Dietary Polyphenol Supplementation in Food Producing Animals: Effects on the Quality of Derived Products
Abstract
:Simple Summary
Abstract
1. Introduction
2. Classification and Structure of Polyphenols
3. The Distribution of Polyphenols in Nature
3.1. Flavonols
3.2. Flavones
3.3. Flavanols
3.4. Flavanones
3.5. Anthocyanins
3.6. Isoflavones
3.7. Phenolic Acids
3.8. Lignans
3.9. Stilbenes
3.10. Tannins
4. Bioavailability of Polyphenols in Food-Producing Animals
5. Antioxidants and Their Importance in Food-Producing Animals
6. Supplementation of Polyphenols to Animal’s Diet
6.1. Monogastric
6.2. Ruminants
7. Application of Phenolic Compounds in Food Products
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, J.; Xiong, Y. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Sci. 2016, 120, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Bou, R.; Codony, R.; Tres, A.; Decker, E.A.; Guardiola, F. Dietary strategies to improve nutritional value, oxidative stability, and sensory properties of poultry products. Crit. Rev. Food Sci. Nutr. 2009, 49, 800–822. [Google Scholar] [CrossRef]
- Nieto, G.; Estrada, M.; Jordán, M.J.; Garrido, M.D.; Bañón, S. Effects in ewe diet of rosemary by-product on lipid oxidation and the eating quality of cooked lamb under retail display conditions. Food Chem. 2011, 124, 1423–1429. [Google Scholar] [CrossRef]
- Lipiński, K.; Mazur, M.; Antoszkiewicz, Z.; Purwin, C. Polyphenols in monogastric nutrition—A review. Ann. Anim. Sci. 2017, 17, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Jasiński, M.; Mazurkiewicz, E.; Rodziewicz, P.; Figlerowicz, M. Flawonoidy–budowa, właściwości i funkcja ze szczególnym uwzględnieniem roślin motylkowatych. Biotechnologia 2009, 2, 81–94. [Google Scholar]
- Fraga, C.G.; Galleano, M.; Verstraeten, S.V.; Oteiza, P.I. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Asp. Med. 2010, 31, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Gessner, D.K.; Ringseis, R.; Eder, K. Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. J. Anim. Physiol. Anim. Nutr. 2016, 101, 605–628. [Google Scholar] [CrossRef] [PubMed]
- Landete, J.M. Dietary intake of natural antioxidants: Vitamins and polyphenols. Crit. Rev. Food. Sci. Nutr. 2013, 53, 706–721. [Google Scholar] [CrossRef]
- Piluzza, G.; Sulas, L.; Bullitta, S. Tannins in forage plants and their role in animal husbandry and environmental sustainability: A review. Grass Forage Sci. 2014, 69, 32–48. [Google Scholar] [CrossRef]
- Scalbert, A.; Morand, C.; Manach, C.; Rémésy, C. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed. Pharmacother. 2002, 56, 276–282. [Google Scholar] [CrossRef]
- Petti, S.; Scully, C. Polyphenols, oral health and disease: A review. J. Dent. 2009, 37, 413–423. [Google Scholar] [CrossRef]
- Wink, M. Compartmentation of secondary metabolites and xenobiotics in plant vacuoles. Adv. Bot. Res. 1997, 25, 141–169. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Tangney, C.C.; Rasmussen, H.E. Polyphenols, inflammation, and cardiovascular disease. Curr. Atheroscler. Rep. 2013, 15, 324. [Google Scholar] [CrossRef] [PubMed]
- Grassia, M.; Salvatori, G.; Roberti, M.; Planeta, D.; Cinquanta, L. Polyphenols, methylxanthines, fatty acids and minerals in cocoa beans and cocoa products. Food Meas. 2019, 13, 1721–1728. [Google Scholar] [CrossRef]
- Rice-Evans, C. Flavonoid antioxidants. Curr. Med. Chem. 2001, 8, 797–807. [Google Scholar] [CrossRef]
- Alcalde-Eon, C.; García-Estévez, I.; Ferreras-Charro, R.; Rivas-Gonzalo, J.C.; Ferrer-Gallego, R.; Escribano-Bailón, M.T. Adding oenological tannin vs. overripe grapes: Effect on the phenolic composition of red wines. J. Food Compos. Anal. 2014, 34, 99–113. [Google Scholar] [CrossRef]
- Liang, N.N.; Zhu, B.Q.; Han, S.; Wang, J.H.; Pan, Q.H.; Reeves, M.J.; Duan, C.Q.; He, F. Regional characteristics of anthocyanin and flavonol compounds from grapes of four Vitis vinifera varieties in five wine regions of China. Food Res. Int. 2014, 64, 264–274. [Google Scholar] [CrossRef]
- Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem. 2014, 84, 206–239. [Google Scholar] [CrossRef]
- Day, A.J.; Mellon, F.; Barron, D.; Sarrazin, G.; Morgan, M.R.; Williamson, G. Human metabolism of dietary flavonoids: Identification of plasma metabolites of quercetin. Free Radic. Res. 2001, 35, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.K.; Dangles, O. A comprehensive review on flavanones, the major citrus polyphenols. J. Food Compos. Anal. 2014, 33, 85–104. [Google Scholar] [CrossRef]
- Cavalcanti, R.N.; Santos, D.T.; Meireles, M.A.A. Non-thermal stabilization mechanisms of anthocyanins in model and food systems—An overview. Food Res. Int. 2011, 44, 499–509. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, Z.; Ramdath, D.D.; Tang, Y.; Chen, P.X.; Liu, R.; Liu, Q.; Tsao, R. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem. 2015, 172, 862–872. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Fu, J.; Wang, Y.; Gao, S.; Du, D.; Wu, F.; Guo, J.; Dong, L. Glucose supply improves petal coloration and anthocyanin biosynthesis in Paeonia suffruticosa ‘Luoyang Hong’ cut flowers. Postharvest Biol. Technol. 2015, 101, 73–81. [Google Scholar] [CrossRef]
- Osorio, C.; Hurtado, N.; Dawid, C.; Hofmann, T.; Heredia-Mira, F.J.; Morales, A.L. Chemical characterisation of anthocyanins in tamarillo (Solanum betaceum Cav.) and Andes berry (Rubus glaucus Benth.) fruits. Food Chem. 2012, 132, 1915–1921. [Google Scholar] [CrossRef]
- Reque, P.M.; Steffens, R.S.; Jablonski, A.; Flôres, S.H.; Rios, A.D.O.; de Jong, E.V. Cold storage of blueberry (Vaccinium spp.) fruits and juice: Anthocyanin stability and antioxidant activity. J. Food Compos. Anal. 2014, 33, 111–116. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Xiao, J.; Cao, H.; Wang, Y.; Zhao, J.; Wei, X. Glycosylation of dietary flavonoids decreases the affinities for plasma protein. J. Agric. Food Chem. 2009, 57, 6642–6648. [Google Scholar] [CrossRef]
- Ragin, B.; Akond, M.; Kantartzi, S.; Meksem, K.; Herrera, H.; Akbay, C.; Lightfoot, D.; Kassem, M. Effect of row spacing on seed isoflavone contents in soybean [Glycine max (L.) Merr.]. Am. J. Plant Sci. 2014, 5, 4003–4010. [Google Scholar] [CrossRef] [Green Version]
- Balisteiro, D.M.; Rombaldi, C.V.; Genovese, M.I. Protein, isoflavones, trypsin inhibitory and in vitro antioxidant capacities: Comparison among conventionally and organically grown soybeans. Food Res. Int. 2013, 51, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int. 2015, 74, 10–36. [Google Scholar] [CrossRef] [PubMed]
- El Gharras, H. Polyphenols: Food sources, properties and applications—A review. Int. J. Food Sci. Technol. 2009, 44, 2512–2518. [Google Scholar] [CrossRef]
- Charles, D. Antioxidant Properties of Spices, Herbs and Other Sources; Springer: New York, NY, USA, 2013; pp. 65–138. [Google Scholar]
- Chung, K.T.; Wong, T.Y.; Wei, C.I.; Huang, Y.W.; Lin, Y. Tannins and human health: A review. Crit. Rev. Food Sci. Nutr. 1998, 38, 421–464. [Google Scholar] [CrossRef] [PubMed]
- Palafox-Carlos, H.; Ayala-Zavala, J.F.; González-Aguilar, G.A. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J. Food Sci. 2011, 76, R6–R15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, dietary sources and bioavailability. Ann. Ist. Super Sanita 2007, 43, 348–361. [Google Scholar]
- Brenes, A.; Viveros, A.; Chamorro, S.; Arija, I. Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Anim. Feed. Sci. Tech. 2016, 211, 1–17. [Google Scholar] [CrossRef]
- Chiva-Blanch, G.; Visioli, F. Polyphenols and health: Moving beyond antioxidants. J. Berry Res. 2012, 2, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013, 24, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Lavefve, L.; Howard, L.R.; Carbon, F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct. 2020, 11, 45–65. [Google Scholar] [CrossRef]
- Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Res. Int. 2015, 905215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fotina, A.A.; Fisinin, V.I.; Surai, P.F. Recent developments in usage of natural antioxidants to improve chicken meat production and quality. Bulg. J. Agric. Sci. 2013, 19, 889–896. [Google Scholar]
- Surai, P.F. Polyphenol compounds in the chicken/animal diet: From the past to the future. J. Anim. Physiol. Anim. Nutr. 2014, 98, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Bieger, J.; Cermak, R.; Blank, R.; de Boer, V.C.; Hollman, P.C.; Kamphues, J.; Wolffram, S. Tissue distribution of quercetin in pigs after long-term dietary supplementation. J. Nutr. 2008, 138, 1417–1420. [Google Scholar] [CrossRef]
- Boer de, V.C.; Dihal, A.A.; van der Woude, H.; Arts, I.C.; Wolffram, S.; Alink, G.M.; Hollman, P.C. Tissue distribution of quercetin in rats and pigs. J. Nutr. 2005, 135, 1718–1725. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, S.R.; Davoodi, H. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet. Res. Commun. 2011, 35, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Paszkiewicz, M.; Budzynska, A.; Rozalska, B.; Sadowska, B. The immunomodulatory role of plant polyphenols. Post. Hig. Med. Dosw. 2012, 66, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Kamboh, A.A.; Arain, M.A.; Mughal, M.J.; Zaman, A.; Arain, Z.M.; Soomro, A.H. Flavonoids: Health promoting phytochemicals for animal production—A review. J. Anim. Health Prod. 2015, 3, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Berger, L.M.; Wein, S.; Blank, R.; Metges, C.C.; Wolffram, S. Bioavailability of the flavonol quercetin in cows after intraruminal application of quercetin aglycone and rutin. J. Dairy Sci. 2012, 95, 5047–5055. [Google Scholar] [CrossRef]
- Lundh, T.J.H.; Pettersson, H.I.; Martinsson, K.A. Comparative levels of free and conjugated plant estrogens in blood plasma of sheep and cattle fed estrogenic silage. J. Agric. Food Chem. 1990, 38, 1530–1534. [Google Scholar] [CrossRef]
- Warner, D.; Dijkstra, J.; Hendriks, W.H.; Pellikaan, W.F. Stable isotope-labelled feed nutrients to assess nutrient-specific feed passage kinetics in ruminants. J. Sci. Food Agric. 2014, 94, 819–824. [Google Scholar] [CrossRef]
- Gohlke, A.; Ingelmann, C.J.; Nürnberg, G.; Starke, A.; Wolffram, S.; Metges, C.C. Bioavailability of quercetin from its aglycone and its glucorhamnoside rutin in lactating dairy cows after intraduodenal administration. J. Dairy Sci. 2013, 96, 2303–2313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höjer, A.; Adler, S.; Purup, S.; Hansen-Møller, J.; Martinsson, K.; Steinshamn, H.; Gustavsson, A.M. Effects of feeding dairy cows different legume-grass silages on milk phytoestrogen concentration. J. Dairy Sci. 2012, 95, 4526–4540. [Google Scholar] [CrossRef] [PubMed]
- Cools, S.; Van den Broeck, W.; Vanhaecke, L.; Heyerick, A.; Bossaert, P.; Hostens, M.; Opsomer, G. Feeding soybean meal increases the blood level of isoflavones and reduces the steroidogenic capacity in bovine corpora lutea, without affecting peripheral progesterone concentrations. Anim. Reprod. Sci. 2014, 144, 79–89. [Google Scholar] [CrossRef]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef]
- Rollo, C.D. Growth negatively impacts the life span of mammals. Evol. Dev. 2002, 4, 55–61. [Google Scholar] [CrossRef]
- Oriani, G.; Corino, C.; Pastorelli, G.; Pantaleo, L.; Ritieni, A.; Salvatori, G. Oxidative status of plasma and muscle in rabbits supplemented with dietary vitamin E. J. Nutr. Biochem. 2001, 12, 138–143. [Google Scholar] [CrossRef]
