The Effect of Administration of a Phytobiotic Containing Cinnamon Oil and Citric Acid on the Metabolism, Immunity, and Growth Performance of Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Phytobiotic
2.2. Chemical Analysis of Volatile Oils in the Phytobiotic Preparation
2.3. Animals
Experimental Plan
2.4. Laboratory Analysis
2.5. Statistical Analysis
3. Results
3.1. Effect of Dose
3.2. Effect of Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Alagawany, M.; Elnesr, S.S.; Farag, M.R. Use of liquorice (Glycyrrhiza glabra) in poultry nutrition: Global impacts on performance, carcass and meat quality. World Poult. Sci. J. 2019, 75, 293–304. [Google Scholar] [CrossRef]
- El-Hack, M.E.A.; Alagawany, M.; Moneim, A.-M.E.A.; Mohammed, N.G.; Khafaga, A.F.; Jumah, M.B.; Othman, S.I.; Allam, A.A.; Elnesr, S.S. Cinnamon (Cinnamomum zeylanicum) oil as a potential alternative to antibiotics in poultry. Antibiotics 2020, 9, 210. [Google Scholar] [CrossRef]
- El-Hack, A.A.; Mohamed, E.; Alagawany, M.; Shaheen, H.; Samak, D.; Othman, S.I.; Allam, A.; Taha, A.; Khafaga, A.F.; Osman, A.; et al. Ginger and its derivatives as promising alternatives to antibiotics in poultry feed. Animals 2020, 10, 452. [Google Scholar] [CrossRef] [Green Version]
- Jakhetia, V.; Patel, R.; Khatri, P.; Pahuja, N.; Garg, S.; Pandey, A.; Sharma, S. Cinnamon: A pharmacological review. J. Adv. Sci. Res. 2010, 1, 19–23. [Google Scholar]
- Oh, P.S.; Min, R.C.; Sung, P.B.; Jong, H. The meat quality and growth performance in broiler chickens fed diet with cinnamon powder. J. Environ. Biol. 2013, 34, 127–133. [Google Scholar]
- Ognik, K.; Konieczka, P.; Stępniowska, A.; Jankowski, J. Oxidative and epigenetic changes and gut permeability response in early-treated chickens with antibiotic or probiotic. Animals 2020, 10, 2204. [Google Scholar] [CrossRef]
- Tung, Y.T.; Chua, M.T.; Wang, S.Y.; Chang, S.T. Anti-inflammatory activities of essential oil and its constituents from indigenous cinnamon (Cinnamon osmophloeum) twigs. Bioresour. Technol. 2008, 99, 3908–3913. [Google Scholar] [CrossRef]
- Koochaksaraie, R.R.; Irani, M.; Gharavysi, S. The effect of cinnamon powder feeding on some blood metabolites in broiler chicks. Rev. Bras. Ciência Avícola 2011, 13, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.T.; Chen, P.F.; Chang, S.C. Anti-bacterial activity of leaf essential oils and their constituents from Cinnamon osmophloeum. J. Ethnopharmacol. 2001, 77, 123–127. [Google Scholar] [CrossRef]
- Singh, G.; Maurya, S.; Cesar, M.P.; Catalan, A.M. A comparison of chemical, antioxidant and anti-microbial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food Chem. Toxicol. 2007, 45, 1650–1661. [Google Scholar] [CrossRef]
- Fascina, V.B.; Gonzales, J.R.; Carvalho, E.; de Souza, F.B.P.; Polycarpo, G.V.; Stradiotti, A.C.; Pelícia, V.C. Phytogenic additives and organic acids in broiler chicken diets. Rev. Bras. Zootec. 2012, 41, 2189–2197. [Google Scholar] [CrossRef] [Green Version]
- Pirgozliev, V.; Murohy, T.C.; Owens, B.; George, J.; McCann, M.E.E. Fumaric and sorbic acids as additives in broiler feed. Res. Vet. Sci. 2008, 84, 387–394. [Google Scholar] [CrossRef]
- Ao, T.; Cantor, A.H.; Pesatore, A.J.; Ford, M.J.; Pierce, J.L.; Dawson, K.A. Effect of enzyme supplementation and acidification of diets on nutrient digestibility and growth performance of broiler chicks. Poult. Sci. 2009, 88, 111–117. [Google Scholar] [CrossRef]
