Role of Dietary Fiber in Poultry Nutrition
Abstract
:Simple Summary
Abstract
1. Introduction
2. Effect of Dietary Fiber in Poultry Diets
2.1. Intestinal Morphology
2.2. Organ Growth
2.3. Nutrient Digestibility
2.4. Dietary Fiber and Intestinal Microflora Activity
2.5. Growth Performance
2.6. Intestinal Health
3. Current Unknowns
- A typical broiler diet is composed of about 70% carbohydrates which includes starch, oligosaccharides, and NSP. The oligosaccharide and NSP is the least known and understood groups but their accurate determination is required in order to be able to determine their physiological functions. Crude fiber is the most commonly used method for the determination of fibrous components in broiler and poultry diets. This method separates fibrous components using weak acids and bases and the results obtained include portions cellulose and lignin ignoring oligosaccharides, pectins and hemicellulose which play a crucial role in intestinal functioning, nutrient digestion and intestinal microflora modulation. Therefore, a more accurate determination of total dietary fiber is paramount to be able to accurately measure physiological responses.
- Dietary fiber, more often than not, influence intestinal morphology, increasing villi height and the overall size of the intestinal tract. Energy expenditure by the gastrointestinal tract can account up to 20–30% of that of the entire body. Therefore, it is crucial to be able to determine how those changes in intestinal morphology affect the overall requirements not for energy only but for amino acids associated with intestinal growth.
- Further intestinal epithelial turnover has been observed in species other than poultry which leads to the question, what is the extend of protein turnover (abrasion) caused by dietary fiber and how to offset this problem? There should be a threshold of dietary fiber that can exert the positive effects of nutrient absorption and intestinal development without charging the bill of increased endogenous loses. In order to determine this, it is important to be able to accurately determine the effect of each fiber component from a chemical and physiological view.
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, B.H.; Zhang, X.P.; Guo, Y.M.; Karasawa, Y.; Kumao, T. Effects of dietary cellulose levels on growth, nitrogen utilization, retention time of diets in digestive tract and caecal microflora of chickens. Asian-Australas. J. Anim. Sci. 2003, 16, 863–866. [Google Scholar] [CrossRef]
- Hetland, H.; Choct, M.; Svihus, B. Role of insoluble non-starch polysaccharides in poultry nutrition. Worlds Poult. Sci. J. 2004, 60, 415–422. [Google Scholar] [CrossRef]
- Jiménez-Moreno, E.; González-Alvarado, J.M.; González-Serrano, A.; Lázaro, R.; Mateos, G.G. Effect of dietary fiber and fat on performance and digestive traits of broilers from one to twenty-one days of age. Poult. Sci. 2009, 88, 2562–2574. [Google Scholar] [CrossRef]
- González-Alvarado, J.M.; Jiménez-Moreno, E.; Valencia, D.G.; Lázaro, R.; Mateos, G.G. Effects of Fiber Source and Heat Processing of the Cereal on the Development and pH of the Gastrointestinal Tract of Broilers Fed Diets Based on Corn or Rice. Poult. Sci. 2008, 87, 1779–1795. [Google Scholar] [CrossRef]
- Mateos, G.G.; Jiménez-Moreno, E.; Serrano, M.P.; Lázaro, R.P. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J. Appl. Poult. Res. 2012, 21, 156–174. [Google Scholar] [CrossRef]
- Sadeghi, A.; Toghyani, M.; Gheisari, A. Effect of various fiber types and choice feeding of fiber on performance, gut development, humoral immunity, and fiber preference in broiler chicks. Poult. Sci. 2015, 94, 2734–2743. [Google Scholar] [CrossRef]
