Apparent Digestibility of Macronutrients and Fatty Acids from Microalgae (Schizochytrium sp.) Fed to Rainbow Trout (Oncorhynchus mykiss): A Potential Candidate for Fish Oil Substitution
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Feed Design and Formulation
2.2. Fish and Feeding
2.3. Chemical Composition
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Action. In The State of World Fisheries and Aquaculture (SOFIA); FAO: Rome, Italy, 2020; ISBN 978-92-5-132692-3. [Google Scholar]
- Bélanger-Lamonde, A.; Sarker, P.K.; Ayotte, P.; Bailey, J.L.; Bureau, D.P.; Chouinard, P.Y.; Dewailly, É.; Leblanc, A.; Weber, J.-P.; Vandenberg, G.W. Algal and Vegetable Oils as Sustainable Fish Oil Substitutes in Rainbow Trout Diets: An Approach to Reduce Contaminant Exposure. J. Food Qual. 2018, 2018, 1–12. [Google Scholar] [CrossRef]
- Sarker, P.K.; Kapuscinski, A.R.; Bae, A.Y.; Donaldson, E.; Sitek, A.J.; Fitzgerald, D.S.; Edelson, O.F. Towards Sustainable Aquafeeds: Evaluating Substitution of Fishmeal with Lipid-Extracted Microalgal Co-Product (Nannochloropsis Oculata) in Diets of Juvenile Nile Tilapia (Oreochromis Niloticus). PLoS ONE 2018, 13, e0201315. [Google Scholar] [CrossRef]
- Sarker, P.K.; Kapuscinski, A.R.; Vandenberg, G.W.; Proulx, E.; Sitek, A.J. Towards Sustainable and Ocean-Friendly Aquafeeds: Evaluating a Fish-Free Feed for Rainbow Trout (Oncorhynchus Mykiss) Using Three Marine Microalgae Species. Elem. Sci. Anth. 2020, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Branch, T.A.; Jensen, O.P.; Ricard, D.; Ye, Y.; Hilborn, R. Contrasting Global Trends in Marine Fishery Status Obtained from Catches and from Stock Assessments. Conserv. Biol. 2011, 25, 777–786. [Google Scholar] [CrossRef]
- Pauly, D.; Zeller, D. Catch Reconstructions Reveal That Global Marine Fisheries Catches Are Higher than Reported and Declining. Nat. Commun. 2016, 7, 10244. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018; ISBN 978-92-5-130562-1. [Google Scholar]
- Bell, J.G.; Waagbø, R. Safe and Nutritious Aquaculture Produce: Benefits and Risks of Alternative Sustainable Aquafeeds. In Aquaculture in the Ecosystem; Holmer, M., Black, K., Duarte, C.M., Marbà, N., Karakassis, I., Eds.; Springer: Dordrecht, Netherlands, 2008; pp. 185–225. ISBN 978-1-4020-6810-2. [Google Scholar]
- Bell, J.G.; McEvoy, J.; Tocher, D.R.; McGhee, F.; Campbell, P.J.; Sargent, J.R. Replacement of Fish Oil with Rapeseed Oil in Diets of Atlantic Salmon (Salmo Salar) Affects Tissue Lipid Compositions and Hepatocyte Fatty Acid Metabolism. J. Nutr. 2001, 131, 1535–1543. [Google Scholar] [CrossRef] [Green Version]
- Caballero, M.J.; Obach, A.; Rosenlund, G.; Montero, D.; Gisvold, M.; Izquierdo, M.S. Impact of Different Dietary Lipid Sources on Growth, Lipid Digestibility, Tissue Fatty Acid Composition and Histology of Rainbow Trout, Oncorhynchus Mykiss. Aquaculture 2002, 214, 253–271. [Google Scholar] [CrossRef]
- Torstensen, B.E.; Bell, J.G.; Rosenlund, G.; Henderson, R.J.; Graff, I.E.; Tocher, D.R.; Lie, Ø.; Sargent, J.R. Tailoring of Atlantic Salmon (Salmo Salar L.) Flesh Lipid Composition and Sensory Quality by Replacing Fish Oil with a Vegetable Oil Blend. J. Agric. Food Chem. 2005, 53, 10166–10178. [Google Scholar] [CrossRef] [PubMed]
- Berntssen, M.H.G.; Lundebye, A.-K.; Torstensen, B.E. Reducing the Levels of Dioxins and Dioxin-like PCBs in Farmed Atlantic Salmon by Substitution of Fish Oil with Vegetable Oil in the Feed. Aquac. Nutr. 2005, 11, 219–231. [Google Scholar] [CrossRef]
- Turchini, G.M.; Torstensen, B.E.; Ng, W.-K. Fish Oil Replacement in Finfish Nutrition. Rev. Aquac. 2009, 1, 10–57. [Google Scholar] [CrossRef]