- Dibner, J.J.; Buttin, P. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. JAPR 2002, 11, 453–463. [Google Scholar] [CrossRef]
- Ricke, S.C. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci. 2003, 82, 632–639. [Google Scholar] [CrossRef]
- Rizzo, P.V.; Menten, J.F.M.; Racanicci, A.M.C.; Traldi, A.B.; Silva, C.S.; Pereira, P.W.Z. Plant extracts in diets for broilers. Rev. Bras. Zootec. 2010, 39, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Aviagen. Ross Broiler Management Handbook; Aviagen Inc.: Huntsville, AL, USA, 2018. [Google Scholar]
- Smulikowska, S.; Rutkowski, A. Recommended Allowances and Nutritive Value of Feedstuffs. In Poultry Feeding Standards, 4th ed.; The Kielanowski Institute of Animal Physiology and Nutrition: Jabłonna, Poland, 2018. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Gay, C.; Gębicki, J.M. Perchloric acid enhances sensitivity and reproducibility of the ferric xylenol orange peroxide assay. Anal. Biochem. 2002, 304, 42–46. [Google Scholar] [CrossRef]
- Siwicki, A.K.; Anderson, D.P. Nonspecific Defense Mechanisms Assay in Fish. II. Potential Killing Activity of Neutrophils and Macrophages, Lysozyme Activity in Serum and Organs, and Total Immunoglobulin (Ig) Level in Serum. In Fish Diseases Diagnosis and Prevention Methods; Wydawnictwo Instytutu Rybactwa Strodladowego: Olsztyn, Poland, 1993; pp. 105–111. [Google Scholar]
- Park, J.H.; Kim, I.H. Supplemental effect of probiotic Bacillus subtilis B2A on productivity, organ weight, intestinal Salmonella microflora, and breast meat quality of growing broiler chicks. Poult. Sci. 2014, 93, 2054–2059. [Google Scholar] [CrossRef]
- Xu, Z.R.; Hu, C.H.; Xia, M.S.; Zhan, X.A.; Wang, M.Q. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 2003, 82, 1030–1036. [Google Scholar] [CrossRef]
- Biondo, P.B.F.; Carbonera, F.; Zawadzki, F. Antioxidant capacity and identification of bioactive compounds by GC-MS of essential oils commercialized in Brazil. Curr. Bioact. Compd. 2017, 13, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Elnesr, S.S.; Alagawany, M.; Elwan, H.A.; Fathi, M.A.; Farag, M.R. Effect of sodium butyrate on intestinal health of poultry-a review. Annal. Anim. Sci. 2020, 20, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Wasman, P.H.; Mustafa, M.A.G. The dietary impact of clove and cinnamon powders and oil supplementations on the performance, ileum morphology, and intestine bacterial population of quails. Plant Arch. 2020, 20, 1503–1509. [Google Scholar]
- Chowdhury, S.; Mandala, G.P.; Patraa, A.K.; Kumara, P.; Samantab, I.; Pradhanc, S.; Samantad, A.K. Different essential oils in diets of broiler chickens: Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes. Anim. Feed Sci. Technol. 2018, 236, 39–47. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, L.; Shao, Y.; Liao, X.; Zhang, L.; Lu, L.; Luo, X. Effects of dietary graded levels of cinnamon essential oil and its combination with bamboo leaf flavonoid on immune function, antioxidative ability and intestinal microbiota of broilers. J. Integr. Agric. 2019, 18, 2123–2132. [Google Scholar] [CrossRef]
- Mahmoud, A.; Attia, R.; Said, S.; Ibraheim, Z. Ginger and cinnamon: Can this household remedy treat giardiasis? Parasitological and histopathological studies. Iran. J. Parasitol. 2014, 9, 530–540. [Google Scholar] [PubMed]
