Resumption of Cyclic Ovarian Activity by Herbal Preparation AyuFertin in Bulgarian Murrah Buffaloes at Early Postpartum
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Analysis of the AyuFertin Phytochemical Composition
2.1.1. Carotenoid and Tocopherol Contents Evaluation
2.1.2. Total Polyphenolic Content (TPC), Total Flavonoid Content (TFC), and Antioxidant Activity Evaluation
Evaluation of Total Polyphenolic and Total Flavonoid Contents
Determination of Antioxidant Activity
2.1.3. Gas-Chromatographic-Mass-Spectral (GC-MS) Analysis of Fatty Acids Composition
2.2. Animals Management and Experimental Design
2.3. Biochemical and Progesterone Analysis
2.4. Statistical Analysis
3. Results
3.1. Phytochemical Composition of AyuFertin
3.2. Effect of AyuFertin on the Blood Parameters
3.3. Effect of AyuFertin on the Ovarian Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baruselli, P.S.; Carvalho, N.A.T. Biotechnology of reproduction in buffalo (Bubalus bubalis). Rev. Bras. Reprod. Anim. 2005, 29, 4–17. [Google Scholar]
- Balamurugan, B.; Karuthadurai, T.; Ramamoorthy, M.; Dayanidhi, J. Manipulation of Estrous Cycle to Improve Reproductive Efficiency in Cattle and Buffalo. Int. J. Livestock Res. 2017, 8, 19–31. [Google Scholar]
- De Rensis, F.; López-Gatius, F. Protocols for synchronizing estrus and ovulation in buffalo (Bubalus bubalis): A review. Theriogenology 2007, 67, 209–216. [Google Scholar] [CrossRef]
- Dhaliwal, G.S.; Murray, R.; Woldehiwet, Z. Some aspects of immunology of the bovine uterus related to treatments for endometritis. Anim. Reprod. Sci. 2001, 67, 135–152. [Google Scholar] [CrossRef]
- Snoj, T.; Majdič, G. Mechanisms in endocrinology: Estrogens in consumer milk: Is there a risk to human reproductive health? Eur. J. Endocrinol. 2018, 179, 275–286. [Google Scholar] [CrossRef]
- Ganmaa, D.; Sato, A. The possible role of female sex hormones in milk from pregnant cows in the development of breast, ovarian and corpus uteri cancers. Med. Hypotheses. 2005, 65, 1028–1037. [Google Scholar] [CrossRef]
- Gupta, R.; Thakur, M.S.; Shrivastava, O.P.; Pandey, N. Comparison of hormonal and homeopathic complexes for treatment of true anestrus in post-partum buffaloes during the summer. Buffalo Bul. 2011, 30, 30–33. [Google Scholar]
- Samad, M.A.; Hasan, M. Clinical use of Prajana and Banjhana in anestrous buffaloes of Bahgladesh. Bangladesh Vet. 1984, 1, 9–11. [Google Scholar]
- Hussain, J.; Bhat, A.S.; Shaheen, M.; Islam, R. Comparative response of vitamin-mineral vs. herbal therapy in alleviatinh post-partum true anestrum in dairy cows. Indian J. Anim. Res. 2009, 43, 222–223. [Google Scholar]
- Tanwar, P.S.; Rathore, S.S. Comparative evaluation of the mineral-vitamin combination (CalFos AD3Plus) and herbal heat inducer (Prajana HS) in their responses to oestrus induction and conception in rural postpartum anestrous buffaloes in semi-arid region of Rajasthan. Anim. Sci. Rep. 2015, 9, 28–32. [Google Scholar]
- Chaudhiry, V.; Kumar, A.; Mohan, G.; Verma, R.; Srivastava, S. The study of therapeutic efficacy of mineral mixture, herbal and ethno veterinary medicine on anoestrus buffalo heifers. Indian J. Anim. Res. 2019, 53, 1639–1644. [Google Scholar] [CrossRef]
- Kabir, K.K.; Rawal, C.V.S.; Ansari, M.R.; Varshney, J.P.; Srivastava, R.S. Comparative efficacy of herbal preparations in the management of anoestrus in non–descript rural buffaloes. Indian J. Anim. Reprod. 2001, 22, 143–145. [Google Scholar]