- Pastorelli, G.; Rossi, R.; Corino, C. Influence of Lippia citriodora verbascoside on growth performance, antioxidant status, and serum immunoglobulins content in piglets. Czech. J. Anim. Sci. 2012, 57, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Sies, H. What is oxidative stress? In Oxidative Stress and Vascular Disease; Keaney, J.F., Ed.; Developments in Cardiovascular Medicine; Springer: Boston, MA, USA, 2000; p. 224. [Google Scholar] [CrossRef]
- Durand, D.; Damon, M.; Gobert, M. Oxidative stress in farm animals: General aspects. Cah. Nutr. Diet. 2013, 48, 218–224. [Google Scholar] [CrossRef]
- Zhong, R.; Zhou, D. Oxidative stress and role of natural plant derived antioxidants in animal reproduction. J. Integr. Agric. 2013, 12, 1826–1838. [Google Scholar] [CrossRef]
- Lauridsen, C. From oxidative stress to inflammation: Redox balance and immune system. Poult. Sci. 2019, 98, 4240–4246. [Google Scholar] [CrossRef]
- Fiesel, A.; Gessner, D.K.; Most, E.; Eder, K. Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs. BMC Vet. Res. 2014, 10, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Li, Y.; Yu, B.; Chen, D.; Mao, X.; Zheng, P.; Luo, J.; He, J. Dietary chlorogenic acid improves growth performance of weaned pigs through maintaining antioxidant capacity and intestinal digestion and absorption function. J. Anim. Sci. 2018, 96, 1108–1118. [Google Scholar] [CrossRef]
- Liu, W.C.; Yan, G.; Zhi-Hui, Z.; Rajesh, J.; Balamuralikrishnan, B. Algae-derived polysaccharides promote growth performance by improving antioxidant capacity and intestinal barrier function in broiler chickens. Front. Vet. Sci. 2020, 7, 990. [Google Scholar] [CrossRef] [PubMed]
- Al-Kassie, G.A. Influence of two plant extracts derived from thyme and cinnamon on broiler performance. Pak. Vet. J. 2009, 29, 169–173. [Google Scholar]
- Jiang, Z.Y.; Jiang, S.Q.; Lin, Y.C.; Xi, P.B.; Yu, D.Q.; Wu, T.X. Effects of soybean isoflavone on growth performance, meat quality, and antioxidation in male broilers. Poult. Sci. 2007, 86, 1356–1362. [Google Scholar] [CrossRef]
- Hashemi, S.R.; Davoodi, H. Phytogenics as new class of feed additive in poultry industry. J. Anim. Vet. Adv. 2010, 9, 2295–2304. [Google Scholar] [CrossRef]
- Macías-Cruz, U.; Perard, S.; Vicente, R.; Álvarez, F.D.; Torrentera-Olivera, N.G.; González-Ríos, H.; Soto-Navarro, S.A.; Rojo, R.; Meza-Herrera, C.A.; Avendaño-Reyes, L. Effects of free ferulic acid on productive performance, blood metabolites, and carcass characteristics of feedlot finishing ewe lambs. J. Anim. Sci. 2014, 92, 5762–5768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenzuela-Grijalva, N.V.; Pinelli-Saavedra, A.; Muhlia-Almazan, A.; Domínguez-Díaz, D.; González-Ríos, H. Dietary inclusion effects of phytochemicals as growth promoters in animal production. J. Anim. Sci. Technol. 2017, 59, 8. [Google Scholar] [CrossRef] [Green Version]
- González-Ríos, H.; Dávila-Ramírez, J.L.; Peña-Ramos, E.A.; Valenzuela-Melendres, M.; Zamorano-García, L.; Islava-Lagarda, T.Y.; Valenzuela-Grijalva, N.V. Dietary supplementation of ferulic acid to steers under commercial feedlot feeding conditions improves meat quality and shelf life. Anim. Feed. Sci. Tech. 2016, 222, 111–121. [Google Scholar] [CrossRef]
- Gladine, C.; Rock, E.; Morand, C.; Cauchart, D.; Durand, D. Bioavailability and antioxidant capacity of plant extracts rich in polyphenols, given as a single acute dose, in sheep made highly susceptible to lipoperoxidation. Br. J. Nutr. 2007, 98, 691–701. [Google Scholar] [CrossRef] [Green Version]
- Pastorelli, G.; Rossi, R.; Ratti, S.; Corino, C. Plant extracts in heavy pig feeding: Effects on quality of meat and Cremona salami. Anim. Prod. Sci. 2016, 56, 1199–1207. [Google Scholar] [CrossRef]
- Salvatori, G.; Pantaleo, L.; Di Cesare, C.; Maiorano, G.; Filetti, F.; Oriani, G. Fatty acid composition and cholesterol content of muscles as related to genotype and vitamin E treatment in crossbred lambs. Meat Sci. 2004, 67, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Corino, C.; Oriani, G.; Pantaleo, L.; Pastorelli, G.; Salvatori, G. Influence of dietary vitamin E supplementation on “heavy” pig carcass characteristics, meat quality, and vitamin E status. J. Anim. Sci. 1999, 77, 1755–1761. [Google Scholar] [CrossRef]
- Corino, C.; Pastorelli, G.; Pantaleo, L.; Oriani, G.; Salvatori, G. Improvement of color and lipid stability of rabbit meat by dietary supplementation with vitamin E. Meat Sci. 1999, 52, 285–289. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Pastorelli, G.; Magni, S.; Rossi, R.; Pagliarini, E.; Baldini, P.; Dirinck, P.; Van Opstaele, F.; Corino, C. Influence of dietary fat, on fatty acid composition and sensory properties of dry-cured Parma ham. Meat Sci. 2003, 65, 571. [Google Scholar] [CrossRef]
- Gobert, M.; Gruffat, D.; Habeanu, M.; Parafita, E.; Bauchart, D.; Durand, D. Plant extracts combined with vitamin E in PUFA-rich diets of cull cows protect processed beef against lipid oxidation. Meat. Sci. 2010, 85, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Choe, J.H.; Kim, B.; Yun, H.; Kruk, Z.A.; Jo, C. The effect of dietary mixture of gallic acid and linoleic acid on antioxidative potential and quality of breast meat from broilers. Meat Sci. 2010, 86, 520–526. [Google Scholar] [CrossRef]
- Dai, F.; Chen, W.F.; Zhou, B. Antioxidant synergism of green tea polyphenols with α-tocopherol and l-ascorbic acid in SDS micelles. Biochimie 2008, 90, 1499–1505. [Google Scholar] [CrossRef]
- Sáyago-Ayerdi, S.G.; Brenes, A.; Viveros, A.; Goñi, I. Antioxidative effect of dietary grape pomace concentrate on lipid oxidation of chilled and long-term frozen stored chicken patties. Meat Sci. 2009, 83, 528–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goñi, I.; Brenes, A.; Centeno, C.; Viveros, A.; Saura-Calixto, F.; Rebolé, A.; Arija, I.; Estevez, R. Effect of dietary grape pomace and Vitamin E on growth performance, nutrient digestibility, and susceptibility to meat lipid oxidation in chickens. Poult. Sci. 2007, 86, 508–516. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Goñi, I.; Centeno, C.; Sáyago-Ayerdy, S.G.; Arija, I.; Saura-Calixto, F. Effect of grape pomace concentrate and Vitamin E on digestibility of polyphenols and antioxidant activity in chickens. Poult. Sci. 2008, 87, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Aditya, S.; Ohh, S.J.; Ahammed, M.; Lohakare, J. Supplementation of grape pomace (Vitis vinifera) in broiler diets and its effect on growth performance, apparent total tract digestibility of nutrients, blood profile, and meat quality. Anim. Nutr. 2018, 4, 210–214. [Google Scholar] [CrossRef]
- Chamorro, S.; Viveros, A.; Rebolé, A.; Rica, B.D.; Arija, I.; Brenes, A. Influence of dietary enzyme addition on polyphenol utilization and meat lipid oxidation of chicks fed grape pomace. Food Res. Int. 2015, 73, 197–203. [Google Scholar] [CrossRef]
- Yesilbag, D.; Eren, M.; Agel, H.; Kovanlikaya, A.; Balci, F. Effects of dietary rosemary, rosemary volatile oil and vitamin E on broiler performance, meat quality and serum SOD activity. Br. Poult. Sci. 2011, 52, 472–482. [Google Scholar] [CrossRef]
- Marcinčák, S.; Popelka, P.; Nagy, J.; Hussein, K.; Hornanová, L. The impact of Vitamin E and rosemary on the oxidative stability of poultry meat and ground meat products. Folia Vet. 2004, 48, 165–168. [Google Scholar]
- Saleh, H.; Golian, A.; Kermanshahi, H.; Mirakzehi, M.T. Antioxidant status and thigh meat quality of broiler chickens fed diet supplemented with α-tocopherolacetate, pomegranate pomace and pomegranate pomace extract. Ital. J. Anim. Sci. 2018, 17, 386–395. [Google Scholar] [CrossRef] [Green Version]
- Eid, Y.Z.; Ohtsuka, A.; Hayashi, K. Tea polyphenols reduce glucocorticoid- induced growth inhibition and oxidative stress in broiler chickens. Br. Poult. Sci. 2003, 44, 127–132. [Google Scholar] [CrossRef]
- Reis, J.H.; Gebert, R.R.; Barreta, M.; Boiago, M.M.; Souza, C.F.; Baldissera, M.D.; Santos, I.D.; Wagner, R.; Laporta, L.V.; Stefani, L.M.; et al. Addition of grape pomace flour in the diet on laying hens in heat stress: Impacts on health and performance as well as the fatty acid profile and total antioxidant capacity in the egg. J. Therm. Biol. 2019, 80, 141–149. [Google Scholar] [CrossRef]
- Goliomytis, M.; Kostaki, A.; Avgoulas, G.; Lantzouraki, D.Z.; Siapi, E.; Zoumpoulakis, P.; Simitzis, P.; Deligeorgis, S.G. Dietary supplementation with orange pulp (Citrus sinensis) improves egg yolk oxidative stability in laying hens. Anim. Feed Sci. Tech. 2018, 244, 28–35. [Google Scholar] [CrossRef]
- Yan, L.; Kim, I. Effect of dietary grape pomace fermented by Saccharomyces boulardii on the growth performance, nutrient digestibility and meat quality in finishing pigs. Anim. Biosci. 2011, 24, 1763–1770. [Google Scholar] [CrossRef]
- O’Grady, M.N.; Carpenter, R.; Lynch, P.B.; O’Brien, N.M.; Kerry, J.P. Addition of grape seed extract and bearberry to porcine diets: Influence on quality attributes of raw and cooked pork. Meat Sci. 2008, 78, 438–446. [Google Scholar] [CrossRef]
- Hossain, M.E.; Ko, S.Y.; Yang, C.J. Dietary supplementation of green tea by-products on growth performance, meat quality, blood parameters and immunity in finishing pigs. J. Med. Plants Res. 2012, 6, 2458–2467. [Google Scholar]
- Liotta, L.; Chiofalo, B.; Lo Presti, V.; Piccolo, D.; Chiofalo, V.; Chiofalo, V. Rosemary extract (Rosmarinus officinalis L.) supplementation into the diet of Nero Siciliano pigs: Effects on lipid oxidation. Ital. J. Anim. Sci. 2007, 6, 306–308. [Google Scholar] [CrossRef] [Green Version]
- Liotta, L.; Chiofalo, V.; D’Alessandro, E.; Lo Presti, V.; Chiofalo, B. Supplementation of Rosemary extract in the diet of Nero Siciliano pigs: Evaluation of the antioxidant properties on meat quality. Animal 2015, 9, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Beghelli, D.; de Cosmo, A.; Faeti, V.; Lupidi, G.; Bailetti, L.; Cavallucci, C.; Polidori, P. Origanum vulgare L. and Rosmarinus officinalis L. aqueous extracts in growing-finishing pig nutrition: Effects on antioxidant status, immune responses, polyphenolic content and sensorial properties. J. Food Res. 2018, 8, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Larraín, R.; Krueger, C.; Richards, M.; Reed, J. Color changes and lipid oxidation in pork products made from pigs fed with cranberry juice powder. J. Muscle Foods 2008, 19, 17–33. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, F.F.; Cao, Y.D.; He, M.L. Supplementation of tea polyphenol mixed with sweetener in diet included with or without flax oil increased antioxidative capacity of blood serum and Longissimus dorsi muscle of fattening pigs. J. Anim. Sci. 2017, 95, 203–204. [Google Scholar] [CrossRef]
- Cardinali, R.; Cullere, M.; Dal Bosco, A.; Mugnai, C.; Ruggeri, S.; Mattioli, S.; Castellini, C.; Trabalza Marinucci, M.; Dalle Zotte, A. Oregano, rosemary and vitamin E dietary supplementation in growing rabbits: Effect on growth performance, carcass traits, bone development and meat chemical composition. Livest. Sci. 2015, 175, 83–89. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Mourvaki, E.; Cardinali, R.; Servili, M.; Sebastiani, B.; Ruggeri, S.; Mattioli, S.; Taticchi, A.; Esposto, S.; Castellini, C. Effect of dietary supplementation with olive pomaces on the performance and meat quality of growing rabbits. Meat Sci. 2012, 92, 783–788. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Gerencsér, Z.; Szendrő, Z.; Mugnai, C.; Cullere, M.; Kovàcs, M.; Ruggeri, S.; Mattioli, S.; Castellini, C.; Dalle Zotte, A. Effect of dietary supplementation of Spirulina (Arthrospira platensis) and Thyme (Thymus vulgaris) on rabbit meat appearance, oxidative stability and fatty acid profile during retail display. Meat Sci. 2014, 96, 114–119. [Google Scholar] [CrossRef]