- Simşek, Ü.G.; Ciftci, M.; Özçelik, M.; Azman, M.A.; Tonbak, F.; Özhan, N. Effects of cinnamon and rosemary oils on egg production, egg quality, hatchability traits and blood serum mineral contents in laying quails (Coturnix coturnix Japonica). Ank. Üniversitesi Vet. Fakültesi Derg. 2015, 62, 229–236. [Google Scholar] [CrossRef]
- Biasato, I.; Ferrocino, I.; Biasibetti, E. Modulation of intestinal microbiota, morphology and mucin composition by dietary insect meal inclusion in free-range chickens. BMC Vet. Res. 2018, 14, 383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehdipour, Z.; Afsharmanesh, M. Evaluation of synbiotic and cinnamon (Cinnamomum verum) as antibiotic growth promoter substitutions on growth performance, intestinal microbial populations and blood parameters in Japanese quail. J. Livest. Sci. Technol. 2018, 6, 1–8. [Google Scholar]
- Reis, J.H.; Gebert, R.R.; Barreta, M. Effects of phytogenic feed additive based on thymol, carvacrol and cinnamic aldehyde on body weight, blood parameters and environmental bacteria in broilers chickens. Microb. Pathog. 2018, 125, 168–176. [Google Scholar] [CrossRef]
- Gupta, C.; Garg, A.P.; Uniyal, R.C.; Kumari, A. Comparative analysis of the antimicrobial activity of cinnamon oil and cinnamon extract on some food-borne microbes. Afr. J. Microbiol. Res. 2008, 2, 247–251. [Google Scholar] [CrossRef]
- Abramowicz, K.; Krauze, M.; Ognik, K. The Effect of a probiotic preparation containing Bacillus subtilis PB6 in the diet of chickens on redox and biochemical parameters in their blood. Ann. Anim. Sci. 2019, 19, 433–451. [Google Scholar] [CrossRef] [Green Version]
- Symeon, G.K.; Athanasiou, A.; Lykos, N.; Charismiadou, M.A.; Goliomytis, M.; Demiris, N.; Ayoutanti, A.; Simitzis, P.E.; Deligeorgis, S.G. The effects of dietary cinnamon (Cinnamomum zeylanicum) oil supplementation on broiler feeding behavior, growth performance, carcass traits and meat quality characteristics. Ann. Anim. Sci. 2014, 14, 883–895. [Google Scholar] [CrossRef] [Green Version]
- Keshvari, M.; Asgary, S.; Jafarian-Dehkordi, A.; Najafi, S.; Yazdi, S.M.G. Preventive effect of cinnamon essential oil on lipid oxidation of vegetable oil. ARYA Atheroscler. 2013, 9, 280–286. [Google Scholar] [PubMed]
- Ognik, K.; Krauze, M. The potential for using enzymatic assays to assess the health of turkeys. World Poult. Sci. J. 2016, 72, 535–550. [Google Scholar] [CrossRef]
- Lee, M.K.; Park, Y.B.; Moon, S.S.; Bok, S.H.; Kim, D.J.; Ha, T.Y.; Jeong, T.S.; Jeong, K.S.; Choi, M.S. Hypocholesterolemic and antioxidant properties of 3-(4-hydroxyl) propanoic acid derivatives in high-cholesterol fed rats. Chem. Biol. Interact. 2007, 170, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Faix, S.; Faixová, Z.; Plachá, I.; Koppe, L.J. Effect of Cinnamomum zeylanicum essential oil on antioxidative status in broiler chickens. Acta Vet. Hung. 2009, 78, 411–417. [Google Scholar] [CrossRef]
- Fki, I.; Bouaziz, M.; Sahnoun, Z.; Sayadi, S. Hypocholesterolemic effects of phenolic-rich extracts of Chemlali olive cultivar in rats fed a cholesterol-rich diet. Bioorg. Med. Chem. 2005, 13, 5362–5370. [Google Scholar] [CrossRef]