- Dutt, R.; Mehrotra, S.; Shanker, U.; Singh, G. Effect of Murraya koenigii and Aegle marmelos feeding on anestrus buffaloes. Indian J. Anim. Reprod. 2011, 32, 47–49. [Google Scholar]
- McCracken, J.A. Prostaglandins and leukotrienes. In Endocrinology: Basic and Clinical Principles; Humana Press: Totowa, NJ, USA, 2005; pp. 93–111. [Google Scholar]
- Kindahl, H.; Frederickson, G.; Madej, A.; Edqvist, L.E. Role of prostaglandins in uterine involution. Proc. Xth Int. Cong. Anim. Reprod. AI 1984, 9–24. [Google Scholar]
- Lohan, I.S.; Malik, R.K.; Kaker, M.L. Uterine involution and ovarian follicular growth during early postpartum period of Murrah buffaloes. Asian-Aust. J. Anim. Sci. 2004, 17, 313–316. [Google Scholar] [CrossRef]
- Young, I.M.; Anderson, D.B. Plenderleith RWJ: Increased conception rate in dairy cows after early postpartum administration of prostaglandin F2α THAM. Vet. Rec. 1984, 115, 429–431. [Google Scholar] [CrossRef]
- Iqbal, S.; Allem, M.; Saaed, M.A. Role of single injection of prostaglandin F2 alfa on breeding efficiency of postpartum buffaloes. Pakistan Vet. J. 2003, 23, 197–201. [Google Scholar]
- Yotov, S.; Atanasov, A.; Ilieva, Y. Induction of ovarian activity in Bulgarian Murrah buffaloes by hormonal treatment in early postpartum period. Asian Pac. J. Reprod. 2013, 2, 93–98. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical aspects and health benefits of ginger (Zingiberofficinale) in both traditional Chinese medicine and modern industry, Acta Agriculturae Scandinavica, Section B. Soil Plant. Sci. 2019, 69, 546–556. [Google Scholar]
- Limem, S.; Banlipo, D.; Karmous, T. Phytochemical Composition and Antioxidant Power of Citrullus colcynthis from Togo. Int. J. Pharm. Phytochem. Res. 2016, 8, 531–536. [Google Scholar]
- Oforma, C.C.; Udourioh, G.A.; Ojinnaka, C.M. Characterization of Essential Oils and Fatty Acids Composition of Stored Ginger (Zingiber officinale Roscoe). J. Appl. Sci. Environ. Manag. 2019, 23, 2231–2238. [Google Scholar] [CrossRef] [Green Version]
- Georgieva, L.; Marchev, A.; Ivanov, I.; Ganeva, D.; Bojinov, B.; Pavlov, A. Improved HPLC methods for determination of carotenoids and tocopherols in different varieties of tomatoes. Sci. Works 2013, 60, 632–637. [Google Scholar]
- Mihaylova, D.; Vrancheva, R.; Petkova, N.; Ognyanov, M.; Desseva, I.; Ivanov, I.; Popova, M.; Popova, A. Carotenoids, tocopherols, organic acids, charbohydrate and mineral content in different medicinal plant extracts. Zeitschrift für Naturforschung 2018, 73, 439–448. [Google Scholar] [CrossRef]
- Kujala, S.; Loponen, M.; Klika, D.; Pihlaja, K. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food Chem. 2000, 8, 5338–5442. [Google Scholar] [CrossRef] [PubMed]
- Mihaylova, D.; Lante, A.; Krastanov, A. Total phenolic content, antioxidant and antimicrobial activity of Haberlea rhodopensis extracts obtained by pressurized liquid extraction. Acta Aliment. 2015, 44, 326–332. [Google Scholar] [CrossRef] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols, vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- AOAC. AOAC. AOAC Official Method 920.39 Fat (crude) or ether extraction in animal feed. In AOAC Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- ISO. ISO12966-2:2017 Animal and Vegetable Fats and Oils—Gas. Chromatography of Fatty Acid Methyl Esters—Part. 2: Preparation of Methyl Esters of Fatty Acids; International Organization for Standardization: Geneve, Switzerland, 2017; Available online: https://www.sis.se/api/document/preview/921698/ (accessed on 20 February 2019).