- Dabbou, S.; Gai, F.; Renna, M.; Rotolo, L.; Dabbou, S.; Lussiana, C.; Kovitvadhi, A.; Brugiapaglia, A.; De Marco, M.; Helal, A.N.; et al. Inclusion of bilberry pomace in rabbit diets: Effects on carcass characteristics and meat quality. Meat Sci. 2017, 124, 77–83. [Google Scholar] [CrossRef]
- Ianni, A.; Innosa, D.; Martino, C.; Bennato, F.; Martino, G. Compositional characteristics and aromatic profile of caciotta cheese obtained from Friesian cows fed with a dietary supplementation of dried grape pomace. J. Dairy Sci. 2019, 102, 1025–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, N.W.; Santos, G.T.D.; Silva-Kazama, D.C.; Grande, P.A.; Pintro, P.M.; de Marchi, F.E.; Jobim, C.C.; Petit, H.V. Production, composition and antioxidants in milk of dairy cows fed diets containing soybean oil and grape residue silage. Livest. Sci. 2014, 159, 37–45. [Google Scholar] [CrossRef]
- Santos, G.T.; Lima, L.S.; Schogor, A.L.B.; Romero, J.V.; De Marchi, F.E.; Grande, P.A.; Santos, N.W.; Santos, F.S.; Kazama, R. Citrus pulp as a dietary source of antioxidants for lactating Holstein cows fed highly polyunsaturated fatty acid diets. Asian Australas. J. Anim. 2014, 27, 1104–1113. [Google Scholar] [CrossRef]
- Cohen-Zinder, M.; Weinberg, Z.; Leibovich, H.; Chen, Y.; Rosen, M.; Sagi, G.; Orlov, A.; Agmon, R.; Yishay, M.; Miron, J.; et al. Ensiled Moringa oleifera: An antioxidant-rich feed that improves dairy cattle performance. J. Agric. Sci. 2017, 155, 1174–1186. [Google Scholar] [CrossRef]
- Santos, N.W.; Yoshimura, E.H.; Machado, E.; Matumoto-Pintro, P.T.; Montanher, P.F.; Visentainer, J.V.; dos Santos, G.T.; Zeoula, L.M. Antioxidant effects of a propolis extract and vitamin E in blood and milk of dairy cows fed diet containing flaxseed oil. Livest. Sci. 2016, 191, 132–138. [Google Scholar] [CrossRef]
- O’Grady, M.N.; Maher, M.; Troy, D.J.; Moloney, A.P.; Kerry, J.P. An assessment of dietary supplementation with tea catechins and rosemary extract on the quality of fresh beef. Meat Sci. 2006, 73, 132–143. [Google Scholar] [CrossRef]
- Tayengwa, T.; Chikwanha, O.C.; Gouws, P.; Dugan, M.E.R.; Mutsvangwa, T.; Mapiye, C. Dietary citrus pulp and grape pomace as potential natural preservatives for extending beef shelf life. Meat Sci. 2020, 162, 108029. [Google Scholar] [CrossRef]
- Branciari, R.; Ranucci, D.; Miraglia, D.; Urbani, S.; Esposto, S.; Servili, M. Effect of dietary treatment with olive oil by-product (olive cake) on physicochemical, sensory and microbial characteristics of beef during storage. Ital. J. Food Saf. 2015, 4, 225–229. [Google Scholar]
- Salami, S.A.; O’Grady, M.N.; Luciano, G.; Priolo, A.; McGee, M.; Moloney, A.P.; Kerry, J.P. Quality indices and sensory attributes of beef from steers offered grass silage and a concentrate supplemented with dried citrus pulp. Meat Sci. 2020, 168, 108181. [Google Scholar] [CrossRef]
- Boutoial, K.; García, V.; Rovira, S.; Ferrandini, E.; Abdelkhalek, O.; López, M.B. Effect of feeding goats with distilled and non-distilled thyme leaves (Thymus zygis subp. gracilis) on milk and cheese properties. J. Dairy Res. 2013, 80, 448–456. [Google Scholar] [CrossRef]
- Delgadillo-Puga, C.; Cuchillo-Hilario, M.; León-Ortiz, L.; Ramírez-Rodríguez, A.; Cabiddu, A.; Navarro-Ocaña, A.; Morales-Romero, A.M.; Medina-Campos, O.N.; Pedraza-Chaverri, J. Goats’ feeding supplementation with Acacia farnesiana Pods and their relationship with milk composition: Fatty acids, polyphenols, and antioxidant activity. Animals 2019, 9, 515. [Google Scholar] [CrossRef] [Green Version]
- Zhong, R.Z.; Tan, C.Y.; Han, X.F.; Tang, S.X.; Tan, Z.L.; Zeng, B. Effect of dietary tea catechins supplementation in goats on the quality of meat kept under refrigeration. Small Rumin. Res. 2009, 87, 122–125. [Google Scholar] [CrossRef]
- Qwele, K.; Hugo, A.; Oyedemi, S.O.; Moyo, B.; Masika, P.J.; Muchenje, V. Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves, sunflower cake and grass hay. Meat Sci. 2013, 93, 455–462. [Google Scholar] [CrossRef]
- Cimmino, R.; Barone, C.M.A.; Claps, S.; Varricchio, E.; Rufrano, D.; Caroprese, M.; Albenzio, M.; De Palo, P.; Campanile, G.; Neglia, G. Effects of dietary supplementation with polyphenols on meat quality in Saanen goat kids. BMC Vet. Res. 2018, 14, 181. [Google Scholar] [CrossRef]
- Branciari, R.; Ranucci, D.; Trabalza-Marinucci, M.; Codini, M.; Orru, M.; Ortenzi, R.; Forte, C.; Ceccarini, M.R.; Valiani, A. Evaluation of the antioxidant properties and oxidative stability of Pecorino cheese made from the raw milk of ewes fed Rosmarinus officinalis L. leaves. Int. J. Food Sci. Technol. 2015, 50, 558–565. [Google Scholar] [CrossRef]
- Todaro, M.; Alabiso, M.; Scatassa, M.L.; Di Grigoli, A.; Mazza, F.; Maniaci, G.; Bonanno, A. Effect of the inclusion of fresh lemon pulp in the diet of lactating ewes on the properties of milk and cheese. Anim. Feed Sci. Tech. 2017, 225, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Serrano, R.; Jordán, M.J.; Bañó, S. Use of dietary rosemary extract in ewe and lamb to extend the shelf life of raw and cooked meat. Small Rumin. Res. 2014, 116, 144–152. [Google Scholar] [CrossRef]
- Bañón, S.; Méndez, L.; Almela, E. Effects of dietary rosemary extract on lamb spoilage under retail display conditions. Meat Sci. 2012, 90, 579–583. [Google Scholar] [CrossRef]
- Argov-Argaman, N.; Cohen-Zinder, M.; Leibovich, H.; Yishay, M.; Eitam, H.; Agmon, R.; Hadaya, O.; Mesilati-Stahy, R.; Miron, J.; Shabtay, A. Dietary pomegranate peel improves milk quality of lactating ewes: Emphasis on milk fat globule membrane properties and antioxidative traits. Food Chem. 2020, 313, 125822. [Google Scholar] [CrossRef]
- Wang, M.L.; Suo, X.; Gu, J.H.; Zhang, W.W.; Fang, Q.; Wang, X. Influence of grape seed proanthocyanidin extract in broiler chickens: Effect on chicken coccidiosis and antioxidant status. Poult. Sci. 2008, 87, 2273–2280. [Google Scholar] [CrossRef]
- Cornescu, G.M.; Panaite, T.D.; Ropota, M.; Olteanu, M.; Soica, C.; Vlaicu, A.; Saracila, M.; Grosu, H. Usage of food industry by products (flaxseed and grapeseed meal) in fattening pigs’ diet. Anim. Sci. 2018, 61, 70–76. [Google Scholar]
- Macheix, J.J.; Fleuriet, A.; Billot, J. Fruit Phenolics; CRC Press: Boca Raton, FL, USA, 1990; pp. 1–390. [Google Scholar]
- Crozier, A. Classification and biosynthesis of secondary plant products: An overview. In Plants: Diet and Health; Goldberg, G., Ed.; Chapman and Hall: London, UK, 2003; pp. 27–48. [Google Scholar]
- Saito, M.; Hosoyama, H.; Ariga, T.; Kataoka, S.; Yamaji, N. Antiulcer activity of grape seed extract and procyanidins. J. Agric. Food Chem. 1998, 46, 1460–1464. [Google Scholar] [CrossRef]
- Unusan, N. Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry. J. Fuct. Foods 2020, 67, 103861. [Google Scholar] [CrossRef]
- Eriz, G.; Sanhueza, V.; Roeckel, M.; Fernández, K. Inhibition of the angiotensin-converting enzyme by grape seed and skin proanthocyanidins extracted from Vitis vinífera L. cv. País. LWT Food Sci. Technol. 2011, 44, 860–865. [Google Scholar] [CrossRef]
- Habeanu, M.; Lefter, N.A.; Ropota, M.; Chedea, V.S.; Gheorghe, A.; Toma, S.M.; Ciurescu, G.; Dragomir, C. Dried grape pomace influenced fatty acids composition of Longissimus dorsi muscle and plasma polyphenols spectrum in finishing pigs. Indian J. Anim. Sci. 2015, 85, 786–789. [Google Scholar]
- Muñoz-González, I.; Chamorro, S.; Pérez-Jiménez, J.; López-Andrés, P.; Álvarez-Acero, I.; Herrero, A.M.; Nardoia, M.; Brenes, A.; Viveros, A.; Arija, I.; et al. Phenolic metabolites in plasma and thigh meat of chickens supplemented with grape byproducts. J. Agric. Food Chem. 2019, 67, 4463–4471. [Google Scholar] [CrossRef]
- Chamorro, S.; Viveros, A.; Rebolé, A.; Arija, I.; Romero, C.; Alvarez, I.; Rey, A.; Brenes, A. Addition of exogenous enzymes to diets containing grape pomace: Effects on intestinal utilization of catechins and antioxidant status of chickens. Food Res. Int. 2017, 96, 226–234. [Google Scholar] [CrossRef]
- Mazur-Kuśnirek, M.; Antoszkiewicz, Z.; Lipiński, K.; Kaliniewicz, J.; Kotlarczyk, S.; Żukowski, P. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens exposed to high temperature. Arch. Anim. Nutr. 2019, 73, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Kafantaris, I.; Kotsampasi, B.; Christodoulou, V.; Makri, S.; Stagos, D.; Gerasopoulos, K.; Petrotos, K.; Goulas, P.; Kouretas, D. Effects of dietary grape pomace supplementation on performance, carcass traits and meat quality of lambs. In Vivo 2018, 812, 807–812. [Google Scholar] [CrossRef] [Green Version]
- Kara, K.; Kocaoglu-Guclu, B. The effects of different molting methods and supplementation of grape pomace to the diet of molted hens on postmolt performance, egg quality and peroxidation of egg lipids. J. Fac. Vet. Med. Univ. Erciyes 2012, 9, 183–196. [Google Scholar]
- Kara, K.; Kocaoğlu Güçlü, B.; Baytok, E.; Şentürk, M. Effects of grape pomace supplementation to laying hen diet on performance, egg quality, egg lipid peroxidation and some biochemical parameters. J. Appl. Anim. Res. 2016, 44, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Monagas, M.; Gomez-Cordoves, C.; Bartolome, B.; Laureano, O.; Ricardo da Silva, J. Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. cv. Graciano, Tempranillo, and Cabernet Sauvignon. J. Agric. Food Chem. 2003, 51, 6475–6481. [Google Scholar] [CrossRef] [PubMed]
- Francesch, A.; Cartañà, M. The effects of grape seed in the diet of the Penedes chicken, on growth and on the chemical composition and sensory profile of meat. Br. Poult. Sci. 2015, 56, 477–485. [Google Scholar] [CrossRef]
- Kaya, A.; Yıldırım, B.A.; Kaya, H.; Gül, M.; Çelebi, Ş. The effects of diets supplemented with crushed and extracted grape seed on performance, egg quality parameters, yolk peroxidation and serum traits in laying hens. Eur. Poult. Sci. 2014, 78, 59. [Google Scholar] [CrossRef]
- Ke, Z.L.; Pan, Y.; Xu, X.D.; Nie, C.; Zhou, Z.Q. Citrus flavonoids and human cancers. J. Food Nutr. Res. 2015, 3, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Yi, L.; Ma, S.; Ren, D. Phytochemistry and bioactivity of Citrus flavonoids: A focus on antioxidant, anti-inflammatory, anticancer and cardiovascular protection activities. Phytochem. Rev. 2017, 16, 479–511. [Google Scholar] [CrossRef]
- Manthey, J.A.; Grohmann, K. Phenols in citrus peel by-products. Concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses. J. Agric. Food Chem. 2001, 49, 3268–3273. [Google Scholar] [CrossRef]
- Moset, V.; Piquer, O.; Cervera, C.; Fernández, C.J.; Hernández, P.; Cerisuelo, A. Ensiled citrus pulp as a by-product feedstuff for finishing pigs: Nutritional value and effects on intestinal microflora and carcass quality. Span. J. Agric. Res. 2015, 13, 0607. [Google Scholar] [CrossRef]
- Cerisuelo, A.; Castello, L.; Moset, V.; Martínez, M.; Hernández, P.; Piquer, O.; Gomez, E.; Gasa, J.; Lainez, M. The inclusion of ensiled citrus pulp in diets for growing pigs: Effects on voluntary intake, growth performance, gut microbiology and meat quality. Livest. Sci. 2010, 134, 180–182. [Google Scholar] [CrossRef]
- Crosswhite, J.D.; Myers, N.B.; Adesogan, A.T.; Brendemuhl, J.H.; Johnson, D.D.; Carr, C.C. The effect of dietary citrus pulp on the growth, feed efficiency, carcass merit, and lean quality of finishing pigs. Prof. Anim. Sci. 2013, 29, 345–358. [Google Scholar] [CrossRef]
- Strong, C.M.; Brendemuhl, J.H.; Johnson, D.D.; Carr, C.C. The effect of elevated dietary citrus pulp on the growth, feed efficiency, carcass merit, and lean quality of finishing pigs. Prof. Anim. Sci. 2015, 31, 191–200. [Google Scholar] [CrossRef]