- Ciftci, M.; Simsek, U.G.; Yuce, A.; Yilmaz, O.; Dalkilic, B. Effects of dietary antibiotic and cinnamon oil supplementation on antioxidant enzyme activities, cholesterol levels and fatty acid compositions of serum and meat in broiler chickens. Acta Vet. Brno 2010, 79, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Al-Kassie, G.A. Influence of two plant extracts derived from thyme and cinnamon on broiler performance. Pak. Vet. J. 2009, 29, 169–173. [Google Scholar] [CrossRef]
- Sadeghi, A.; Moghaddam, M. The Effects of turmeric, cinnamon, ginger and garlic powder nutrition on antioxidant enzymes’ status and hormones involved in energy metabolism of broilers during heat stress. Iran. J. Appl. Anim. Sci. 2018, 8, 125–130. [Google Scholar]
- Toghyani, M.; Gheisari, A.; Ghalamkari, G.; Eghbalsaied, S. Evaluation of cinnamon and garlic as antibiotic growth promoter substitutions on performance, immune responses, serum biochemical and haematological parameters in broiler chicks. Livest. Sci. 2011, 138, 167–173. [Google Scholar] [CrossRef]
- Kriaa, A.; Bourgin, M.; Potiron, A.; Mkaouar, H.; Jablaoui, A.; Gérard, P.; Maguin, E.; Rhimi, M. Microbial impact on cholesterol and bile acid metabolism: Current status and future prospects. J. Lipid Res. 2019, 60, 323–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimi-Kivi, R.; Dadashbeiki, M.; Seidavi, A.R. Growth, body characteristics and blood parameters of ostrich chickens receiving commercial probiotics. Span. J. Agric. Res. 2015, 13, e0604. [Google Scholar] [CrossRef] [Green Version]
- Sarica, S.; Corduk, M.; Yarim, G.F.; Yenisehirli, G.; Karatas, U. Effects of novel feed additives in wheat based diets on performance, carcass and intestinal tract characteristics of quail. S. Afr. J. Anim. Sci. 2009, 39, 144–157. [Google Scholar] [CrossRef]
- Dev, K.; Mir, N.A.; Biswas, A.; Kannoujia, J.; Begum, J.; Kant, R.; Mandal, A. Dietary synbiotic supplementation improves the growth performance, body antioxidant pool, serumbiochemistry, meat quality, and lipid oxidative stability in broiler chickens. Anim. Nutr. 2020, 6, 325–332. [Google Scholar] [CrossRef]
- Ognik, K.; Krauze, M. Dietary supplementation of mannanoligosaccharides to turkey hens on their growth performance and antioxidant status in the blood. S. Afr. J. Anim. Sci. 2012, 42, 380–388. [Google Scholar] [CrossRef] [Green Version]
- Krauze, M.; Abramowicz, K.; Ognik, K. The effect of the addition of probiotic bacteria (Bacillus subtilis or Enterococcus faecium) or phytobiotic containing cinnamon oil to drinking water on the health and performance of broiler chickens. Ann. Anim. Sci. 2020, 20, 191–205. [Google Scholar] [CrossRef] [Green Version]
- Tabatabaei, S.M.; Reza, B.; Reza, M.G.; Reza, B. Effects of cinnamon extract on biochemical enzymes, TNF-α and NF-κB gene expression levels in liver of broiler chickens inoculated with Escherichia coli. Pesqui. Veterinária Bras. 2015, 35, 781–787. [Google Scholar] [CrossRef] [Green Version]
- Shirzadegan, K. Reactions of modern broiler chickens to administration of cinnamon powder in the diet. Iran. J. Appl. Anim. Sci. 2014, 4, 367–371. [Google Scholar]