- Campbell, I. Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample recommendations. Stat. Med. 2007, 26, 3661–3675. [Google Scholar] [CrossRef]
- Latimer, K.S. Duncan and Prasse’s Veterinary Laboratory Medicine. In Clinical Pathology, 5th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2011. [Google Scholar]
- Abd Ellah, M.R.; Hamed Maha, I.; Derar, R.I. Serum biochemical and hematological reference values for lactating buffaloes. Comp. Clin. Pathol. 2014, 23, 1179–1188. [Google Scholar] [CrossRef]
- Svahn, J.C.; Feldl, F.; Raiha, N.C.; Koletzko, B.; Axelsson, I.E. Different quantities and quality of fat in milk products given to young children: Effects on long chain polyunsaturated fatty acids and trans fatty acids in plasma. Acta Pediatr. 2002, 91, 20–29. [Google Scholar] [CrossRef]
- Gunstone, F.D. Fatty acids: Gamma- linolenic acid. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Academic press: New York, NY, USA, 2003; pp. 2308–2311. [Google Scholar] [CrossRef]
- Mattos, R.; Staples, C.R.; Arteche, A.; Wiltbank, M.C.; Diaz, F.J.; Jenkins, T.C.; Thatcher, W.W. The effects of feeding fish oil on uterine secretion of PGF2alpha, milk composition, and metabolic status of periparturient Holstein cows. J. Dairy Sci. 2004, 87, 921–932. [Google Scholar] [CrossRef] [Green Version]
- Dirandeh, E.; Towhidi, A.; Ansari Pirsaraei, Z.; Saberifar, T.; Akhlaghi, A.; Rezaei Roodbari, A. The endometrial expression of prostaglandin cascade components in lactating dairy cows fed different polyunsaturated fatty acids. Theriogenology 2015, 83, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Arosh Joe, A.; Sakhila, K.; Banu, J.; McCracken, A. Novel concepts on the role of prostaglandins on luteal maintenance and maternal recognition and establishment of pregnancy in ruminants. J. Dairy Sci. 2016, 99, 5926–5940. [Google Scholar] [CrossRef] [Green Version]
- Wiltbank, M.C.; Mezera, M.A.; Toledo, M.Z.; Drum, J.N.; Baez, G.M.; García-Guerra, A.; Sartori, R. Physiological mechanisms involved in maintaining the corpus luteum during the first two months of pregnancy. Anim. Reprod. 2018, 15, 805–821. [Google Scholar] [CrossRef]
- Ginther, O.J.; Araujo, R.R.; Palhao, M.P.; Rodrigues, B.L.; Beg, M.A. Necessity of sequential pulses of prostaglandin F2alpha for complete physiologic luteolysis in cattle. Biol. Reprod. 2009, 80, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom, T.; Bennett, P. Transcriptional regulation of genes for enzymes of the prostaglandin biosynthetic pathway. Prostaglandins Leukot Essent Fatty Acids 2004, 70, 115–135. [Google Scholar] [CrossRef] [PubMed]
- Coyne, G.S.; Kenny, D.A.; Childs, S.; Sreenan, J.M.; Waters, S.M. Dietary n-3polyunsaturated fatty acids alter the expression of genes involved in prostaglandin biosynthesis in the bovine uterus. Theriogenology 2008, 70, 772–782. [Google Scholar] [CrossRef] [PubMed]
- Siriwardhana, N.; Kalupahana, N.S.; Moustaid-Moussa, N. Health Benefits of n-3 polyunsaturated fatty acids: Eicosapentaenoic acid and docosahexaenoic acid. Adv. Food Nutr. Res. 2012, 65, 211–222. [Google Scholar] [CrossRef]
- Hafez, B.; Hafez, E.S.E. Reproduction in Farm. Animals, 7th ed.; Lippincott Williams and Wilkins: Baltimore, MD, USA, 2000. [Google Scholar]
- Bjorneboe, A.; Bjorneboe, G.E.; Drevon, C.A. Ab-sorption, transport and distribution of vitamin E. J. Nutr. 1990, 120, 233. [Google Scholar] [CrossRef]