- Mourão, J.L.; Pinheiro, V.M.; Prates, J.A.; Bessa, R.J.B.; Ferreira, L.M.A.; Fontes, C.M.G.A.; Ponte, P.I.P. Effect of dietary dehydrated pasture and citrus pulp on the performance and meat quality of broiler chickens. Poult. Sci. 2008, 87, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.; Pastorelli, G.; Cannata, S.; Tavaniello, S.; Maiorano, G.; Corino, C. Effect of long term dietary supplementation with plant extract on carcass characteristics meat quality and oxidative stability in pork. Meat Sci. 2013, 95, 542–548. [Google Scholar] [CrossRef]
- Osada, K.; Hoshina, S.; Nakamura, S.; Sugano, M. Cholesterol oxidation in meat products and its regulation by supplementation of sodium nitrite and apple polyphenol before processing. J. Agric. Food Chem. 2000, 48, 3823–3829. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. Antibacterial and antioxidant effects of five spice and herb extracts as natural preservatives of raw pork. J. Sci. Food Agric. 2009, 89, 1879–1885. [Google Scholar] [CrossRef]
- Peng, Y.; Yuan, J.; Liu, F.; Ye, J. Determination of active components in rosemary by capillary electrophoresis with electro-chemical detection. J. Pharmaceut. Biomed. 2005, 39, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Hölihan, C.M.; Ho, C.T.; Chang, S.S. Elucidation of the chemical structure of a novel antioxidant, rosmaridiphenol, isolated from rosemary. J. Am. Oil Chem. Soc. 1984, 61, 1036–1039. [Google Scholar] [CrossRef]
- Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Jovin, E. Antimicrobial and antioxidant properties of Rosemary and Sage (Rosmarinus officinalis L. and Salvia officinalis L., Laminaceae) essential oils. J. Agric. Food Chem. 2007, 55, 7879–7885. [Google Scholar] [CrossRef]
- Gao, M.; Feng, L.; Jiang, T.; Zhu, J.; Fu, L.; Yuan, D.; Li, J. The use of rosemary extract in combination with nisin to extend the shelf life of pompano (Trachinotus ovatus) fillet during chilled storage. Food Control 2014, 37, 1–8. [Google Scholar] [CrossRef]
- Olmedo, R.H.; Nepote, V.; Grosso, N.R. Preservation of sensory and chemical properties in flavoured cheese prepared with cream cheese base using oregano and rosemary essential oils. LWT Food Sci. Technol. 2013, 53, 409–417. [Google Scholar] [CrossRef]
- Simitzis, P.E.; Symeon, G.K.; Charismiadou, M.A.; Ayoutanti, A.G.; Deligeorgis, S.G. The effects of dietary hesperidin supplementation on broiler performance and chicken meat characteristics. Can. Vet. J. 2011, 91, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Benchaar, C.; Chouinard, P.Y. Short communication: Assessment of the potential of cinnamaldehyde, condensed tannins, and saponins to modify milk fatty acid composition of dairy cows. J. Dairy Sci. 2009, 92, 3392–3396. [Google Scholar] [CrossRef] [PubMed]
- Moate, P.; Williams, S.; Torok, V.; Hannah, M.; Ribaux, B.; Tavendale, M.; Eckard, R.; Jacobs, J.; Auldist, M.; Wales, W. Grape marc reduces methane emissions when fed to dairy cows. J. Dairy Sci. 2014, 97, 1–15. [Google Scholar] [CrossRef]
- Turner, S.A.; Waghorn, G.C.; Woodward, S.L.; Thomson, N.A. Condensed tannins in birdsfoot refoil (Lotus corniculatus) affect the detailed composition of milk from dairy cows. New Zealand Soc. Anim. Prod. 2005, 65, 283–289. [Google Scholar]
- Abarghuei, M.J.; Rouzbehan, Y.; Salem, A.Z.M.; Zamiri, M.J. Nitrogen balance, blood metabolites and milk fatty acid composition of dairy cows fed pomegranate-peel extract. Livest. Sci. 2014, 164, 72–80. [Google Scholar] [CrossRef]
- Ianni, A.; Di Maio, G.; Pittia, P.; Grotta, L.; Perpetuini, G.; Tofalo, R.; Cichelli, A.; Martino, G. Chemical-nutritional quality and oxidative stability of milk and dairy products obtained from Friesian cows fed with a dietary supplementation of dried grape pomace. J. Sci. Food Agric. 2019, 99, 3635–3643. [Google Scholar] [CrossRef]
- Viveros, A.; Chamorro, S.; Pizarro, M.; Arija, I.; Centeno, C.; Brenes, A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult. Sci. 2011, 90, 566–578. [Google Scholar] [CrossRef]
- Bennato, F.; Ianni, A.; Innosa, D.; Martino, C.; Grotta, L.; Pomilio, F.; Verna, M.; Martino, G. Influence of licorice root feeding on chemical-nutritional quality of cow milk and Stracciata cheese, an Italian traditional fresh dairy product. Animals 2019, 9, 1153. [Google Scholar] [CrossRef] [Green Version]
- Bennato, F.; Ianni, A.; Innosa, D.; Grotta, L.; D’nofrio, A.; Martino, G. Chemical-nutritional characteristics and aromatic profile of milk and related dairy products obtained from goats fed with extruded linseed. Asian-Australas J. Anim. Sci. 2020, 33, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Ianni, A.; Martino, G. Dietary grape pomace supplementation in dairy cows: Effect on nutritional quality of milk and its derived dairy products. Foods 2020, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Nudda, A.; Bua, G.; Atzori, A.S.; Cappai, M.G.; Caboni, P.; Fais, G.; Pulina, G. Small amounts of agro-industrial by products in dairy ewes diets affects milk production traits and hematological parameters. Anim. Feed Sci. Technol. 2019, 251, 76–85. [Google Scholar] [CrossRef]
- Abbeddou, S.; Rischkowsky, B.; Richter, E.K.; Hess, H.D.; Kreuzer, M. Modification of milk fatty acid composition by feeding forages and agro-industrial byproducts from dry areas to Awassi sheep. J. Dairy Sci. 2011, 94, 4657–4668. [Google Scholar] [CrossRef]
- Correddu, F.; Lunesu, M.F.; Buffa, G.; Atzori, A.S.; Nudda, A.; Battacone, G.; Pulina, G. Can agro-industrial by-products rich in polyphenols be advantageously used in the feeding and nutrition of dairy small ruminants? Animals 2020, 10, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francisco, A.; Alves, S.P.; Portugal, P.V.; Dentinho, M.T.; Jerónimo, E.; Sengo, S.; Almeida, J.; Bressan, M.C.; Pires, V.M.R.; Alfaia, C.M.; et al. Effects of dietary inclusion of citrus pulp and rockrose soft stems and leaves on lamb meat quality and fatty acid composition. Animal 2017, 12, 872–881. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.X.; Li, Q.; Zhang, R.X.; Liu, W.Z.; Ren, Y.S.; Zhang, C.X.; Zhang, J.X. Effect of dietary grape pomace on growth performance, meat quality and antioxidant activity in ram lambs. Anim. Feed Sci. Technol. 2018, 236, 76–85. [Google Scholar] [CrossRef]
- Chaves, A.V.; Dugan, M.E.R.; Stanford, K.; Gibson, L.L.; Bystrom, J.M.; McAllister, T.A.; Van Herk, F.; Benchaar, C. A dose-response of cinnamaldehyde supplementation on intake, ruminal fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livest. Sci. 2011, 141, 213–220. [Google Scholar] [CrossRef]
- Madsen, H.L.; Bertelsen, G. Spices as antioxidants. Trends Food Sci. Technol. 1995, 6, 271–277. [Google Scholar] [CrossRef]
- Saito, M.; Sakagami, H.; Fujisawa, S. Cytotoxicity and apoptosis induction by butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). Anticancer Res. 2003, 23, 4693–4701. [Google Scholar] [PubMed]
- Rababah, T.M.; Ereifej, K.I.; Mahasneh, A.A.; Rababah, A.A. Effect of plant extracts on physicochemical properties of chicken breast meat cooked using conventional electric oven or microwave. Poult. Sci. 2006, 85, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Hać-Szymanczuk, E.; Cegiełka, A.; Lipinska, E.; Piwowarek, K. Application of rosemary for the prolongation of microbial and oxidative stability in mechanically deboned poultry meat from chickens. Ital. J. Food Sci. 2017, 29, 329–342. [Google Scholar]
- Adeyemi, K.D.; Olorunsanya, O.A.; Abe, O.T. Effect of citrus seed extracts on oxidative stability of raw and cooked chicken meat. Ital. J. Appl. Anim. Sci. 2013, 3, 195–199. [Google Scholar]
- Radha Krishnan, K.; Babuskin, S.; Azhagu Saravana Babu, P.; Sasikala, M.; Sabina, K.; Archana, G.; Sivarajan, M.; Sukumar, M. Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat. Int. J. Food Microbiol. 2014, 171, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Naveena, B.M.; Sen, A.R.; Kingsly, R.P.; Singh, D.B.; Kondaiah, N. Antioxidant activity of pomegranate rind powder extract in cooked chicken patties. Int. J. Food Sci. Technol. 2008, 43, 1807–1812. [Google Scholar] [CrossRef]
- Chan, K.W.; Khong, N.M.H.; Iqbal, S.; Ch’ng, S.E.; Younas, U.; Babji, A.S. Cinnamon bark deodorised aqueous extract as potential natural antioxidant in meat emulsion system: A comparative study with synthetic and natural food antioxidants. J. Food Sci. Technol. 2014, 51, 3269–3276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fratianni, F.; De Martino, L.; Melone, A.; De Feo, V.; Coppola, R.; Nazzaro, F. Preservation of chicken breast meat treated with thyme and balm essential oils. J. Food Sci. 2010, 75, M528–M535. [Google Scholar] [CrossRef] [PubMed]
- Cullere, M.; Tasoniero, G.; Secci, G.; Parisi, G.; Smit, P.; Hoffman, L.C.; Dalle Zotte, A. Effect of the incorporation of a fermented rooibos (Aspalathus linearis) extract in the manufacturing of rabbit meat patties on their physical, chemical, and sensory quality during refrigerated storage. LWT Food Sci. Technol. 2019, 108, 31–38. [Google Scholar] [CrossRef]
- Mancini, S.; Preziuso, G.; Dal Bosco, A.; Roscini, V.; Parisi, G.; Paci, G. Modifications of fatty acids profile, lipid peroxidation and antioxidant capacity in raw and cooked rabbit burgers added with ginger. Meat Sci. 2017, 133, 151–158. [Google Scholar] [CrossRef]
- Mancini, S.; Preziuso, G.; Dal Bosco, A.; Roscini, V.; Szendrő, Z.; Fratini, F.; Paci, G. Effect of turmeric powder (Curcuma longa L.) and ascorbic acid on physical characteristics and oxidative status of fresh and stored rabbit burgers. Meat Sci. 2015, 110, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.A.; Choi, J.H.; Choi, Y.S.; Han, D.J.; Kim, H.Y.; Shim, S.Y.; Chung, H.K.; Kim, C.J. The antioxidative properties of mustard leaf (Brassica juncea) kimchi extracts on refrigerated raw ground pork meat against lipid oxidation. Meat Sci. 2010, 84, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.K.; Chatli, M.K.; Sahoo, J. Antioxidant potential of curry (Murraya koenigii L.) and mint (Mentha spicata) leaf extracts and their effect on colour and oxidative stability of raw ground pork meat during refrigeration storage. Food Chem. 2012, 133, 467–472. [Google Scholar] [CrossRef]
- Nissen, L.R.; Byrne, D.V.; Bertelsen, G.; Skibsted, L.H. The antioxidative activity of plant extracts in cooked pork patties as evaluated by descriptive sensory profiling and chemical analysis. Meat Sci. 2004, 68, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.C.; Brewer, M.S. Effect of natural antioxidants on oxidative stability of cooked, refrigerated beef and pork. J. Food Sci. 2007, 72, S282–S288. [Google Scholar] [CrossRef] [PubMed]
- Moarefian, M.; Barzegar, M.; Sattari, M. Cinnamomum zeylanicum essential oil as a natural antioxidant and antibactrial in cooked sausage. J. Food Biochem. 2011, 37, 62–69. [Google Scholar] [CrossRef]
- Šojić, B.; Tomović, V.; Kocić-Tanackov, S.; Škaljac, S.; Ikonić, P.; Džinić, N.; Živković, N.; Jokanović, M.; Tasić, T.; Kravić, S. Effect of nutmeg (Myristica fragrans) essential oil on the oxidative and microbial stability of cooked sausage during refrigerated storage. Food Control. 2015, 54, 282–286. [Google Scholar] [CrossRef]
- Carpenter, R.; O’Grady, M.N.; O’Callaghan, Y.C.; O’Brien, N.M.; Kerry, J.P. Evaluation of the antioxidant potential of grape seed and bearberry extracts in raw and cooked pork. Meat Sci. 2007, 76, 604–610. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Sineiro, J.; Amado, I.R.; Franco, D. Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat Sci. 2014, 96, 526–534. [Google Scholar] [CrossRef]