- Torki, M.; Akbari, M.; Kaviani, K. Single and combined effects of zinc and cinnamon essential oil in diet on productive performance, egg quality traits, and blood parameters of laying hens reared under cold stress condition. Int. J. Biometeorol. 2015, 59, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Ciftci, M.; Dalkilic, B.; Cerci, I.H.; Guler, T.; Ertas, O.N.; Arslan, O. Influence of dietary cinnamon oil supplementation on performance and carcass characteristics in broilers. J. Appl. Anim. Res. 2009, 36, 125–128. [Google Scholar] [CrossRef]
- Milind, P.; Deepa, K. Clove: A champion spice. IJRAP 2011, 2, 47–54. [Google Scholar]
- Gomathi, G.; Senthilkumar, S.; Natarajan, A.; Amutha, R.; Purushothaman, M.R. Effect of dietary supplementation of cinnamon oil and sodium butyrate on carcass characteristics and meat quality of broiler chicken. Vet. World 2018, 11, 959–964. [Google Scholar] [CrossRef]
- Truchliński, J.; Krauze, M.; Pinkosz, M.C.; Banachiewicz, B.M. Influence of garlic, synthetic 1,2,4-triasole derivative and herbal preparation echinovit C on selected indices of turkey-hens non-specific immunity. Pol. J. Vet. Sci. 2006, 9, 51–55. [Google Scholar] [PubMed]
- Krauze, M.; Grela, E.R. Effects of an alfalfa concentrate in turkey diets on performance and some blood parameters. Arch. Geflugelkd. 2010, 74, 226–232. [Google Scholar]
- Sarangi, N.R.; Babu, L.K.; Kumar, A.; Pradhan, C.R.; Pati, P.K.; Mishra, J.P. Effect of dietary supplementation of prebiotic, probiotic, and synbiotic on growth performance and carcass characteristics of broiler chickens. Vet. World 2016, 9, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Devi, P.C.; Samanta, A.K.; Das, B.; Kalita, G.; Behera, P.S.; Barman, S. Effect of plant extracts and essential oil blend as alternatives to antibiotic growth promoters on growth performance, nutrient utilization and carcass characteristics of broiler chicken. Indian J. Anim. Nutr. 2018, 35, 421–427. [Google Scholar] [CrossRef]
Ingredients | Starter 1–3 Week | Grower 4–5 Week | Finisher 6 Week |
---|---|---|---|
Wheat | 452.8 | 367.63 | 330.70 |
Maize | 150.0 | 250.0 | 300.0 |
Soybean meal 46% protein | 272.21 | 227.90 | 178.09 |
Rapeseed meal 37% protein | 20.0 | 40.0 | 60.0 |
Soybean oil | 20.0 | 40.0 | 60.0 |
DDGS 1 26% protein | 40.07 | 43.58 | 46.87 |
Monocalcium phosphate | 11.03 | 5.42 | 2.05 |
Coarse-grained fodder chalk 2 | - | 10.93 | 8.52 |
Fine-grained fodder chalk | 16.07 | - | - |
NaCl | 3.63 | 3.23 | 2.83 |
DL-methionine 99% | 3.61 | 2.40 | 2.00 |
L-Lysine HCl | 4.27 | 2.97 | 3.12 |
L-threonine 99% | 1.31 | 0.94 | 0.82 |
Premix 3,4 | 5 | 5 | 5 |
Calculated nutrient composition of diet (g/kg) 5 | |||
Crude protein | 210.0 | 198.5 | 187.5 |
Crude fibre | 27.2 | 29.8 | 32.2 |
Crude fat | 65.9 | 74.5 | 81.4 |
Lysine | 13.5 | 11.7 | 10.9 |
Methionine | 6.7 | 5.5 | 5.0 |
Methionine + Cysteine | 10.1 | 8.8 | 8.3 |
Tryptophan | 2.5 | 2.3 | 2.1 |
Arginine | 13.1 | 12.1 | 11.1 |
Total calcium | 9.8 | 7.3 | 6.0 |
Available phosphorus | 3.9 | 2.8 | 2.1 |
Sodium | 1.6 | 1.5 | 1.4 |
Metabolizable energy, kcal/kg | 3070 | 3140 | 3190 |
Treatment | |||||||
---|---|---|---|---|---|---|---|
G-C 2 | CT-0.05 2 | CT-0.1 2 | CT-0.25 2 | PT-0.05 2 | PT-0.1 2 | PT-0.25 2 | |
Cycles of administration of phytobiotic contain cinnamon oil and citric acid 1 | 0 | 6 × 7 | 6 × 7 | 6 × 7 | 3 × 7 | 3 × 7 | 3 × 7 |
Total intake of phytobiotic, mL/bird | 0 | 0.33 | 0.633 | 1.658 | 0.14 | 0.28 | 0.72 |
Total intake of cinnamon oil, mg/bird | 0 | 0.99 | 1.899 | 4.974 | 0.42 | 0.84 | 2.16 |