- Sprague, M.; Dick, J.R.; Tocher, D.R. Impact of Sustainable Feeds on Omega-3 Long-Chain Fatty Acid Levels in Farmed Atlantic Salmon, 2006–2015. Sci. Rep. 2016, 6, 21892. [Google Scholar] [CrossRef] [Green Version]
- Sarker, P.K.; Bureau, D.P.; Hua, K.; Drew, M.D.; Forster, I.; Were, K.; Hicks, B.; Vandenberg, G.W. Sustainability Issues Related to Feeding Salmonids: A Canadian Perspective. Rev. Aquac. 2013, 5, 199–219. [Google Scholar] [CrossRef]
- Brauge, C.; Medale, F.; Corraze, G. Effect of Dietary Carbohydrate Levels on Growth, Body Composition and Glycaemia in Rainbow Trout, Oncorhynchus Mykiss, Reared in Seawater. Aquaculture 1994, 123, 109–120. [Google Scholar] [CrossRef]
- Bendiksen, E.Å.; Berg, O.K.; Jobling, M.; Arnesen, A.M.; Måsøval, K. Digestibility, Growth and Nutrient Utilisation of Atlantic Salmon Parr (Salmo Salar L.) in Relation to Temperature, Feed Fat Content and Oil Source. Aquaculture 2003, 224, 283–299. [Google Scholar] [CrossRef]
- Austreng, E. Digestibility Determination in Fish Using Chromic Oxide Marking and Analysis of Contents from Different Segments of the Gastrointestinal Tract. Aquaculture 1978, 13, 265–272. [Google Scholar] [CrossRef]
- Fauconneau, B.; Choubert, G.; Blanc, D.; Breque, J.; Luquet, P. Influence of Environmental Temperature on Flow Rate of Foodstuffs through the Gastrointestinal Tract of Rainbow Trout. Aquaculture 1983, 34, 27–39. [Google Scholar] [CrossRef]
- Olsen, R.E.; Ringø, E. Lipid Digestibility in Fish: A Review. In Recent Research Developments in Lipid Research; Pandalai, S.G., Ed.; Research Signpost: Kerala, India, 1997; pp. 199–264. [Google Scholar]
- National Research Council. Nutrient Requirements of Fish; The National Academies Press: Washington, DC, USA, 1993; ISBN 978-0-309-04891-0. [Google Scholar]
- Cho, C.Y.; Slinger, S.J.; Bayley, H.S. Bioenergetics of Salmonid Fishes: Energy Intake, Expenditure and Productivity. Comp. Biochem. Physiol. Part B Comp. Biochem. 1982, 73, 25–41. [Google Scholar] [CrossRef]
- Bureau, D.P.; Hua, K. Letter to the Editor of Aquaculture. Aquaculture 2006, 252, 103–105. [Google Scholar] [CrossRef]
- Sarker, P.K.; Gamble, M.M.; Kelson, S.; Kapuscinski, A.R. Nile Tilapia (Oreochromis Niloticus) Show High Digestibility of Lipid and Fatty Acids from Marine Schizochytrium Sp. and of Protein and Essential Amino Acids from Freshwater Spirulina Sp. Feed Ingredients. Aquac. Nutr. 2016, 22, 109–119. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Fish and Shrimp; National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-47322-4. [Google Scholar]
- Forster, I. A Note on the Method of Calculating Digestibility Coefficients of Nutrients Provided by Single Ingredients to Feeds of Aquatic Animals. Aquac. Nutr. 1999, 5, 143–145. [Google Scholar] [CrossRef]
- Helrich, K. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Two Volumes; AOAC Intl: Arlington, VA, USA, 1990; ISBN 978-0-935584-42-4. [Google Scholar]
- Kremen, A.J.; Linner, J.H.; Nelson, C.H. An Experimental Evaluation of the Nutritional Importance of Proximal and Distal Small Intestine. Ann. Surg. 1954, 140, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Lambert, M.R.; Jacobson, N.L.; Allen, R.S.; Zaletel, J.H. Lipid Deficiency in the Calf. J. Nutr. 1954, 52, 259–272. [Google Scholar] [CrossRef] [Green Version]
- AOAC. AOAC Official Method 996.06. Fat (Total, Saturated, and Unsaturated) in Foods: Hydrolytic Extraction Gas Chromatographic Method, AOAC Official Methods of Analysis: Rockville, MD, USA. 2000. Available online: https://www.coursehero.com/file/31058243/AOAC-99606-fatpdf/ (accessed on 2 November 2020).