- Larrauri, M.; Barrionuevo, M.G.; Riveros, C.; Mestrallet, M.G.; Zunino, M.P.; Zygadlo, J.A.; Grosso, N.R.; Nepote, V. Effect of peanut skin extract on chemical stability and sensory properties of salami during storage. J. Sci. Food Agric. 2013, 93, 1751–1757. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Kong, B.; Liu, Q.; Diao, X.; Xia, X. Antioxidant activity of black currant (Ribes nigrum L.) extract and its inhibitory effect on lipid and protein oxidation of pork patties during chilled storage. Meat Sci. 2012, 91, 533–539. [Google Scholar] [CrossRef]
- Hwang, K.E.; Kim, H.W.; Song, D.H.; Kim, Y.J.; Ham, Y.K.; Choi, Y.S.; Lee, M.A.; Kim, C.J. Effect of Mugwort and Rosemary either singly, or combination with ascorbic acid on shelf stability of pork patties. J. Food Process. Preserv. 2017, 41, e12994. [Google Scholar] [CrossRef]
- Camo, J.; Lorés, A.; Djenane, D.; Antonio Beltrán, J.; Roncalés, P. Display life of beef packaged with an antioxidant active film as a function of the concentration of oregano extract. Meat Sci. 2011, 88, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Yıldız-Turp, G.; Serdaroglu, M. Effects of using plum puree on some properties of low fat beef patties. Meat Sci. 2010, 86, 896–900. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Cho, A.R.; Han, J. Antioxidant and antimicrobial activities of leafy green vegetable extracts and their applications to meat product preservation. Food Control 2013, 29, 112–120. [Google Scholar] [CrossRef]
- Utrera, M.; Morcuende, D.; Ganhão, R.; Estévez, M. Role of phenolics extracting from Rosa canina L. on meat protein oxidation during frozen storage and beef patties processing. Food Bioprocess. Technol. 2015, 8, 854–864. [Google Scholar] [CrossRef]
- Azman, N.A.M.; Gordon, M.H.; Skowyra, M.; Segovia, F.; Almajano, M.P. Use of lyophilised and powdered Gentiana lutea root in fresh beef patties stored under different atmospheres. J. Sci. Food Agric. 2015, 95, 1804–1811. [Google Scholar] [CrossRef]
- Mohamed, H.M.H.; Mansour, H.A.; Farag, M.D. The use of natural herbal extracts for improving the lipid stability and sensory characteristics of irradiated ground beef. Meat Sci. 2011, 87, 33–39. [Google Scholar] [CrossRef]
- Rababah, T.M.; Ereifej, K.I.; Alhamad, M.N.; Al-Qudah, K.M.; Rousan, L.M.; Al-Mahasneh, M.A.; Al-u’datt, M.H.; Yang, W. Effects of green tea and grape seed and TBHQ on physicochemical properties of Baladi goat meats. Int. J. Food Prop. 2011, 14, 1208–1216. [Google Scholar] [CrossRef]
- Banerjee, R.; Verma, A.K.; Das, A.K.; Rajkumar, V.; Shewalkar, A.A.; Narkhede, H.P. Antioxidant effects of broccoli powder extract in goat meat nuggets. Meat Sci. 2012, 91, 179–184. [Google Scholar] [CrossRef]
- Devatkal, S.K.; Narsaiah, K.; Borah, A. Anti-oxidant effect of extracts of kinnow rind, pomegranate rind and seed powders in cooked goat meat patties. Meat Sci. 2010, 85, 155–159. [Google Scholar] [CrossRef]
- Khan, I.A.; Xu, W.; Wang, D.; Yun, A.; Khan, A.; Zongshuai, Z.; Ijaz, M.U.; Yiqun, C.; Hussain, M.; Huang, M. Antioxidant potential of chrysanthemum morifolium flower extract on lipid and protein oxidation in goat meat patties during refrigerated storage. J. Food Sci. 2020, 85, 618–627. [Google Scholar] [CrossRef]
- Nassu, R.T.; Gonçalves, L.A.G.; da Silva, M.A.A.P.; Beserra, F.J. Oxidative stability of fermented goat meat sausage with different levels of natural antioxidant. Meat Sci. 2003, 63, 43–49. [Google Scholar] [CrossRef]
- Devatkal, S.K.; Thorat, P.; Manjunatha, M. Effect of vacuum packaging and pomegranate peel extract on quality aspects of ground goat meat and nuggets. J. Food Sci. Technol. 2014, 51, 2685–2691. [Google Scholar] [CrossRef] [Green Version]
- Aliakbarlu, J.; Mohammadi, S. Effect of sumac and barberry extracts on sheep meat. J. Food Process. Preserv. 2015, 39, 1859–1866. [Google Scholar] [CrossRef]
- Muíño, I.; Díaz, M.T.; Apeleo, E.; Pérez-Santaescolástica, C.; Rivas-Cañedo, A.; Pérez, C.; Cañeque, V.; Lauzurica, S.; de la Fuente, J. Valorisation of an extract from olive oil waste as a natural antioxidant for reducing meat waste resulting from oxidative processes. J. Clean. Prod. 2017, 140, 924–932. [Google Scholar] [CrossRef]
- Das, A.K.; Rajkumar, V.; Nanda, P.K.; Chauhan, P.; Pradhan, S.R.; Biswas, S. Antioxidant efficacy of litchi (Litchi chinensis Sonn.) pericarp extract in sheep meat nuggets. Antioxidants 2016, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Villalobos-Delgado, L.H.; Caro, I.; Blanco, C.; Bodas, R.; Andrés, S.; Giráldez, F.J.; Mateo, J. Effect of the addition of hop (infusion or powder) on the oxidative stability of lean lamb patties during storage. Small Ruminant Res. 2015, 125, 73–80. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Fernandes, R.P.; Pires de Melo, M.; Trindade, M.A.; Lorenzo, J.M. Influence of peanut skin extract on shelf-life of sheep patties. Asian Pac. J. Trop. Biomed. 2016, 6, 586–596. [Google Scholar] [CrossRef] [Green Version]
- Cózar, A.; Linares, M.B.; Garrido, M.D.; Vergara, H. Physicochemical, microbiological quality and oxidative stability in spiced lamb meat burgers. J. Microbiol. Biotechnol. Food Sci. 2013, 3, 217–222. [Google Scholar]
- Baker, I.; Alkass, J.E.; Saleh, H. Reduction of oxidative rancidity and microbial activities of the Karadi lamb patties in freezing storage using natural antioxidant extracts of rosemary and ginger. Int. J. Agric. Food Res. 2013, 2, 31–42. [Google Scholar]
- El-Din, H.M.F.; Ghita, E.I.; Badran, S.M.A.; Gad, A.S.; El-Said, M.M. Manufacture of low fat UF-soft cheese supplemented with rosemary extract (as natural antioxidant). J. Am. Sci. 2010, 6, 570–579. [Google Scholar]
- El-Said, M.M.; Haggag, H.F.; El-Din, H.M.F.; Gad, A.S.; Farahat, A.M. Antioxidant activities and physical properties of stirred yoghurt fortified with pomegranate peel extracts. Ann. Agric. Sci. 2014, 59, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Shori, A.B.; Baba, A.S. Antioxidant activity and inhibition of key enzymes linked to type-2 diabetes and hypertension by Azadirachta indica-yogurt. J. Saudi Chem. Soc. 2013, 7, 295–301. [Google Scholar] [CrossRef]
- Rashidinejad, A.; Birch, E.J.; David, W. Everett. Antioxidant activity and recovery of green tea catechins in full-fat cheese following gastrointestinal simulated digestion. J. Food Compos. Anal. 2016, 48, 13–24. [Google Scholar] [CrossRef]
- Srivastava, P.; Prasad, S.G.M.; Ali, M.N.; Prasad, M. Analysis of antioxidant activity of herbal yoghurt prepared from different milk. Pharma Innov. J. 2015, 4, 18–20. [Google Scholar]
- Giroux, H.J.; De Grandpré, G.; Fustier, P.; Champagne, C.P.; St-Gelais, D.; Lacroix, M.; Britten, M. Production and characterization of Cheddar-type cheese enriched with green tea extract. Dairy Sci. Technol. 2013, 93, 241–254. [Google Scholar] [CrossRef]
- Bertolino, M.; Belviso, S.; Dal Bello, B.; Ghirardello, D.; Giordano, M.; Rolle, L.; Gerbi, V.; Zeppa, G. Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties of yogurt. LWT Food Sci. Technol. 2015, 63, 1145–1154. [Google Scholar] [CrossRef] [Green Version]
- Muniandy, P.; Shori, A.B.; Baba, A.S. Influence of green, white and black tea addition on the antioxidant activity of probiotic yogurt during refrigerated storage. Food Pack. Shelf Life 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Shori, A.B. Antioxidant activity and viability of lactic acid bacteria in soybean-yogurt made from cow and camel milk. J. Taibah Univ. Sci. 2013, 7, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Caleja, C.; Barros, L.; Antonio, A.L.; Carocho, M.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Fortification of yogurts with different antioxidant preservatives: A comparative study between natural and synthetic additives. Food Chem. 2016, 210, 262–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.; Shende, S.; Arora, S.; Singh, A.K. An assessment of the antioxidant potential of coriander extracts in ghee when stored at high temperature and during deep fat frying. Int. J. Dairy Technol. 2013, 66, 207–213. [Google Scholar] [CrossRef]
- Singh, S.; Immanuel, G. Extraction of antioxidants from fruit peels and its utilization in paneer. J. Food Process. Technol. 2014, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Lee, M.; Kim, K.T.; Park, E.; Paik, H.D. Antioxidant and antigenotoxic effect of dairy products supplemented with red ginseng extract. J. Dairy Sci. 2018, 101, 8702–8710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selani, M.M.; Contreras-Castillo, C.J.; Shirahigue, L.D.; Gallo, C.R.; Plata-Oviedo, M.; Montes-Villanueva, N.D. Wine industry residues extracts as natural antioxidants in raw and cooked chicken meat during frozen storage. Meat Sci. 2011, 88, 397–403. [Google Scholar] [CrossRef]
- Brannan, R.G. Effect of grape seed extract on descriptive sensory analysis of ground chicken during refrigerated storage. Meat Sci. 2009, 81, 589–595. [Google Scholar] [CrossRef]
- Garrido, M.D.; Auqui, M.; Martí, N.; Linares, M.B. Effect of two different red grape pomace extracts obtained under different extraction systems on meat quality of pork burgers. LWT Food Sci. Technol. 2011, 44, 2238–2243. [Google Scholar] [CrossRef]
- Gómez, I.; Beriain, M.J.; Mendizabal, J.A.; Realini, C.; Purroy, A. Shelf life of ground beef enriched with omega-3 and/or conjugated linoleic acid and use of grape seed extract to inhibit lipid oxidation. Food Sci. Nutr. 2016, 4, 67–79. [Google Scholar] [CrossRef]
- Bañón, S.; Díaz, P.; Rodríguez, M.; Garrido, M.D.; Price, A. Ascorbate, green tea and grape seed extracts increase the shelf life of low sulphite beef patties. Meat Sci. 2007, 77, 626–633. [Google Scholar] [CrossRef]
- Ahn, J.; Grün, I.U.; Mustapha, A. Antimicrobial and antioxidant activities of natural extracts in vitro and in ground beef. J. Food Protect. 2004, 67, 148–155. [Google Scholar] [CrossRef]
- Ahn, J.; Grün, I.U.; Fernando, L.N. Antioxidant properties of natural plant extracts containing polyphenolic compounds in cooked ground beef. J. Food Sci. 2002, 67, 1364–1369. [Google Scholar] [CrossRef]
- Chipault, J.H.; Mizuno, G.R.; Hawkins, J.M.; Lundberg, W.O. The antioxidant properties of natural spices. J. Food Sci. 1956, 17, 46–55. [Google Scholar] [CrossRef]
- Trindade, R.A.; Mancini-Filho, J.; Villavicencio, A.L.C.H. Natural antioxidants protecting irradiated beef burgers from lipid oxidation. LWT Food Sci. Technol. 2010, 43, 98–104. [Google Scholar] [CrossRef]
- Sebranek, J.G.; Sewalt, V.J.H.; Robbins, K.L.; Houser, T.A. Comparison of a natural rosemary extract and BHA/BHT for relative antioxidant effectiveness in pork sausage. Meat Sci. 2005, 69, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Lara, M.S.; Gutierrez, J.I.; Timón, M.; Andrés, A.I. Evaluation of two natural extracts (Rosmarinus officinalis L. and Melissa officinalis L.) as antioxidants in cooked pork patties packed in MAP. Meat Sci. 2011, 88, 481–488. [Google Scholar] [CrossRef]
- Al-Hijazeen, M.; Al-Rawashdeh, M. Preservative effects of rosemary extract (Rosmarinus officinalis L.) on quality and storage stability of chicken meat patties. Food Sci. Technol. 2019, 39, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Estévez, M.; Ventanas, S.; Cava, R. Protein oxidation in frankfurters with increasing levels of added rosemary essential oil: Effect on color and texture deterioration. J. Food Sci. 2005, 70, c427–c432. [Google Scholar] [CrossRef]