Total intake of citric acid, mg/bird | 0 | 0.495 | 0.949 | 2.487 | 0.21 | 0.42 | 0.108 |
LOOH µmol/L | MDA µmol/L | SOD U/mL | CAT U/mL | AST U/L | ALT U/L | ||
---|---|---|---|---|---|---|---|
G-C 2 | 4.98 | 0.62 | 32.12 | 1.84 | 222.4 | 4.91 | |
CT-0.05 | 3.71 * | 0.44 * | 26.14 | 2.59 * | 224.8 | 4.41 | |
CT-0.1 | 2.53 * | 0.35 * | 31.12 | 2.61 * | 218.4 | 3.78 * | |
CT-0.25 | 2.12 * | 0.33 * | 28.91 | 2.65 * | 226.7 | 2.55 * | |
PT-0.05 | 3.89 * | 0.65 * | 31.36 | 1.44 * | 225.8 | 5.66 * | |
PT-0.1 | 3.94 * | 0.54 * | 29.69 | 1.47 * | 222.3 | 4.42 | |
PT-0.25 | 2.59 * | 0.53 * | 29.74 | 1.25 * | 227.1 | 3.89 * | |
SEM | 0.112 | 0.025 | 0.43 | 0.12 | 1.25 | 0.14 | |
Dosage effect (D) | 0.05 (ml/L) | 3.8 | 0.545 | 28.75 | 2.02 a | 225.3 | 5.04 |
0.1 (ml/L) | 3.24 | 0.445 | 30.41 | 2.04 a | 220.4 | 4.1 | |
0.25 (ml/L) | 2.36 | 0.43 | 29.33 | 1.95 b | 226.9 | 3.22 | |
Time effect (T) | CT | 2.787 b | 0.373 b | 28.72 | 2.62 a | 223.3 | 3.58 |
PT | 3.473 a | 0.573 a | 30.26 | 1.39 b | 225.07 | 4.66 | |
p-value | |||||||
G-C vs. all other | <0.001 | 0.002 | 0.257 | <0.001 | <0.001 | 0.025 | |
D effect | 0.031 | 0.043 | 0.298 | 0.017 | 0.0131 | 0.037 | |
T effect | 0.004 | 0.001 | 0.398 | <0.001 | 0.002 | 0.003 | |
DxT interaction | 0.054 | 0.021 | 0.131 | <0.001 | 0.034 | 0.369 |
FRAP µmol/L | GSH + GSSH µmol/L | VIT. C mg/L | UA µmol/L | BIL µmol/L | CREAT µmol/L | ||
---|---|---|---|---|---|---|---|
G-C 2 | 74.2 | 0.045 | 0.32 | 148.49 | 5.78 | 21.47 | |
CT-0.05 | 93.14 * | 0.059 | 0.57 | 146.78 | 5.47 | 20.47 | |
CT-0.1 | 99.84 * | 0.066 * | 0.71 * | 144.22 | 5.47 | 20.98 | |
CT-0.25 | 147.1 * | 0.074 * | 0.77 * | 139.24 * | 5.23 | 21.04 | |
PT-0.05 | 89.14 | 0.062 * | 0.56 * | 147.25 | 5.47 | 22.01 | |
PT-0.1 | 94.84 * | 0.069 | 0.57 * | 142.22 | 5.55 | 21.47 | |
PT-0.25 | 97.72 * | 0.069 * | 0.71 * | 144.27 | 5.74 | 21.47 | |
SEM | 5.22 | 0.002 | 0.014 | 7.74 | 0.28 | 0.47 | |
Dosage effect (D) | 0.05 (ml/L) | 91.14 | 0.061 | 0.57 | 147.02 | 5.47 | 21.24 |
0.1 (ml/L) | 97.34 | 0.068 | 0.64 | 143.22 | 5.43 | 2123 | |
0.25 (ml/L) | 122.41 | 0.072 | 0.74 | 141.55 | 5.49 | 21.26 | |
Time effect (T) | CT | 113.36 | 0.066 | 0.68 | 143.4 | 5.37 | 20.80 |
PT | 93.9 | 0.066 | 0.61 | 144.58 | 5.59 | 21.65 | |
p-value | |||||||
G-C vs. all other | 0.029 | 0.045 | 0.021 | 0.027 | 0.055 | 0.077 | |
D effect | 0.048 | 0.069 | <0.001 | 0.039 | 0.044 | 0.578 | |
T effect | 0.068 | 0.081 | <0.001 | 0.042 | 0.031 | 0.854 | |
DxT interaction | 0.069 | 0.374 | 0.458 | 0.287 | 0.174 | 0.125 |
TC mmol/L | HDL mmol/L | LDL mmol/L | TAG mmol/L | NEFA µmol/L | ||
---|---|---|---|---|---|---|
G-C 2 | 3.97 | 1.47 | 2.344 | 0.78 | 34.25 | |
CT-0.05 | 2.45 * | 2.25 * | 1.07 * | 0.65 * | 31.28 | |
CT-0.1 | 2.43 * | 2.44 * | 0.882 * | 0.54 * | 27.47 * | |
CT-0.25 | 2.29 * | 2.87 * | 0.338 * | 0.41 * | 23.04 * | |
PT-0.05 | 2.74 * | 2.47 * | 1.122 * | 0.74 | 32.47 | |
PT-0.1 | 2.28 * | 2.59 * | 0.576 * | 0.57 * | 30.28 | |
PT-0.25 | 2.07 * | 2.75 * | 0.236 * | 0.42 * | 24.28 * | |
SEM | 0.082 | 0.027 | 0.08 | 0.017 | 27.47 * | |
Dosage effect (D) | 0.05 (ml/L) | 3.59 | 2.36 | 1.096 | 0.695 | 31.38 a |
0.1 (ml/L) | 3.36 | 2.52 | 0.729 | 0.555 | 28.88 a | |
0.25 (ml/L) | 3.18 | 2.81 | 0.287 | 0.415 | 23.66 b | |
Time effect (T) | CT | 3.39 | 2.52 | 0.760 | 0.530 | 27.26 |
PT | 3.36 | 2.60 | 0.645 | 0.577 | 29.01 | |