- Sarker, P.K.; Kapuscinski, A.R.; Lanois, A.J.; Livesey, E.D.; Bernhard, K.P.; Coley, M.L. Towards Sustainable Aquafeeds: Complete Substitution of Fish Oil with Marine Microalga Schizochytrium Sp. Improves Growth and Fatty Acid Deposition in Juvenile Nile Tilapia (Oreochromis Niloticus). PLoS ONE 2016, 11, e0156684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Keulen, J.; Young, B.A. Evaluation of Acid-Insoluble Ash as a Natural Marker in Ruminant Digestibility Studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Windell, J.T.; Foltz, J.W.; Sarokon, J.A. Effect of Fish Size, Temperature, and Amount Fed on Nutrient Digestibility of a Pelleted Diet by Rainbow Trout, Salmo Gairdneri. Trans. Am. Fish. Soc. 1978, 107, 613–616. [Google Scholar] [CrossRef]
- Ng, W.-K.; Codabaccus, B.M.; Carter, C.G.; Nichols, P.D. Replacing Dietary Fish Oil with Palm Fatty Acid Distillate Improves Fatty Acid Digestibility in Rainbow Trout, Oncorhynchus Mykiss, Maintained at Optimal or Elevated Water Temperature. Aquaculture 2010, 309, 165–172. [Google Scholar] [CrossRef]
- Cho, C.Y.; Slinger, S.J. Apparent Digestibility Measurement in Feedstuffs for Rainbow Trout. 239AD. In Finfish Nutrition and Fish Food Technology; Halver, J.E., Tiews, K., Eds.; Heeneman: Berlin, Germany, 1979. [Google Scholar]
- Cho, C.; Kaushik, S. Nutritional Energetics in Fish: Energy and Protein Utilization in Rainbow Trout (Salmo Gairdneri). World Rev. Nutr. Diet. 1990, 61, 132–172. [Google Scholar] [CrossRef]
- Bogevik, A.S.; Henderson, R.J.; Mundheim, H.; Waagbø, R.; Tocher, D.R.; Olsen, R.E. The Influence of Temperature on the Apparent Lipid Digestibility in Atlantic Salmon (Salmo Salar) Fed Calanus Finmarchicus Oil at Two Dietary Levels. Aquaculture 2010, 309, 143–151. [Google Scholar] [CrossRef]
- Chiu, Y.N.; Benitez, L.V. Studies on the Carbohydrases in the Digestive Tract of the Milkfish Chanos Chanos. Mar. Biol. 1981, 61, 247–254. [Google Scholar] [CrossRef]
- Stokes, R.M.; Fromm, P.O. Glucose Absorption and Metabolism by the Gut of Rainbow Trout. Comp. Biochem. Physiol. 1964, 13, 53–69. [Google Scholar] [CrossRef]
- Ng, W.-K.; Campbell, P.J.; Dick, J.R.; Bell, J.G. Interactive Effects of Dietary Palm Oil Concentration and Water Temperature on Lipid Digestibility in Rainbow Trout, Oncorhynchus Mykiss. Lipids 2003, 38, 1031–1038. [Google Scholar] [CrossRef]
- Olsen, Y. Resources for Fish Feed in Future Mariculture. Aquac. Environ. Interact. 2011, 1, 187–200. [Google Scholar] [CrossRef]
- Olsen, R.E.; Henderson, R.J.; Sountama, J.; Hemre, G.-I.; Ringø, E.; Melle, W.; Tocher, D.R. Atlantic Salmon, Salmo Salar, Utilizes Wax Ester-Rich Oil from Calanus Finmarchicus Effectively. Aquaculture 2004, 240, 433–449. [Google Scholar] [CrossRef]