- Jongberg, S.; Torngren, M.A.; Gunvig, A.; Skibsted, L.H.; Lund, M.N. Effect of green tea or rosemary extract on protein oxidation in Bologna type sausages prepared from oxidatively stressed pork. Meat Sci. 2013, 93, 538–546. [Google Scholar] [CrossRef]
- Cutrim, C.S.; Cortez, M.A.S. A review on polyphenols: Classification, beneficial effects and their application in dairy products. Int. J. Dairy Technol. 2018, 71, 564–578. [Google Scholar] [CrossRef]
- Nazzaro, F.; Orlando, P.; Fratianni, F.; Coppola, R. Microencapsulation in food science and biotechnology. Curr. Opin. Biotechnol. 2012, 23, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Petrotos, K.B.; Karkanta, F.K.; Gkoutsidis, P.E.; Giavasis, I.; Papatheodorou, K.N.; Ntontos, A.C. Production of novel bioactive yogurt enriched with olive fruit polyphenols. World Acad. Sci. Eng. Technol. 2012, 64, 867–872. [Google Scholar]
- Gad, A.; Sayd, A. Antioxidant properties of Rosemary and its potential uses as natural antioxidant in dairy products-a review. Food Nutr. Sci. 2015, 6, 179–193. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.; Caleja, C.; Barros, L.; Santos-Buelga, C.; Barreiro, M.F.; Ferreira, I.C.F.R. Rosemary extracts in functional foods: Extraction, chemical characterization and incorporation of free and microencapsulated forms in cottage cheese. Food Funct. 2016, 7, 2185–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, N.K.; Jeewanthi, R.K.C.; Park, E.H.; Paik, H.D. Physicochemical and antioxidant properties of Cheddar-type cheese fortified with Inula britannica extract. J. Dairy Sci. 2016, 99, 83–88. [Google Scholar] [CrossRef]
- Carocho, M.; Barreira, J.C.M.; Antonio, A.L.; Bento, A.; Morales, P.; Ferreira, I.C.F.R. The incorporation of plant materials in “Serra da Estrela” cheese improves antioxidant activity without changing the fatty acid profile and visual appearance. Eur. J. Lipid Sci. Technol. 2015, 117, 1607–1614. [Google Scholar] [CrossRef] [Green Version]
Group | Class | Compounds | Plant Sources |
---|---|---|---|
Flavonoid-polyphenols | Flavonols | Quercetin, kaempferol, isorhamnetin | Vitis vinifera grape berry skins, onions, leeks, broccoli, black tea, lettuce, apples, green tea, wine, dill weed |
Flavones | Apigenin, luteolin, diosmin | Celery, red pepper, lemon, onion, oregano, rosemary, parsley, trollflowers | |
Flavanols | Catechin, proanthocyanidins, epicatechin, epigallocatechin | Tea, grapes, red wine, apples, blackberries, apricots, dark chocolate | |
Flavanones | Naringenins, hesperetin, eriodictyol | Grapefruit, oranges, tangerines, peppermint, lemons, limes, defatted olive | |
Anthocyanins | Cyanidin, perlargonidin, delphinidin | Blackberries, cherries, strawberries, raspberries, chokeberries, tomatoes, grapes, green coffee beans, red cabbage, sweet potatoes | |
Isoflavones | Genistein, daidzein, equol | Peas, soybean, lentils, red kidney beans | |
Non-flavonoid-polyphenols | Phenolic acids | Caffeic acid, chlorogenic acid, ferulic acid | Coffee, olive, cabbage, apples, cherries, tomatoes, pears, green coffee beans, dried ginger |
Lignans | Pinoresinol, podophyllotoxin, stegananic, matairesinol | Linseeds, sesame seeds, chives, nuts, roots, leaves, vegetables, spices, cereals | |
Stilbenes | Resveratrol, pterostilbene | Almond, chocolate, seeds, and skins of grapes, red wine, peanuts, blueberries, raspberries | |
Tannins | Tannic acid, Chinese tannin, Turkish tannin, acer tannin, ellagitannin, chebulagic acid | Bean seed coats, persimmons, green coffee beans, mango kernels, pomegranates, strawberries, walnuts, almonds |
Animal Species | Animal Product | Source | Dose Diet | Concentration Product | Storage Days | Effect | Reference |
---|---|---|---|---|---|---|---|
Chicken | Raw and cooked breast meat patties | Grape (Vitis vinifera) pomace concentrate | 60 g/kg | - | 20 | Inhibitory effect on lipid oxidation; increase in radical scavenging capacity | [83] |
Chicken | Breast and thigh meats | Grape (V. vinifera) pomace | 30 g/kg | - | 7 | Inhibitory effect on lipid oxidation (decreased MDA values) | [84] |
Chicken | Breast meat | Grape (V. vinifera) pomace concentrate | 60 g/kg | - | 7 | Inhibitory effect on lipid oxidation (decreased MDA values); improvement of antioxidant activity (in diet, ileal content, and excreta) | [85] |
Chicken | Breast meat | Grape (V. vinifera) pomace | 10 g/kg | - | 10 | Inhibitory effect on lipid oxidation; decrease of redness and yellowness values | [86] |
Chicken | Thigh meat | Grape (V. vinifera) pomace | 100 g/kg | - | 4 | Inhibitory effect on lipid oxidation; increase in the meat PUFA concentration | [87] |
Chicken | Breast and thigh meats | Dry rosemary (Rosmarinus officinalis L.) leaves (R) and rosemary essential oil (RO) | 11.5 g/kg (R) 0.2 g/kg (RO) | - | 5 | Inhibitory effect on lipid oxidation (decreased MDA values) decrease in pH value, negative effect on the sensory analysis (taste, odour, and overall acceptability) | [88] |
Chicken | Breast meat | Rosemary (R. officinalis L.) powder + vitamin E | 0.5 g/kg | - | 14 | Increase in oxidative stability | [89] |
Chicken | Minced thigh meat | Pomegranate (Punica granatum L.) pomace extract (PPE) and pomegranate pomace (PP) | 0.3 g/kg (PPE) 3 g/kg (PP) | 45 mg GAE/g meat (TPC; PPE), 42 mg GAE/g meat (TPC; PP) | 11 | Inhibitory effect on lipid oxidation (decreased TBARS values); increase in radical scavenging capacity; decrease of n-6/n-3 ratio | [90] |
Chicken | Breast muscle, fat, liver | Tea polyphenols | 15 g/kg | - | - | Inhibitory effect on oxidative stress induced by corticosterone; reduction of abdominal fat content, plasma triglyceride concentration and liver weight | [91] |
Laying hens | Eggs | Grape (V. vinifera) pomace flour | 30 g/kg | - | 30 | Increase of laid eggs percentage; decrease of yolk and albumen pH; reduction of egg lipid oxidation; decrease in contents of caproic, butyric and margaric fatty acids | [92] |
Laying hens | Eggs | Dried orange pulp (Citrus sinensis) | 90 g/kg | - | 28 (room temperature) 90 (4 °C) | Improvement of egg yolk oxidative stability; reduction in feed intake; negative influence on egg quality (lighter eggs, lower eggshell percentage, thickness, and strength, less orange yolk colour) | [93] |
Pig | Longissimus muscle muscle | Fermented grape (V. vinifera) pomace product | 30 g/kg | - | - | Decrease of SFA3 (palmitic, stearic, and arachidic acids) and increase of PUFA concentrations; inhibitory effect on lipid oxidation (decreased TBARS values); higher redness and yellowness values | [94] |
Pig | Raw and cooked Longissimus dorsi steaks | Grape (V. vinifera) seed extract (GSE) and bearberry (BB) | 0.7 g/kg (GSE) 0.7 g/kg (BB) | - | 16 (raw meat) 28 (cooked meat) | No effect on oxidative stability and quality of raw and cooked meat | [95] |
Pig | Loin meat mixture | Green tea (Camellia sinensis) by-products | 20 g/kg | - | - | Inhibitory effect on lipid oxidation (decreased TBARS values) | [96] |
Pig | Longissimus dorsi muscle, lard | Rosemary (R. officinalis L.) extract | 1 g/kg | - | 5 | Increase in PUFA content; increase of oxidative stability (decreased TBARS values) | [97] |
Pig | Longissimus lumborum muscle | Rosemary (R. officinalis L.) | 1 g/kg | - | 5 | No influence on meat lipid content; improvement in meat fatty acid profile (increase in the content of PUFA of the n-3 and n-6 series); no influence on shelf-life duration | [98] |
Pig | Longissimus lumborum muscle, “capocollo” (neck pork meat) | Rosemary (R. officinalis L.) aqueous leaf extract (R), oregano (Origanum vulgare) aqueous leaf extract (O) | 2 g/kg (R) 2 g/kg (O) 1 + 1 g/kg (OR) | 2.8 GAE/g dry meat (TPC; O) 3.2 GAE/g dry meat (TPC; R) 4.1 GAE/g dry meat (TPC; OR) | - | Increase in antioxidant activity (higher GSH-Px values (O diet), greater appreciation of meat obtained from animals fed a diet supplemented with rosemary | [99] |
Pig | Loin, bacon, chops patties | Cranberry (Vaccinium macrocarpon) juice powder | 150 g/kg | - | - | No influence in oxidative stability; decrease of redness and colour intensity values | [100] |
Pig | Longissimus dorsi | Tea polyphenols (TP), Lucta sweetener, flax oil (FO) | 0.4 g/kg diet (TP) | - | - | Increase of T-SOD and GSH-Px (prevention of possible oxidations in the muscle) | [101] |
Rabbit | Longissimus dorsi, hind legs | Rosemary (R. officinalis L.) aqueous extract (R), oregano (O. vulgare) aqueous extract (O) | 2 g/kg (R) 2 g/kg (O) 1 + 1 g/kg (RO) | - | - | Improvement of oxidative stability (lower TBARS content, lower oxidation degree); improvement of protein content | [102] |
Rabbit | Meat from Longissimus lumborum muscle | Olive (Olea europaea L.) pomaces | 50 g/kg | - | - | Inhibitory effect of lipid oxidation; increase in MUFA content and decrease in PUFA content; no influence on meat physical traits | [103] |
Rabbit | Meat from Longissimus dorsi muscle | Spirulina (Arthrospira platensis; S), thyme (Thymus vulgaris; T) | 50 g/kg (S) 30 g/kg (T) | - | 9 | Reduction of lipid oxidation (T); improvement of colour parameters (T); improvement in α-tocopherol and n-3 fatty acids content (T); reduction of drip loss (T) | [104] |
Rabbit | Meat from Longissimus thoracis and lumborum muscle | Bilberry (Vaccinium myrtillus L.) pomace | 150 g/kg | - | 60 | No influence on carcass characteristics, proximate composition, lipid oxidation and consumer acceptance of rabbit meat; improvement of fatty acids profile (increase of total n-3 PUFA) | [105] |
Dairy cattle | Milk, caciotta cheese | Dried grape (V. vinifera) pomace | 100 g/kg DM | - | 28 (caciotta cheese) | No influence on milk composition, increase in the concentration of linoleic acid and trans-vaccenic acid (milk and caciotta cheese); increase in rumenic acid (caciotta cheese); darker colouring, harder consistency, less sweet taste (caciotta cheese) | [106] |
Dairy cattle | Milk | Grape (V. vinifera) residue silage | 100 g/kg DM | 12.3 mg GAE/L (TPC) 1.3 mg QE/L (flavonoids) | - | No influence on milk yield, fat, lactose, crude protein; decrease of urea nitrogen and total solids; increase in PUFA concentration and PUFA/SFA ratio; no influence on the concentration of total polyphenols and flavonoids | [107] |
Dairy cattle | Milk | Pelleted citrus pulp (PCP), soybean oil | 30 g/kg of soybean oil and 90 g/kg PCP (SOCP-9); 30 g/kg of soybean oil and 180 g/kg PCP (SOCP-18) | 27.2 μg GAE/mL (SOCP-9; TPC) 31.1 μg GAE/mL (SOCP-18; TPC) 0.8 μg QE/mL (SOCP-9; flavonoids); 0.8 μg QE/mL (SOCP-18; flavonoids) | - | Increase in polyphenols and flavonoids content and total ferric reducing antioxidant power; decrease in SFA content; increase in MUFA content | [108] |
Dairy cattle | Milk | Ensiled Moringa oleifera | 271 g/kg DM | - | - | Improvement of milk yield, increase in milk antioxidant capacity, decrease in somatic cell count content | [109] |
Dairy cattle | Milk | Propolis (Baccharis dracunculifolia) based product (PBP), flaxseed oil | 1.2 g/kg DM | 13.35 mg GAE/L (TPC; PBP) | - | Increase of fatty acids trans9–18:1, cis9, trans11–18:2 concentrations, and total CLA content; increase of total polyphenols concentration; increase of reducing antioxidant power | [110] |
Beef cattle | Meat from Longissimus thoracis (LT) and semitendinosus (ST) steaks | Plant extracts rich in polyphenols (PERP) + vitamin E | 7 g/kg | - | 12 | Protective effect against lipid oxidation (lower MDA values; after 12 days aging under-vacuum) | [80] |
Beef cattle | M. longissimus dorsi (LD) steaks, cooked LD slices | Tea catechins (TC), rosemary (R. officinalis L.) extracts (RE) | 1 g/animal/day (TC) 1 g/animal/day (RE) | - | 8 | No significant influence on lipid stability and surface redness (LD steaks); no influence on sensory properties and lipid stability (cooked LD slices) | [111] |