- Choct, M. Fibre—Chemistry and Functions in Poultry Nutrition. LII Simp. Cient. Avic. 2015, 113–119. [Google Scholar]
- Prosky, L. When is dietary fiber considered a functional food? BioFactors 2000, 12, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Trowell, H. Ischemic heart disease and dietary fiber. Am. J. Clin. Nutr. 1972, 25, 926–932. [Google Scholar] [CrossRef]
- Langhout, D.J. The Role of the Intestinal Flora as Affected by Non-Starch Polysaccharides in Broiler Chicks. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1998. [Google Scholar]
- Owusu-Asiedu, A.; Patience, J.F.; Laarveld, B.; Van Kessel, A.G.; Simmins, P.H.; Zijlstra, R.T. Effects of guar gum and cellulose on digesta passage rate, ileal microbial populations, energy and protein digestibility, and performance of grower pigs. J. Anim. Sci. 2006, 84, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Hetland, H.; Svihus, B. Effect of oat hulls on performance, gut capacity and feed passage time in broiler chickens. Br. Poult. Sci. 2001, 42, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Sklan, D.; Smirnov, A.; Plavnik, I. The effect of dietary fibre on the small intestines and apparent digestion in the turkey. Br. Poult. Sci. 2003, 44, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Torshizi, M.A.K.; Wall, H.; Ivarsson, E. Body growth, intestinal morphology and microflora of quail on diets supplemented with micronised wheat fibre. Br. Poult. Sci. 2018, 59, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Hetland, H.; Svihus, B.; Krogdahl, Å. Effects of oat hulls and wood shavings on digestion in broilers and layers fed diets based on whole or ground wheat. Br. Poult. Sci. 2003, 44, 275–282. [Google Scholar] [CrossRef]
- Rehman, H.; Vahjen, W.; Kohl-Parisini, A.; Ijaz, A.; Zentek, J. Influence of fermentable carbohydrates on the intestinal bacteria and enteropathogens in broilers. Worlds Poult. Sci. J. 2009, 65, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, T.; Guo, Y. Dietary fiber and chicken microbiome interaction: Where will it lead to? Anim. Nutr. 2020, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, H.; Zhao, X.-Q.; Knudsen, K.E.B.; Eggum, B.O. The influence of dietary fibre source and level on the development of the gastrointestinal tract, digestibility and energy metabolism in broiler chickens. Br. J. Nutr. 1996, 75, 379–395. [Google Scholar] [CrossRef]
- Sittiya, J.; Yamauchi, K.; Nimanong, W.; Thongwittaya, N. Influence of levels of dietary fiber sources on the performance, carcass traits, gastrointestinal tract development, fecal ammonia nitrogen, and intestinal morphology of broilers. Rev. Bras. Cienc. Avic. 2020, 22, 1–8. [Google Scholar] [CrossRef]
- Dibner, J.J.; Kitchell, M.L.; Atwell, C.A.; Ivey, F.J. The effect of dietary ingredients and age on the microscopic structure of the gastrointestinal tract in poultry. J. Appl. Poult. Res. 1996, 5, 70–77. [Google Scholar] [CrossRef]
- Gonzalez-Alvarado, J.M.; Jimenez-Moreno, E.; Lazaro, R.; Mateos, G.G. Effect of type of cereal, heat processing of the cereal, and inclusion of fiber in the diet on productive performance and digestive traits of broilers. Poult. Sci. 2007, 86, 1705–1715. [Google Scholar] [CrossRef]
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Adibmoradi, M.; Navidshad, B.; Jahromi, M.F. The effect of moderate levels of finely ground insoluble fibre on small intestine morphology, nutrient digestibility and performance of broiler chickens. Ital. J. Anim. Sci. 2016, 15, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Reynolds, L.P.; Redmer, D.A.; Caton, J.; Crenshaw, J.D. Effects of dietary fiber on intestinal growth, cell proliferation, and morphology in growing pigs Effects of dietary fiber on intestinal growth, cell proliferation, and morphology in The online version of this article, along with updated information. J. Anim. Sci. 1994, 72, 2270–2278. [Google Scholar] [CrossRef]
