | Candidate gene | [53] |
APOBEC3Z1B | Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3Z1b | ECA28: 37,062,159-37,065,847 | Candidate gene | [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laseca, N.; Anaya, G.; Peña, Z.; Pirosanto, Y.; Molina, A.; Demyda Peyrás, S. Impaired Reproductive Function in Equines: From Genetics to Genomics. Animals 2021, 11, 393. https://doi.org/10.3390/ani11020393
Laseca N, Anaya G, Peña Z, Pirosanto Y, Molina A, Demyda Peyrás S. Impaired Reproductive Function in Equines: From Genetics to Genomics. Animals. 2021; 11(2):393. https://doi.org/10.3390/ani11020393
Chicago/Turabian StyleLaseca, Nora, Gabriel Anaya, Zahira Peña, Yamila Pirosanto, Antonio Molina, and Sebastián Demyda Peyrás. 2021. "Impaired Reproductive Function in Equines: From Genetics to Genomics" Animals 11, no. 2: 393. https://doi.org/10.3390/ani11020393
APA StyleLaseca, N., Anaya, G., Peña, Z., Pirosanto, Y., Molina, A., & Demyda Peyrás, S. (2021). Impaired Reproductive Function in Equines: From Genetics to Genomics. Animals, 11(2), 393. https://doi.org/10.3390/ani11020393