- Bureau, D.P.; Harris, A.M.; Cho, C.Y. Apparent Digestibility of Rendered Animal Protein Ingredients for Rainbow Trout (Oncorhynchus Mykiss). Aquaculture 1999, 180, 345–358. [Google Scholar] [CrossRef]
- Burr, G.S.; Barrows, F.T.; Gaylord, G.; Wolters, W.R. Apparent Digestibility of Macro-Nutrients and Phosphorus in Plant-Derived Ingredients for Atlantic Salmon, Salmo Salar and Arctic Charr, Salvelinus Alpinus. Aquac. Nutr. 2011, 17, 570–577. [Google Scholar] [CrossRef]
- Menoyo, D.; Lopez-Bote, C.J.; Bautista, J.M.; Obach, A. Growth, Digestibility and Fatty Acid Utilization in Large Atlantic Salmon (Salmo Salar) Fed Varying Levels of n-3 and Saturated Fatty Acids. Aquaculture 2003, 225, 295–307. [Google Scholar] [CrossRef]
- Sigurgisladottir, S.; Lall, S.P.; Parrish, C.C.; Ackman, R.G. Cholestane as a Digestibility Marker in the Absorption of Polyunsaturated Fatty Acid Ethyl Esters in Atlantic Salmon. Lipids 1992, 27, 418. [Google Scholar] [CrossRef]
- Johnsen, R.I.; Grahl-Nielsen, O.; Roem, A. Relative Absorption of Fatty Acids by Atlantic Salmon Salmo Salar from Different Diets, as Evaluated by Multivariate Statistics. Aquac. Nutr. 2000, 6, 255–261. [Google Scholar] [CrossRef]
- Austreng, E.; Skrede, A.; Eldegard, Å. Digestibility of Fat and Fatty Acids in Rainbow Trout and Mink. Aquaculture 1980, 19, 93–95. [Google Scholar] [CrossRef]
- Huguet, C.T.; Norambuena, F.; Emery, J.A.; Hermon, K.; Turchini, G.M. Dietary N-6/n-3 LC-PUFA Ratio, Temperature and Time Interactions on Nutrients and Fatty Acids Digestibility in Atlantic Salmon. Aquaculture 2015, 436, 160–166. [Google Scholar] [CrossRef]
- Bowyer, J.N.; Booth, M.A.; Qin, J.G.; D’Antignana, T.; Thomson, M.J.S.; Stone, D.A.J. Temperature and Dissolved Oxygen Influence Growth and Digestive Enzyme Activities of Yellowtail Kingfish Seriola Lalandi (Valenciennes, 1833). Aquac. Res. 2014, 45, 2010–2020. [Google Scholar] [CrossRef]
Chemical Composition | g kg−1 DM 2 |
---|---|
Crude protein | 150 |
Total lipid | 417 |
Fiber | 10 |
Ash | 100 |
Gross energy (MJ kg−1 DM) | 24.33 |
Ingredient | Feed | |
---|---|---|
Reference Diet | Algae Diet | |
Fish meal | 300 | 210 |
Corn gluten meal | 170 | 119 |
Wheat middlings | 163 | 114 |
Soybean meal | 130 | 91 |
Whey | 100 | 70 |
Vitamin/mineral premix 1 | 5 | 4 |
Fish oil, herring | 112 | 78 |
Sipernat 50TM 2 | 20 | 14 |
Schizochytrium spp. Biomass 3 | 0 | 300 |
Chemical Composition | Feed | |
---|---|---|
Reference Diet | Algae Diet | |
DM (%, as fed basis) | 93.4 | 95.6 |
Crude protein (% of DM) | 42.0 | 34.6 |
Total lipid (% of DM) | 17.7 | 27.0 |
Ash (% of dry matter) | 10.0 | 9.7 |