Beef cattle | Meat from M. Longissimus lumborum | Dried citrus pulp (DCP), dried grape (V. vinifera) pomace (DGP) | 150 g/kg DM | 32.5 g GAE/kg dry matter (TPC; DCP) 89.6 g GAE/kg DM (TPC; DGP) 12.7 g GAE/kg DM (total tannins; DCP) 50.7 g GAE/kg DM (total tannins; DGP) | 9 | Improvement of antioxidant activity (DGP > DCP); inhibitory effect on lipid oxidation (DGP < DCP); higher value of lightness in beef; improvement of beef shelf life | [112] |
Beef cattle | Longissimus dorsi steaks | Olive cake | 5 g/kg DM | - | 9 | Inhibitory effect of lipid oxidation; delay of colour deterioration and off-odour during storage; reduction of peroxide value; no influence on microbial counts | [113] |
Beef cattle | Fresh and cooked beef from Longissimus thoracis muscle | Dried citrus pulp (DCP) | 800 g/kg DM | 0.92 mg GAE/g muscle (TPC) | 14 (fresh beef) 6 (cooked beef) | No influence on TBARS concentration (fresh beef); reduction of lipid oxidation (40% DCP in cooked beef); no negative influence on texture characteristics and consumer acceptability | [114] |
Goat | Milk, cheese | Distilled thyme (T. zygis subsp. gracilis) leaves (DTL), not-distilled thyme leaves (TL) | 200 g/kg DM (DTL) 75 g/kg DM (TL) | 400 mg GAE/kg of cheese (TPC; DTL) 450 mg GAE/kg of cheese (TPC; TL) | 45 (cheese) | Improvement of milk quality (increase in PUFA content); inhibitory effect on lipid oxidation (TBARS values decreased; TL); improvement of sensory characteristics (DTL: best rind and taste) | [115] |
Goat | Milk | Acacia farnesiana pods | 300 g/kg DM | 305.5 mg GAE/L of milk (TPC) | - | Improvement of antioxidant activity (scavenging capacity increased, higher Trolox equivalent value, higher ferric reducing antioxidant power value) | [116] |
Goat | Meat from M. longissimus dorsi (LD), gluteus medius (GM) and semimemberanosus (SM) muscles | Tea catechins (TC) from green tea (C. sinensis) leaves | 4 g/kg | - | - | Improvement of antioxidant activity (TBARS values decreased), improvement of meat colour stability; decrease of drip loss percentage (GM); decrease of intramuscular fat (SM) | [117] |
Goat | Meat from M. longissimus thoracis and lumborum muscle | M. oleifera leaves | 200 g/animal/day | 1.62 ± 0.27 mg GAE /g of meat (T) | - | Improvement of antioxidant activity; increase in scavenging potential; increase of percentage of inhibition against lipid oxidation; increase in SOD activity | [118] |
Goat | Meat from Muscularis longissimus thoracis and lumborum muscle | Olive mill wastewaters (OMWW) powder extract | 0.0032 g/day | - | 7 | Increase in MUFA concentration, decrease in SFA concentration; inhibitory effect of lipid oxidation (reduction of MDA content); no significant influence on meat proximate composition; texture and colourimetric properties | [119] |
Sheep | Pecorino cheese | Rosemary (R. officinalis L.) leaves | 2.5% | 2.14 mg GAE/g of cheese (TPC after 3 weeks from the start of the trial) 2.62 mg GAE/g of cheese (TPC after 5 weeks from the start of the trial) 3.60 mg GAE/g of cheese (TPC after 7 weeks from the start of the trial) | - | Increase in the total polyphenol concentration in milk and Pecorino cheese; increase in antioxidant activity of cheese; inhibitory effect on lipid oxidation; no influence on cheese composition; modification of overall cheese flavour (after 7 weeks from the start of the trial) | [120] |
Sheep | Milk, Pecorino cheese | Fresh lemon (Citrus limon) pulp | 2000 g/day | 10.4 g GAE/kg DM (TPC) | - | Influence on milk fatty acid composition (improvement of vaccenic and rumenic acids); increase in milk protein and casein percentages; increase in antioxidant activity of cheese and total content of phenolic compounds | [121] |
Sheep | Raw and cooked minced lamb meat | Rosemary (R. officinalis L.) extract | 0.6 g/kg | - | 21 | Extension of raw meat shelf life (lipid oxidation and rancidity delayed), no influence on the shelf life duration of cooked meat | [122] |
Sheep | Meat fillets from Longissimus dorsi muscle | Rosemary (R. officinalis L.) extract | 0.006 g/kg | - | 21 | Inhibitory effect on meat lipid oxidation (MDA levels reduced) and rancidity, prevention of sensory deterioration | [123] |
Sheep | Milk | Concentrated Pomegranate (P. granatum L.) peel extract | 451 g/DM/kg | - | - | Increase in milk antioxidant capacity, improvement of milk yield and composition (higher phospholipid, fat, protein and lactose content) | [124] |
Product | Source | Dose | Storage Conditions | Concentration Product | Effect | Reference |
---|---|---|---|---|---|---|
Cooked chicken breast meat | Grape (Vitis vinifera) seed, green tea (Camellia sinensis) extracts | 2.5 g/kg | 4 °C for 12 days | - | Inhibitory effect on lipid oxidation; improved texture of meat; no influence on colour parameters and pH | [176] |
Mechanically deboned poultry meat | Rosemary (Rosmarinus officinalis L.) extracts (dried extract (D), aqueous extract (WE), 40% ethanol extract (E40), 70% ethanol extract (E70), essential oil (EOS) | 20 g/kg (D, WE, E40, E70) 2 g/kg (EOS) | Vacuum plastic bags at −18 °C for 4 months | - | Inhibitory effect on lipid oxidation and microbial growth (E70, EOS the most effective treatments) | [177] |
Raw and cooked minced broiler meat | Lemon (Citrus limonum), orange (C. sinensis) and grapefruit (C. paradise) seed extracts | 15 g/kg | Foil paper at 4 °C for 12 days | - | Inhibitory effect on lipid oxidation (in both raw and cooked meat samples); antioxidant effect more pronounced in raw meat samples | [178] |
Raw chicken meat | Cloves (Syzygium aromaticum, SA), Chinese cinnamon (Cinnamomum cassia, CC), oregano, (Origanum vulgare; OV), and black mustard (Brassica nigra, BN) | 10 g/kg | Meat aerobically packed in low-density polyethylene bags at 4 °C for 15 days | - | Inhibitory effect on lipid oxidation (combination of SA, CC and OV: lowest TBARS values and higher lightness, redness and yellowness values); reduction of microbial growth | [179] |
Cooked chicken patties | Pomegranate (Punica granatum) rind powder (RP) | 0.2 g equivalent RP phenolics/kg meat | Patties packaged in LDPE pouches at 4 °C for 15 days | 441.00 ± 41.78 µg TAE/g (TPC) | Inhibitory effect on lipid oxidation (TBARS values remained low up to 15 days); reduction of lightness value (chicken patties became slightly darker) and yellowness value; no influence on sensory parameters | [180] |
Chicken meatballs | Cinnamon (Cinnamomum verum) deodorized aqueous extract | 0.2 g/kg | Meatballs covered with an oxygen semi-permeable PVC film and stored in dark at 8 ± 1 °C for 12 days | - | Inhibitory effect on lipid oxidation (decreased TBARS and POV values); no negative influence on sensory acceptability; decrease of lightness value; no influence on redness and yellowness values | [181] |
Chicken breast meat | Thyme (Thymus vulgaris), lemon balm (Melissa officinalis) essential oils | 5 g/kg | Meat packaged in sterile conical tubes under aseptic conditions at 4 °C for 21 days | - | Reduction of DPPH radical formation; reduction of lipid peroxidation and the deterioration of sarcoplasmic proteins; extension of the shelf life; reduction of total microbial counts | [182] |
Rabbit meat patties | Fermented rooibos (Aspalathus linearis) extract | 20 g/kg | Patties wrapped with PVC and stored at 4 ± 1 °C for 7 days | - | Inhibitory effect on lipid oxidation; protective action against protein degradation; reduced SFA content, no influence on PUFA content; reduced lightness value, increased redness and yellowness values; undesired sensory characteristics (>0.5% level inclusion) | [183] |
Raw and cooked rabbit burgers | Ginger (Zingiber officinale Roscoe) powder | 20 g/kg | Burgers overwrapped with polyethylene film and stored at 4 ± 0.5 °C for 7 days | - | Inhibitory effect on lipid oxidation; improvement of antioxidant capacity; increased total PUFA percentage | [184] |
Fresh and stored rabbit burgers | Turmeric (Curcuma longa L.) powder | 35 g/kg | Burgers overwrapped with polyethylene film and stored at 4 ± 0.5 °C for 7 days | - | Improvement of antioxidant capacity; no influence on lipid oxidation; reduced yellowness value; increased PUFA content | [185] |
Raw ground pork meat | Mustard (Brassica juncea) leaf kimchi extracts | 2 g /kg | Anaerobic polyethylene/Nylon film bags at 4 ± 1 °C for 14 days | - | Inhibitory effect on lipid oxidation; extension of shelf-life; reduction of total bacterial count | [186] |
Raw ground pork meat | Curry (Murraya koenigii L.), mint leaves (Mentha spicata) | 0.25 g/kg | LDPE at 4 ± 1 °C for 12 days | - | Inhibitory effect on lipid oxidation; reduced pH value at days 6, 9 and 12 of storage; reduced redness and yellowness values; influence on colour stability | [187] |
Pork patties | Rosemary (R. officinalis L.) extract (RE), tea (TE), grape (V. vinifera) skin extract (GSE) and coffee (CE) extracts | 0.2 g/kg (RE, TE, GSE) 0.05 g/kg (CE) | Patties vacuum packaged at 4.5 °C for 10 days | - | Inhibitory effect on lipid oxidation (antioxidative efficiency: RE > GSE > TE > CE > control); reduced hexanal values | [188] |
Cooked pork patties | Grape (V. vinifera) seed (GS), water-soluble oregano (O. vulgare) extract (WS), oleoresin rosemary (R. officinalis L.) (OR) extracts | 0.2 g/kg | Patties wrapped in PVC at 4 °C for 8 days | - | Inhibitory effect on lipid oxidation (GS, WS); no influence on TBARS values (OR); no influence on colour and pH | [189] |
Cooked sausages | Cinnamomum zeylanicum essential oil | 0.04 g/kg | 4 °C for 30 days | - | Inhibitory effect on lipid oxidation (decreased TBARS and POV values); no influence on sensory characteristics | [190] |
Cooked sausages | Nutmeg (Myristica fragrans) essential oil | 0.020 g/kg | 4 °C for 60 days | - | Inhibitory effect on lipid oxidation; reduction of the total number of aerobic mesophilic bacteria; improvement of aroma | [191] |
Raw and cooked pork patties from Longissimus dorsi muscle | Grape seed (V. vinifera) extract (GSE), bearberry (BB) | 1 g/kg | MAP (raw pork; 75% O2:25% CO2) at 4 °C for 12 days MAP (cooked pork; 75% O2:25% CO2) at 4 °C for 4 days | - | Inhibitory effect on lipid oxidation on day 9 and 12 of storage (GSE, BB; raw pork); inhibitory effect on TBARS formation after 2 and 4 days of storage (cooked pork); increase in redness value of cooked pork (GSE); no influence on sensory parameters | [192] |
Raw pork patties | Grape (V. vinifera and V. labrusca hybrid) seed extract (GRA), green tea (C. sinensis) extract (TEA), chestnut (Castanea sativa) extract (CHE), seaweed (Ulva lactuca and U. rigida) extract (SEA) | 1 g/kg | Patties packed in polystyrene trays sealed with polyethylene film (80% O2–20% CO2) at 2 °C for 20 days | - | Inhibitory effect on lipid and protein oxidation (antioxidative efficiency: GRA > TEA > SEA > CHE); decreased total viable count (TEA and GRA: lower Pseudomonas counts); TEA and GRA: lower psychotropic aerobic bacterial counts | [193] |
Salami | Peanut (Arachis hypogaea L.) skin extract | 1 g /kg product | Salami stored at 65% relative humidity and 15 °C for 42 days | - | Inhibitory effect on lipid oxidation; preservative effect of sensory properties | [194] |
Pork patties | Black currant (Ribes nigrum L.) extract (BCE) | 20 g/kg | Patties overwrapped in PVC at 4 °C for 9 days | - | Inhibitory effect on lipid oxidation (efficacy of BCE comparable with BHA); inhibition of protein oxidation (decreased carbonyl formation and increased sulfhydryl groups content); improved redness value (patties with BCE displayed purple colour) | [195] |