p-value | ||||||
G-C vs. all other | 0.018 | 0.017 | 0.041 | 0.014 | 0.007 | |
D effect | 0.068 | 0.057 | 0.072 | 0.038 | 0.034 | |
T effect | 0.032 | 0.042 | 0.091 | 0.053 | 0.828 | |
DxT interaction | 0.335 | 0.374 | 0.587 | 0.502 | 0.474 |
LDH U/L | ALP U/L | GGT U/L | CK U/L | HBDH U/L | AC U/L | ||
---|---|---|---|---|---|---|---|
G-C 2 | 497.1 | 625.7 | 17.22 | 547.98 | 178.55 | 1.44 | |
CT-0.05 | 387.3 * | 678.6 | 14.89 * | 479.36 * | 147.47 * | 1.58 * | |
CT-0.1 | 318.25 * | 628.1 * | 15.28 | 348.89 * | 123.44 * | 1.45 | |
CT-0.25 | 231.7 * | 558.2 * | 14.58 * | 389.89 * | 127.47 * | 1.47 | |
PT-0.05 | 425.9 * | 658.2 * | 15.89 | 436.89 * | 159.41 | 1.27 * | |
PT-0.1 | 414.08 * | 698.3 * | 16.17 | 447.89 * | 160.47 * | 1.25 * | |
PT-0.25 | 447.4 * | 578.4 * | 13.89 * | 447.78 * | 147.28 * | 1.34 | |
SEM | 3.25 | 27.69 | 0.17 | 28.74 | 4.99 | 0.17 | |
Dosage effect (D) | 0.05 (ml/L) | 406.6 | 668.4 | 15.39 | 458.13 a | 153.44 | 1.425 |
0.1 (ml/L) | 366.13 | 663.2 | 15.79 | 398.39 b | 141.96 | 1.35 | |
0.25 (ml/L) | 339.55 | 568.3 | 14.24 | 418.84 a | 137.38 | 1.405 | |
Time effect (T) | CT | 312.42 b | 621.63 | 14.92 | 406.05 b | 132.79 b | 1.50 |
PT | 429.1 a | 644.97 | 15.32 | 473.56 a | 155.72 a | 1.29 | |
p-value | |||||||
G-C vs. all other | <0.001 | <0.001 | 0.034 | 0.021 | 0.028 | 0.025 | |
D effect | 0.003 | 0.059 | 0.321 | <0.001 | 0.021 | 0.058 | |
T effect | <0.001 | <0.001 | 0.942 | 0.003 | 0.049 | 0.073 | |
DxT interaction | 0.006 | 0.081 | 0.810 | 0.042 | 0.071 | 0.087 |
Lysozyme (mg/L) | Phagocytic Cells (%) | Phagocytic Index | Nitroblue Tetrazolium Test (%) | Interleukin 6 (pg/mL) | Immunoglobulin A (mg/mL) | ||
---|---|---|---|---|---|---|---|
G-C 2 | 1.15 | 34.24 | 4.14 | 20.87 | 0.120 | 0.697 | |
CT-0.05 | 2.07 * | 38.78 | 5.48 | 21.52 | 0.155 * | 0.657 | |
CT-0.1 | 2.18 * | 42.47 * | 5.56 | 25.78 | 0.141 * | 0.765 * | |
CT-0.25 | 2.42 * | 45.74 * | 6.78 * | 26.85 | 0.121 | 0.942 * | |
PT-0.05 | 2.08 * | 41.07 | 5.66 | 21.25 | 0.142 * | 0.682 | |
PT-0.1 | 2.21 * | 43.11 * | 5.97 | 22.89 | 0.149 * | 0.721 * | |
PT-0.25 | 2.29 * | 42.04 * | 6.35 * | 24.66 | 0.142 | 0.987 * | |
SEM | 0.03 | 0.27 | 0.07 | 0.14 | 0.08 | 0.13 | |
Dosage effect (D) | 0.05 (ml/L) | 2.08 | 39.93 | 5.12 | 21.39 | 0.149 | 0.670 b |
0.1 (ml/L) | 2.20 | 42.79 | 5.77 | 24.34 | 0.145 | 0.743 b | |
0.25 (ml/L) | 2.36 | 43.89 | 6.57 | 25.76 | 0.132 | 0.965 a | |
Time effect (T) | CT | 2.22 | 42.33 | 5.94 | 24.72 | 0.139 | 0.788 |
PT | 2.19 | 42.07 | 5.99 | 22.93 | 0.144 | 0.778 | |
p-value | |||||||
G-C vs. all other | 0.041 | 0.034 | 0.038 | 0.947 | 0.014 | 0.031 | |
D effect | 0.029 | 0.654 | 0.325 | 0.514 | <0.001 | 0.031 | |
T effect | 0.187 | 0.231 | 0.308 | 0.217 | 0.051 | 0.054 | |
DxT interaction | 0.521 | 0.314 | 0.509 | 0.228 | 0.068 | 0.137 |
Body Weight (kg/Bird, 1–42 Day) | FCR (kg/kg, 1–42 Day) | Mortality Rate (Birds) | |||||
---|---|---|---|---|---|---|---|
1 Days | 14 Days | 35 Days | 42 Days | ||||
G-C 2 | 0.046 | 0.451 | 2.017 | 2.654 | 1.724 | 3 | |
CT-0.05 | 0.045 | 0.452 | 2.017 | 2.666 | 1.717 | 2 | |
CT-0.1 | 0.046 | 0.463 | 2.064 | 2.716 * | 1.715 * | 1 | |
CT-0.25 | 0.045 | 0.457 | 2.148 | 2.735 * | 1.712 * | 1 | |
PT-0.05 | 0.045 | 0.437 | 2.019 | 2.658 | 1.718 | 2 | |
PT-0.1 | 0.044 | 0.441 | 2.112 | 2.681 | 1.717 | 2 | |
PT-0.25 | 0.046 | 0.457 | 2.107 | 2.699 * | 1.716 * | 1 | |