- Chiou, P.W.S.; Lu, T.W.; Hsu, J.C.; Yu, B. Effect of different sources of fiber on the intestinal morphology of domestic geese. Asian-Australas. J. Anim. Sci. 1996, 9, 539–550. [Google Scholar] [CrossRef]
- Tejeda, O.J.; Kim, W.K. The effects of cellulose and soybean hulls as sources of dietary fiber on the growth performance, organ growth, gut histomorphology, and nutrient digestibility of broiler chickens. Poult. Sci. 2020, 99, 6828–6836. [Google Scholar] [CrossRef] [PubMed]
- Kluth, H.; Rodehutscord, M. Effect of inclusion of cellulose in the diet on the inevitable endogenous amino acid losses in the ileum of broiler chicken. Poult. Sci. 2009, 88, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G. Influence of insoluble fibre and whole wheat inclusion on the performance, digestive tract development and ileal microbiota profile of broiler chickens. Br. Poult. Sci. 2009, 50, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Nabizadeh, A. The effect of inulin on broiler chicken intestinal microflora, gut morphology, and performance. J. Anim. Feed Sci. 2012, 21, 725–734. [Google Scholar] [CrossRef]
- Sacranie, A.; Svihus, B.; Denstadli, V.; Moen, B.; Iji, P.A.; Choct, M. The effect of insoluble fiber and intermittent feeding on gizzard development, gut motility, and performance of broiler chickens. Poult. Sci. 2012, 91, 693–700. [Google Scholar] [CrossRef]
- Langhout, D.J.; Schutte, J.B. Nutritional Implications of Pectins in Chicks in Relation to Esterification and Origin of Pectins. Poult. Sci. 1996, 75, 1236–1242. [Google Scholar] [CrossRef]
- Svihus, B. Function of the digestive system. J. Appl. Poult. Res. 2014, 23, 306–314. [Google Scholar] [CrossRef]
- Svihus, B. The gizzard: Function, influence of diet structure and effects on nutrient availability. Worlds Poult. Sci. J. 2011, 67, 207–223. [Google Scholar] [CrossRef]
- Van der Klis, J.D.; Verstegen, M.W.; De Wit, W. Absorption of minerals and retention time of dry matter in the gastrointestinal tract of broilers. Poult. Sci. 1990, 69, 2185–2194. [Google Scholar] [CrossRef]
- Kheravii, S.K.; Swick, R.A.; Choct, M.; Wu, S.B. Coarse particle inclusion and lignocellulose-rich fiber addition in feed benefit performance and health of broiler chickens. Poult. Sci. 2017, 96, 3272–3281. [Google Scholar] [CrossRef]
- Jiménez-Moreno, E.; De Coca-Sinova, A.; González-Alvarado, J.M.; Mateos, G.G. Inclusion of insoluble fiber sources in mash or pellet diets for young broilers. 1. Effects on growth performance and water intake. Poult. Sci. 2016, 95, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Yokhana, J.S.; Parkinson, G.; Frankel, T.L. Effect of insoluble fiber supplementation applied at different ages on digestive organ weight and digestive enzymes of layer-strain poultry. Poult. Sci. 2016, 95, 550–559. [Google Scholar] [CrossRef]
- Shang, Q.; Wu, D.; Liu, H.; Mahfuz, S.; Piao, X. The impact of wheat bran on the morphology and physiology of the gastrointestinal tract in broiler chickens. Animals 2020, 10, 1831. [Google Scholar] [CrossRef]
- Raza, A.; Bashir, S.; Tabassum, R. An update on carbohydrases: Growth performance and intestinal health of poultry. Heliyon 2019, 5, e01437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heywang, B.W. High Levels of Alfalfa Meal in Diets for Chickens. Poult. Sci. 1950, 29, 804–811. [Google Scholar] [CrossRef]