Pork patties | Mugwort (Artemisia princeps Pamp.), rosemary (R. officinalis L.) | 0.5 g /kg | Patties anaerobically packaged in PE/nylon film bags at 4 °C for 15 days | - | Inhibitory effect on lipid oxidation (lower primary and secondary products of lipid oxidation); decreased chroma values | [196] |
Cooked beef patties | Grape (V. vinifera) seed (GS), water-soluble oregano (O. vulgare) extract (WS), oleoresin rosemary (R. officinalis L.) (OR) extracts | 0.2 g /kg | Patties wrapped in PVC at 4 °C for 8 days | - | Inhibitory effect on lipid oxidation (GS, WS); no influence on TBARS values (OR); no influence on pH; reduced visual green discolouration | [189] |
Fresh beef steaks | Oregano (O. vulgare L.) extract (OE) | 40 g/kg (active film containing OE) 0.4 mL/kg meat (direct addition of OE) | Steaks packaged with active film at 1 °C for 28 days | - | Inhibitory effect on lipid oxidation; increase of beef display life from 14 to 23 days; negative influence on odour (unacceptable oregano smell) | [197] |
Raw and cooked low-fat beef patties | Plum (Prunus domestica) puree | 150 g/kg | Patties wrapped with polyethylene film at −18 °C for 45 days | - | Inhibitory effect on lipid oxidation; decreased lightness value, increased redness value, decreased yellowness value (raw samples); no influence on lightness value, lower redness value (cooked samples); increased juiciness and texture scores | [198] |
Raw beef patties | Chamnamul (Pimpinella brachycarpa), fatsia (Aralia elata) extracts | 5 g/kg | Patties placed in Whirl-Pak bags at 4 °C for 12 days | - | Inhibitory effect on lipid oxidation; decreased redness value; reduction of final microbial load | [199] |
Raw and cooked beef patties | Dog rose (Rosa canina L.) extract | 50 g/kg | Patties stored in individual oxygen-permeable polyethylene bags at −18 °C for 20 weeks | - | Inhibitory effect on lipid and protein oxidation; higher moisture losses; increased hardness in patties subjected to frozen storage | [200] |
Fresh beef patties | Lyophilized and powdered Gentiana lutea root | 2 g/kg | Patties packaged in MAP (20 O2:80 CO2) at 4 ± 2 °C for 10 days; Patties packaged in MAP (80 O2:20 CO2) at 4 °C ± 2 °C for 10 days | - | Inhibitory effect on lipid oxidation; no influence on pH and microbial counts; no influence on sensory attributes (appearance and taste) | [201] |
Irradiated ground beef | Marjoram (O. majorana), rosemary (R. officinalis L.), sage (Salvia officinalis) | 0.4 g/kg | 5 °C | - | Inhibitory effect on lipid oxidation; improved colour; decreased irradiation odour (increased overall acceptability) | [202] |
Raw and cooked ground fresh goat meat | Green tea (C. sinensis) extract, grape (V. vinifera) seed extract | 6 g/kg | Meat wrapped with oxygen-permeable PVC at 5 °C for 9 days | - | Inhibitory effect on lipid oxidation; reduction of redness value | [203] |
Goat meat nuggets | Broccoli (Brassica oleracea) powder extract | 20 g/kg | Nuggets aerobically packaged at 4 °C | 0.16 ± 0.01 mg GAE/g (TPC) | Inhibitory effect on lipid oxidation; increased meat phenolic content; decreased pH; decreased yellowness and chroma values; no influence on sensory attributes | [204] |
Cooked goat meat patties | Kinnow (Citrus reticulate) rind powder (KRP), pomegranate (Punica granatum) rind powder (PRP) and pomegranate (P. granatum) seed powder (PSP) | 10 mL | Patties anaerobically packaged in LDPE bags at 4 °C for 12 days | 900 µg TAE/g (TPC; KRP) 1200 µg TAE/g (TPC; PRP) 500 µg TAE/g (TPC; PSP) | Inhibitory effect on lipid oxidation; (antioxidative efficiency: PRP > PSP > KRP); increased lightness value (KRP), reduced lightness value (PRP); reduced redness values (PRP, PSP); decreased yellowness value (PRP); no influence on sensory evaluation for colour and appearance; reduced pH value (KRP < PSP < PRP) | [205] |
Goat meat patties | Chrysanthemum morifolium flower extract | 2 g/kg | Patties labelled at 4 °C for 9 days | - | Inhibitory effect on lipid and protein oxidation; no influence on organoleptic properties (appearance, flavour, texture, juiciness, and overall acceptability) | [206] |
Fermented goat meat sausages | Rosemary (R. officinalis L.) powder extract | 0.5 g/kg | Meat vacuum packaged at 30 °C for 90 days | - | Inhibitory effect on lipid oxidation; reduced loss of redness, prevention of off-flavour formation | [207] |
Ground goat meat, goat meat nuggets | Pomegranate (P. granatum) peel extract | 10 g/kg | Meat vacuum-packed at 4 °C for 9 days; Nuggets vacuum-packed at 4 °C for 25 days | Inhibitory effect on lipid oxidation; no influence on lightness value; reduced colour difference; slow growth of aerobic plate counts | [208] | |
Ground sheep meat | Sumac (Rhus coriaria L.) water extract, barberry (Berberis vulgaris L.) water extract | 30 g/kg | Meat stored under aerobic conditions into polyethylene bags at 4 °C for 9 days | - | Inhibitory effect on lipid oxidation; inhibitory effect of microbial growth; improvement in odour score | [209] |
Lamb patties | Olive oil waste extract | 0.4 g GAE/kg muscle | Patties packaged in MAP (70% O2/30% CO2) at 4 °C for 9 days | - | Inhibitory effect on lipid and protein oxidation; lower fish odour and flavour, higher odd odour and flavour; acceptable meat after 6 days of storage | [210] |
Sheep meat nuggets | Litchi (Litchi chinensis Sonn.) pericarp extract | 15 g/kg% | Nuggets aerobically packed in LDPE pouches at 4 °C | 0.17 ± 0.01 mg GAE/g (TPC) | Inhibitory effect on lipid oxidation; no influence on sensory attributes | [211] |
Lamb patties (cooked and refrigerated-stored) | Hop (Humulus lupulus L.) infusion and powder | 2 g/kg | Raw: 4 °C for 7 days; −18 °C for 90 days; Cooked: 4 °C for 3 days | - | Inhibitory effect on lipid and protein oxidation; modification in flavour acceptance (decreased acceptance of freshly prepared patties) | [212] |
Sheep patties | Peanut (A. hypogaea L.) skin extract | 1 g/kg | Patties packaged in MAP (80% O2—20% CO2) at 2 ± 1 °C for 20 days | - | Inhibitory effect on lipid and protein oxidation; reduction of redness loss; improvement of sensory attributes | [213] |
Lamb burgers | Rosemary (R. officinalis L.), thyme (T. vulgaris) powder extracts | 1 g/kg | Burgers covered with PVC at 2 °C for 6 days | - | Inhibitory effect on lipid oxidation; no influence on Enterobacteriaceae count | [214] |
Lamb patties | Rosemary (R. officinalis L.), ginger (Zingiber officinal) extracts | 0.5 g/ kg (rosemary) 5 g/kg (ginger) | Patties wrapped with polyethylene film at −18 °C for 5 months | - | Inhibitory effect on lipid oxidation; improved overall acceptability, flavour and colour; reduction of microbial growth | [215] |
Ultra-filtrated soft cheese derived from buffalo’s skim milk retentate | Rosemary (R. officinalis L.) extract | 50 g/kg | Cheeses stored at 6 °C for 30 days | 615 mg GAE/100 mg (TPC) | Improvement of radical scavenging activity and ferric antioxidant power; improvement of sensory evaluation total scores | [216] |
Stirred yoghurt | Pomegranate (P. granatum) peel extract (before and after inoculation with the starter) | 350 g/kg | 6 ± 2 °C | 8.23 ± 1.54 mg GAE/g (TPC before inoculation) 7.61 ± 1.00 mg GAE/g (TPC after inoculation) 3.59 ± 0.78 µg RE/g (total flavonoid content before inoculation) 2.99 ± 0.01 µg RE/g (total flavonoid content after inoculation) | Improvement of antioxidant activity (higher total phenol content and total flavonoid content); no influence on sensory properties (flavour, body and texture, appearance) | [217] |
Yoghurt | Neem (Azadirachta indica) leaves powder | - | Yoghurt stored at 4 °C for 28 days | 74.9 ± 6.2 µg GAE/mL | Improvement of antioxidant activity and total phenolic content; no influence on organoleptic properties | [218] |
Full-fat cheese | Green tea (Camellia sinensis) extract | 1 g/kg | Cheese stored at 8 ± 2 °C for 90 days | 900 GAE equivalent/100 g cheese (TPC) | Improvement of antioxidant activity and phenolic content; no influence on cheese composition (moisture, protein and fat) | [219] |
Yoghurt from cow, buffalo and goat milk | Ginger (Zingiber officinale) extract and beetroot (Beta vulgaris) extract | 20 g/kg | Yoghurt stored at room temperature | - | Improvement of antioxidant activity (goat milk yoghurt > cow milk yoghurt > buffalo milk yoghurt) | [220] |
Cheddar-type cheese | Green tea (C. sinensis) extract | 2 g/kg | Cheese packed under vacuum and stored at 4 °C for 29 days | 3.91 g/kg | Improvement of antiradical activity; no influence on total proteins, fat, salt, micellar calcium content of cheese; moisture decreased; influence on colour (loss of lightness, increase in redness and yellowness); increase in hardness and flavour intensity; firmness increased | [221] |
Yoghurt | Hazelnut (Corylus avellana L.) skins var. ("Tonda Gentile Trilobata" (TGT), ’San Giovanni’ and ‘Georgia’) | 60 g/kg | Yoghurt stored at 4 °C for 21 days | 19.43 ± 1.84 µg GAE/g DM (TPC; TGT) 17.86 ± 0.80 µg GAE/g DM (TPC; San Giovanni) 18.48 ± 0.25 µg GAE/g DM (TPC; Georgia) | Improvement of antioxidant capacity; decreased consumer acceptance | [222] |
Yoghurt | Green tea (C. sinensis) extract (GTE), black tea extract (BTE) and white tea extract (WTE) | 20 g/kg | Yoghurt stored at 4 °C for 21 days | 3220.15 ± 37.80 µg GAE/mL (TPC; GTE) 2811.26 ± 44.74 µg GAE/mL (TPC; BTE) 2504.59 ± 24.48 µg GAE/mL (TPC; WTE) | Improvement of antioxidant capacity (GTE > WTE > BTE) | [223] |
Cow and camel milk | Soybean (Glycine max L.) | - | Yoghurt stored at 4 °C for 21 days | 43.17 ± 1.2 µg GAE/g (TPC; cow milk) 91.76 ± 1.8 µg GAE/g (TPC; camel milk) | Improvement of antioxidant activity (in camel milk); increased viability of Lactobacillus spp. | [224] |
Yoghurt | Chamomile (Matricaria recutita L.) and fennel (Foeniculum vulgare Mill.) decoctions | 0.4 g/kg | Yoghurt stored at 4 °C for 14 days | - | Improvement of antioxidant activity (chamomile > fennel); no influence on pH and colour parameters | [225] |
Ghee | Coriander (Coriander sativum L.) extract | 5 g/kg | 80 ± 1 °C for 21 days | - | Improvement of radical scavenging activity; inhibition of peroxide and conjugated dienes formation; improvement of antioxidant activity | [226] |
Paneer | Peels of pomegranate (P. granatum), orange (Citrus sinensis) and lemon (C. limonum) | 30 g/kg | Paneer stored for 8 days | - | Improvement of antioxidant activity (prevention of peroxide formation: pomegranate extract > lemon extract > orange extract) | [227] |
Milk and yoghurt | Red ginseng (Panax ginseng) extract | 20 g/kg | Milk and yoghurt stored at 4 °C | 41.1 ± 0.9 mg of AE/100 g (TPC; yoghurt) 38.3 ± 0.8 mg of GAE/100 g (TPC; milk) | Improvement of antioxidant activity | [228] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serra, V.; Salvatori, G.; Pastorelli, G. Dietary Polyphenol Supplementation in Food Producing Animals: Effects on the Quality of Derived Products. Animals 2021, 11, 401. https://doi.org/10.3390/ani11020401
Serra V, Salvatori G, Pastorelli G. Dietary Polyphenol Supplementation in Food Producing Animals: Effects on the Quality of Derived Products. Animals. 2021; 11(2):401. https://doi.org/10.3390/ani11020401
Chicago/Turabian StyleSerra, Valentina, Giancarlo Salvatori, and Grazia Pastorelli. 2021. "Dietary Polyphenol Supplementation in Food Producing Animals: Effects on the Quality of Derived Products" Animals 11, no. 2: 401. https://doi.org/10.3390/ani11020401
APA StyleSerra, V., Salvatori, G., & Pastorelli, G. (2021). Dietary Polyphenol Supplementation in Food Producing Animals: Effects on the Quality of Derived Products. Animals, 11(2), 401. https://doi.org/10.3390/ani11020401