SEM | 0.003 | 0.004 | 0.072 | 0.024 | 0.087 | - | |
Dosage effect (D) | 0.05 (ml/L) | 0.045 | 0.445 | 2.018 | 2.662 | 1.718 | - |
0.1 (ml/L) | 0.045 | 0.452 | 2.088 | 2.699 | 1.716 | - | |
0.25 (ml/L) | 0.046 | 0.457 | 2.128 | 2.717 | 1.714 | - | |
Time effect (T) | CT | 0.045 | 0.457 | 2.076 | 2.705 | 1.715 | - |
PT | 0.045 | 0.445 | 2.079 | 2.679 | 1.717 | - | |
p-value | |||||||
G-C vs. all other | 0,157 | 0.038 | 0.028 | 0.025 | 0.031 | - | |
D effect | 0.241 | 0.041 | 0.009 | 0.024 | 0.053 | - | |
T effect | 0.471 | 0.051 | 0.031 | 0.042 | 0.071 | - | |
D × T interaction | 0.587 | 0.142 | 0.141 | 0.428 | 0.063 | - |
Total Number of Fungi (CFU/g) | Total Number of Aerobic Bacteria (CFU/g) | Total Number of Coliform Bacteria (CFU/g) | Length of Jejunal Villi (μm) | Depth of Jejunal Crypts (μm) | ||
---|---|---|---|---|---|---|
G-C 2 | 457 | 310,548 | 436,525 | 1014.25 | 208.75 | |
CT-0.05 | 168 * | 1,379,456 * | 287,698 * | 1174.10 * | 247.45 * | |
CT-0.1 | 145 * | 1,746,437 * | 154,774 * | 1258.84 * | 249.78 * | |
CT-0.25 | 82 * | 1,848,534 * | 128,733 * | 1318.98 * | 274.74 * | |
PT-0.05 | 212 * | 1,554,325 * | 347,478 * | 1012.74 * | 217.48 * | |
PT-0.1 | 189 * | 1,365,258 * | 208,475 * | 1169.74 * | 246.31 * | |
PT-0.25 | 114 * | 1,025,147 * | 158,698 * | 1198.14 * | 253.02 * | |
SEM | 15.25 | 58.36 | 25.36 | 58.25 | 16.17 | |
Dosage effect (D) | 0.05 (ml/L) | 190 | 1,466,891 b | 317,588 | 1093.42 | 232.47 |
0.1 (ml/L) | 167 | 1,555,848 a | 181,625 | 12,414.29 | 248.05 | |
0.25 (ml/L) | 98 | 1,436,841 b | 143,716 | 1258.56 | 263.88 | |
Time effect (T) | CT | 131.67 | 1,658,142 a | 190,402 | 1250.64 | 257.32 |
PT | 171.67 | 1,314,910 b | 238,217 | 1126.87 | 238.94 | |
p-value | ||||||
G-C vs. all other | <0.001 | <0.001 | <0.001 | 0.002 | 0.003 | |
D effect | 0.002 | <0.001 | <0.001 | 0.027 | 0.024 | |
T effect | <0.001 | <0.001 | <0.001 | 0.036 | 0.075 | |
DxT interaction | 0.07 | 0.008 | <0.001 | 0.214 | 0.130 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krauze, M.; Cendrowska-Pinkosz, M.; Matuseviĉius, P.; Stępniowska, A.; Jurczak, P.; Ognik, K. The Effect of Administration of a Phytobiotic Containing Cinnamon Oil and Citric Acid on the Metabolism, Immunity, and Growth Performance of Broiler Chickens. Animals 2021, 11, 399. https://doi.org/10.3390/ani11020399
Krauze M, Cendrowska-Pinkosz M, Matuseviĉius P, Stępniowska A, Jurczak P, Ognik K. The Effect of Administration of a Phytobiotic Containing Cinnamon Oil and Citric Acid on the Metabolism, Immunity, and Growth Performance of Broiler Chickens. Animals. 2021; 11(2):399. https://doi.org/10.3390/ani11020399
Chicago/Turabian StyleKrauze, Magdalena, Monika Cendrowska-Pinkosz, Paulius Matuseviĉius, Anna Stępniowska, Paweł Jurczak, and Katarzyna Ognik. 2021. "The Effect of Administration of a Phytobiotic Containing Cinnamon Oil and Citric Acid on the Metabolism, Immunity, and Growth Performance of Broiler Chickens" Animals 11, no. 2: 399. https://doi.org/10.3390/ani11020399
APA StyleKrauze, M., Cendrowska-Pinkosz, M., Matuseviĉius, P., Stępniowska, A., Jurczak, P., & Ognik, K. (2021). The Effect of Administration of a Phytobiotic Containing Cinnamon Oil and Citric Acid on the Metabolism, Immunity, and Growth Performance of Broiler Chickens. Animals, 11(2), 399. https://doi.org/10.3390/ani11020399