- Hetland, H.; Svihus, B. Ileal starch digestibility in growing broiler chickens fed on a wheat-based diet is improved by mash feeding, dilution with cellulose or whole wheat inclusion. Br. Poult. Sci. 2001, 42, 633–637. [Google Scholar] [CrossRef]
- Maisonnier, S.; Gomez, J.; Carré, B. Nutrient digestibility and intestinal viscosities in broiler chickens fed on wheat diets, as compared to maize diets with added guar gum. Br. Poul. Sci. 2010, 1668, 37–41. [Google Scholar] [CrossRef]
- Silva, V.K.; de Souza Morita, V.; Boleli, I.C. Effect of pectin extracted from citrus pulp on digesta characteristics and nutrient digestibility in broilers chickens. Rev. Bras. Zootec. 2013, 42, 575–583. [Google Scholar] [CrossRef] [Green Version]
- Tellez, G.; Latorre, J.D.; Kuttappan, V.A.; Kogut, M.H.; Wolfenden, A.; Hernandez-Velasco, X.; Hargis, B.M.; Bottje, W.G.; Bielke, L.R.; Faulkner, O.B. Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens. Front. Genet. 2014, 5, 339. [Google Scholar] [CrossRef]
- Chaplin, M.F. Fibre and water binding. Proc. Nutr. Soc. 2003, 62, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Dvir, I.; Chayoth, R.; Sod-Moriah, U.; Shany, S.; Nyska, A.; Stark, A.H.; Madar, Z.; Arad, S.M. Soluble polysaccharide and biomass of red microalga Porphyridium sp. alter intestinal morphology and reduce serum cholesterol in rats. Br. J. Nutr. 2000, 84, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Kheravii, S.K.; Morgan, N.K.; Swick, R.A.; Choct, M.; Wu, S.B. Roles of dietary fibre and ingredient particle size in broiler nutrition. Worlds Poult. Sci. J. 2018, 74, 301–316. [Google Scholar] [CrossRef]
- Samaan, R.A. Dietary Fiber for the Prevention of Cardiovascular Disease; Elsevier Inc.: Los Angeles, CA, USA, 2017; pp. 35–59. [Google Scholar]
- Ricke, S.C.; Lee, S.I.; Kim, S.A.; Park, S.H.; Shi, Z. Prebiotics and the poultry gastrointestinal tract microbiome. Poult. Sci. 2020, 99, 670–677. [Google Scholar] [CrossRef]
- Teng, P.Y.; Kim, W.K. Review: Roles of prebiotics in intestinal ecosystem of broilers. Front. Vet. Sci. 2018, 5, 245. [Google Scholar] [CrossRef] [PubMed]
- Ferrando, C.; Vergara, P.; Jiménez, M.; Goñalons, E. Study of the Rate of Passage of Food With Chromium-Mordanted Plant Cells in Chickens (Gallus Gallus). Q. J. Exp. Physiol. 1987, 72, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Walugembe, M.; Hsieh, J.C.F.; Koszewski, N.J.; Lamont, S.J.; Persia, M.E.; Rothschild, M.F. Effects of dietary fiber on cecal short-chain fatty acid and cecal microbiota of broiler and laying-hen chicks. Poult. Sci. 2015, 94, 2351–2359. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.; Willing, B.P. Dietary fiber and intestinal health of monogastric animals. Front. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Jha, R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Apajalahti, J.; Kettunen, A.; Graham, H. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. Worlds Poult. Sci. J. 2004, 60, 223–232. [Google Scholar] [CrossRef]
- Baurhoo, B.; Phillip, L.; Ruiz-Feria, C.A. Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poult. Sci. 2007, 86, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Józefiak, D.; Rutkowski, A.; Kaczmarek, S.; Jensen, B.B.; Engberg, R.M.; HØjberg, O. Effect of β-glucanase and xylanase supplementation of barley- and rye-based diets on caecal microbiota of broiler chickens. Br. Poult. Sci. 2010, 51, 546–557. [Google Scholar] [CrossRef]
- Wagner, D.D.; Thomas, O.P. Influence of diets containing rye or pectin on the intestinal flora of chicks. Poult. Sci. 1978, 57, 971–975. [Google Scholar] [CrossRef]