- Pinelli-Saavedra, A. Vitamin E in immunity and repro-ductive performance in pigs. Reprod. Nutr. Dev. 2003, 43, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Chew, B.P. The influence of vitamins on repro-duction in pigs. In Recent Advances in Animal Nutrition; Garnsworithy, P.C., Cole, D.J.A., Eds.; Nottingham University Press: Nottingham, UK, 1995; pp. 223–237. [Google Scholar]
- Tarin, J.; Ten, J.; Vendrell, F.J.; de Oliveira, M.N.; Cano, A. Effects of maternal ageing and dietary antioxidant supplementation on ovulation, fertilization and embryo development invitro in the mouse. Reprod. Nutr. Dev. 1998, 38, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Mohd Mutalip, S.S.; Ab-Rahim, S.; Rajikin, M.H. Vitamin E as an Antioxidant in Female Reproductive Health. Antioxidants 2018, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Thiyagarajan, B.; Valivittan, K. Ameliorating effect of vitamin E on in vitro development of preimplantation buffalo embryos. J. Assist. Reprod. Genet. 2009, 26, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Abadjieva, D.; Kistanova, E. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Abadjieva, D.V.; Nedeva, R.; Marchev, Y.; Jordanova, G.; Chervenkov, M.; Dineva, J.; Shumkis, A.; Shimkine, A.; Teerds, K.; Kistanova, E. Arthrospira (Spirulina) platensis supplementation affects folliculogenesis, progesterone and ghrelin levels in fattening pre-pubertal gilts. J. Appl. Phycol. 2018, 30, 445–452. [Google Scholar] [CrossRef]
- Perry, G.A.; Swanson, O.L.; Larimore, E.L.; Perry, B.L.; Djira, G.D.; Cushman, R.A. Relationship of follicle size and concentrations of estradiol among cows exhibiting or not exhibiting estrus during a fixed-time AI protocol. Domest. Anim. Endocrinol. 2014, 48, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.Z.; Wang, H.F.; Yang, J.Y.; Wang, J.H.; Duan, Z.Y.; Wang, C.; Liu, J.X.; Lao, Y. Effects of feeding lutein on production performance, antioxidative status, and milk quality of high-yielding dairy cows. Dairy Sci. 2014, 97, 7144–7150. [Google Scholar] [CrossRef] [PubMed]
- Hashem, N.M.; Gonzalez-Bulnes, A.; Simal-Gandara, J. Polyphenols in Farm Animals: Source of Reproductive Gain or Waste? Antioxidants 2020, 9, 1023. [Google Scholar] [CrossRef]
Sample/Assay | AyuFertin |
---|---|
Tocopherols, µg/g dw | |
δ-tocopherol, | 6.37 ± 0.51 |
α-tocopherol | 22.87 ± 1.11 |
ϒ-tocopherol | n.d * |
Carotenoids, µg/g dw | |
lutein | 5.51 ± 0.45 |
lycopene | n.d |
β-carotene | n.d |
Sample/Assay | AyuFertin |
---|---|
Total polyphenolic content, mg GAE/g dw | 21.00 ± 0.93 |
Total flavonoid content, mg QE/g dw | 319.62 ± 9.83 |
In vitro antioxidant activity, μM TE/g dw | |
ABTS | 191.66 ± 2.52 |
DPPH | 209.25 ± 1.71 |
FRAP | 334.28 ± 0.70 |
CUPRAC | 331.27 ± 5.94 |
Apex RT | Area | % Area | Fatty Acids |
---|---|---|---|
14.76 | 77,575,835 | 8.81 | Palmitic acid |
17.23 | 371,305,357 | 42.15 | Linoleic acid |
17.32 | 253,137,987 | 28.73 | Oleic acid |
17.77 | 46,436,988 | 5.27 | Stearic acid |
20.38 | 67,170,678 | 7.62 | CH3 esters with Mw 292: 6-cis,9-cis,11-trans-octadecatrienoate 9.cis.,11.trans.t,13.trans.-octadecatrienoate 9,12,15-Octadecatrienoic acidGamma-Linolenic acid |
20.54 | 22,680,426 | 2.57 | |
20.84 | 15,537,705 | 1.76 | |
21.29 | 21,773,425 | 2.47 | |
24.2 | 3,012,782 | 0.34 | Palmitin monoglyceride |
Total lipid content | 20.93 |
Group | Biochemical Parameters | ||||
---|---|---|---|---|---|
TP g/dL | Glucose mg/dL | TChol mg/dL | LDH U/L | ALP U/L | |
Control (n = 6) | |||||
6.5 ± 0.78 a | 38.7 ± 3.2 a | 161.5 ± 5.03 a | 527.3 ± 23.26 a | 188.5 ± 14.54 a | |