Gross energy (MJkg−1 DM) | 22.7 | 24.1 |
Fatty acid (% total fatty acids) | ||
14:0 | 6.7 | 7.4 |
16:0 | 21.8 | 23.3 |
18:0 | 4.0 | 2.0 |
Total SFA 1 | 40.9 | 36.8 |
16:1 | 6.0 | 2.6 |
18:1n−9 | 11.9 | 4.9 |
24:1 | 0.5 | 0.3 |
Total MUFA 2 | 22.8 | 9.2 |
22:5n−6 | 2.4 | 11.1 |
Total n−6 | 2.4 | 11.1 |
18:3n−3 | 2.5 | 1.1 |
20:5n−3 | 12.3 | 6.8 |
22:6n−3 | 17.5 | 33.7 |
Total n−3 | 32.6 | 41.9 |
Total PUFA 3 | 35.0 | 53.0 |
n−3/n−6 | 13.4 | 3.8 |
Macronutrient | Water Temperature | |
---|---|---|
8 °C | 15 °C | |
Dry matter | 97.8 ± 1.2 | 90.8 ± 11.5 |
Crude protein | 88.2 ± 1.2 | 90.8 ± 0.7 |
Total lipid | 85.8 ± 5.1 | 85.9 ± 4.4 |
Gross energy | 81.9 ± 2.6 | 84.3 ± 3.1 |
Fatty Acids | Water Temperature | |
---|---|---|
8 °C | 15 °C | |
14:0 | 77.0 ± 11.6 | 75.6 ± 2.7 |
16:0 | 70.8 ± 10.6 | 68.7 ± 3.6 |
18:0 | 49.9 ± 11.0 | 64.8 ± 3.7 |
Total SFA 1 | 77.4 ± 8.8 | 70.6 ± 3.4 |
16:1 | 90.7 ± 3.3 | 95.3 ± 0.2 |
18:1n−9 | 84.4 ± 6.7 | 92.0 ± 0.6 |
24:1 | 63.6 ± 14.4 | 75.4 ± 3.8 |
Total MUFA 2 | 87.5 ± 5.2 | 92.1 ± 0.5 |
22:5n−6 | 99.3 ± 0.3 | 98.2 ± 0.1 |
Total n−6 | 99.3 ± 0.3 | 98.2 ± 0.1 |
18:3n−3 | 75.8 ± 12.8 | 88.7 ± 1.3 |
20:5n−3 | 98.4 ± 1.2 | 98.7 ± 0.1 |
22:6n−3 | 99.1 ± 0.1 b | 98.5 ± 0.1 a |
Total n−3 | 98.4 ± 0.7 | 94.9 ± 0.1 |
Total PUFA 3 | 98.7 ± 0.5 | 98.5 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bélanger, A.; Sarker, P.K.; Bureau, D.P.; Chouinard, Y.; Vandenberg, G.W. Apparent Digestibility of Macronutrients and Fatty Acids from Microalgae (Schizochytrium sp.) Fed to Rainbow Trout (Oncorhynchus mykiss): A Potential Candidate for Fish Oil Substitution. Animals 2021, 11, 456. https://doi.org/10.3390/ani11020456
Bélanger A, Sarker PK, Bureau DP, Chouinard Y, Vandenberg GW. Apparent Digestibility of Macronutrients and Fatty Acids from Microalgae (Schizochytrium sp.) Fed to Rainbow Trout (Oncorhynchus mykiss): A Potential Candidate for Fish Oil Substitution. Animals. 2021; 11(2):456. https://doi.org/10.3390/ani11020456
Chicago/Turabian StyleBélanger, Amélie, Pallab K. Sarker, Dominique P. Bureau, Yvan Chouinard, and Grant W. Vandenberg. 2021. "Apparent Digestibility of Macronutrients and Fatty Acids from Microalgae (Schizochytrium sp.) Fed to Rainbow Trout (Oncorhynchus mykiss): A Potential Candidate for Fish Oil Substitution" Animals 11, no. 2: 456. https://doi.org/10.3390/ani11020456
APA StyleBélanger, A., Sarker, P. K., Bureau, D. P., Chouinard, Y., & Vandenberg, G. W. (2021). Apparent Digestibility of Macronutrients and Fatty Acids from Microalgae (Schizochytrium sp.) Fed to Rainbow Trout (Oncorhynchus mykiss): A Potential Candidate for Fish Oil Substitution. Animals, 11(2), 456. https://doi.org/10.3390/ani11020456