Experimental (n = 7) | |||||
BFT (n = 7) | 5.9 ± 0.47 b | 36.1 ± 2.32 b | 157 ± 8.45 b | 550 ± 34.4 b | 178 ± 12.05 b |
AFT (n = 7) | 5.4 ± 0.49 c | 38.4 ± 2.51 c | 142.7 ± 4.42 bc | 560 ± 47.1 c | 177.3 ± 16.47 c |
BST (n = 5) | 5.4 ± 0.28 d | 38.3 ± 2.48 d | 147 ± 4.78 bd | 592 ± 16.75 bd | 169.4 ± 17.7 d |
AST (n = 5) | 6.8 ± 0.87 e | 36.9 ± 2.20 e | 153.4 ± 10.89 e | 628.3 ± 44.51 be | 177.8 ± 16.16 e |
Parameters | Control Group (n = 6) | Experimental Group (n = 7) | ||||||
---|---|---|---|---|---|---|---|---|
Postpartum days | 20 | 24 | 34 | 44 | 20 | 24 | 34 | 44 |
Ovarian structures | ||||||||
Small follicles (<6 mm) % (n) | 100 (6/6) | 100 (6/6) | 100 (6/6) | 100 (6/6) | 100 (7/7) | 42.8 (3/7) | 60 (3/5) | 100 (7/7) |
Medium follicles (6–9 mm) % (n) | 33.4 (2/6) | 33.4 (2/6) | 83.3 (5/6) | 100 (6/6) | 42.8 (3/7) | 42.8 (3/7) | 100 (5/5) | 100 (7/7) |
Large follicles (≥10 mm) % (n) | 0 (0/6) | 0 (0/6) | 16.6 (1/6) | 33.4 (2/6) | 0 (0/7) | 85.7 (6/7) | 80 (4/5) | 71.4 (5/7) |
Corpus luteum % (n) | 0 (0/6) | 0 (0/6) | 0 (0/6) | 16.6 (1/6) | 0 (0/7) | 14.2 (1/7) | 60 (3/5) | 42.8 (3/7) |
Recorded estrus with bull mating % (n) | ||||||||
After 1st treatment | 28.6 (2/7) | |||||||
After 2nd treatment | 16.6 (1/6) | 60.0 (3/5) | ||||||
Total | 16.6 (1/6) | 71.4 (5/7) | ||||||
Pregnancy rate, % (n) | ||||||||
Day 70 | 16.6 (1/6) | 42.9 (3/7) | ||||||
Day 90 | 16.6 (1/6) | 57.1 (4/7) |
Parameters | Control Group (n = 6) | Experimental Group (n = 7) | p-Value between Groups | ||||
---|---|---|---|---|---|---|---|
Calving period | 14 March–22 April 2019 | 29 March–29 April 2019 | |||||
Average age (years) | 7 ± 2.4 | 6.6 ± 2.3 | NS | ||||
Average body weight (kg) | 583.3 ± 18.9 | 577.1 ± 15.1 | NS | ||||
Average number of lactations | 3.8 ± 1.79 | 3.4 ± 2.07 | NS | ||||
Parity | PP | SP | MP | PP | SP | MP | |
1/6 | 1/6 | 4/6 | 2/7 | 1/7 | 4/7 | NS for all | |
Pregnancies | 0/1 | 0/1 | 1/4 | 0/2 | 0/1 | 4/4 | 0.04 for MP |
PP vs. MP | SP vs. MP | PP + SP vs.MP | PP vs. MP | SP vs. MP | PP + SP vs. MP | ||
p = 0.61 | p = 0.61 | p = 0.47 | p = 0.02 | p = 0.04 | p = 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilieva, Y.; Vasilev, N.; Fasulkov, I.; Penchev, P.; Abadjieva, D.; Mladenova, V.; Ilyazova, A.; Mihaylova, D.; Yotov, S.; Kistanova, E. Resumption of Cyclic Ovarian Activity by Herbal Preparation AyuFertin in Bulgarian Murrah Buffaloes at Early Postpartum. Animals 2021, 11, 420. https://doi.org/10.3390/ani11020420
Ilieva Y, Vasilev N, Fasulkov I, Penchev P, Abadjieva D, Mladenova V, Ilyazova A, Mihaylova D, Yotov S, Kistanova E. Resumption of Cyclic Ovarian Activity by Herbal Preparation AyuFertin in Bulgarian Murrah Buffaloes at Early Postpartum. Animals. 2021; 11(2):420. https://doi.org/10.3390/ani11020420
Chicago/Turabian StyleIlieva, Yordanka, Nasko Vasilev, Ivan Fasulkov, Pencho Penchev, Desislava Abadjieva, Vanya Mladenova, Ayla Ilyazova, Dasha Mihaylova, Stanimir Yotov, and Elena Kistanova. 2021. "Resumption of Cyclic Ovarian Activity by Herbal Preparation AyuFertin in Bulgarian Murrah Buffaloes at Early Postpartum" Animals 11, no. 2: 420. https://doi.org/10.3390/ani11020420
APA StyleIlieva, Y., Vasilev, N., Fasulkov, I., Penchev, P., Abadjieva, D., Mladenova, V., Ilyazova, A., Mihaylova, D., Yotov, S., & Kistanova, E. (2021). Resumption of Cyclic Ovarian Activity by Herbal Preparation AyuFertin in Bulgarian Murrah Buffaloes at Early Postpartum. Animals, 11(2), 420. https://doi.org/10.3390/ani11020420