- Lan, Y.; Verstegen, M.W.A.; Tamminga, S.; Williams, B.A. The role of the commensal gut microbial community in broiler chickens. Worlds. Poult. Sci. J. 2005, 61, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Mirzaie, S.; Zaghari, M.; Aminzadeh, S.; Shivazad, M. The effects of non-starch polysaccharides content of wheat and xylanase supplementation on the intestinal amylase, aminopeptidase and lipase activities, ileal viscosity and fat digestibility in layer diet. Iran. J. Biotechnol. 2012, 10, 208–214. [Google Scholar]
- Tellez, G.; Higgins, S.E.; Donoghue, A.M.; Hargis, B.M. Digestive physiology and the role of microorganisms. J. Appl. Poult. Res. 2006, 15, 136–144. [Google Scholar] [CrossRef]
- Dittoe, D.K.; Ricke, S.C.; Kiess, A.S. Organic Acids and Potential for Modifying the Avian Gastrointestinal Tract and Reducing Pathogens and Disease. Front. Vet. Sci. 2018, 5, 216. [Google Scholar] [CrossRef] [PubMed]
- Cox, C.M.; Sumners, L.H.; Kim, S.; Mcelroy, A.P.; Bedford, M.R.; Dalloul, R.A. Immune responses to dietary β-glucan in broiler chicks during an Eimeria challenge. Poult. Sci. 2010, 89, 2597–2607. [Google Scholar] [CrossRef]
- Józefiak, D.; Rutkowski, A.; Martin, S.A. Carbohydrate fermentation in the avian ceca: A review. Anim. Feed Sci. Technol. 2004, 113, 1–15. [Google Scholar] [CrossRef]
- Eeckhaut, V.; van Immerseel, F.; Croubels, S.; de Baere, S.; Haesebrouck, F.; Ducatelle, R.; Louis, P.; Vandamme, P. Butyrate production in phylogenetically diverse Firmicutes isolated from the chicken caecum. Microb. Biotechnol. 2011, 4, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Place, R.F.; Noonan, E.J.; Giardina, C. HDAC inhibition prevents NF-κB activation by suppressing proteasome activity: Down-regulation of proteasome subunit expression stabilizes IκBα. Biochem. Pharmacol. 2005, 70, 394–406. [Google Scholar] [CrossRef]
- Vernia, P.; Monteleone, G.; Grandinetti, G.; Villotti, G.; Di Giulio, E.; Frieri, G.; Marcheggiano, A.; Pallone, F.; Caprilli, R.; Torsoli, A. Combined oral sodium butyrate and mesalazine treatment compared to oral mesalazine alone in ulcerative colitis: Randomized, double-blind, placebo- controlled pilot study. Dig. Dis. Sci. 2000, 45, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Namkung, H.; Yu, H.; Gong, J.; Leeson, S. Antimicrobial activity of butyrate glycerides toward salmonella typhimurium and clostridium perfringens. Poult. Sci. 2011, 90, 2217–2222. [Google Scholar] [CrossRef] [PubMed]
- Shakouri, M.D.; Iji, P.A.; Mikkelsen, L.L.; Cowieson, A.J. Intestinal function and gut microflora of broiler chickens as influenced by cereal grains and microbial enzyme supplementation. J. Anim. Physiol. Anim. Nutr. (Berl.) 2009, 93, 647–658. [Google Scholar] [CrossRef]
- Cho, S.S.; Samuel, P. Fiber Ingredients: Food Applications and Health Benefits; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Fischer, M.M.; Kessler, A.M.; de Sá, L.R.M.; Vasconcellos, R.S.; Roberti Filho, F.O.; Nogueira, S.P.; Oliveira, M.C.C.; Carciofi, A.C. Fiber fermentability effects on energy and macronutrient digestibility, fecal traits, postprandial metabolite responses, and colon histology of overweight cats. J. Anim. Sci. 2012, 90, 2233–2245. [Google Scholar] [CrossRef]
- Podolske, J.; Cho, S.S.; Gonzalez, R.; Lee, A.W.; Peterson, C. Rice hulls fiber: Food application, physiological benefits, and safety. Cereal Foods World 2013, 58, 127–131. [Google Scholar] [CrossRef]
- Knudsen, K.E.B. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poult. Sci. 2014, 93, 2380–2393. [Google Scholar] [CrossRef]
- Bailoni, L.; Schiavon, S.; Pagnin, G.; Tagliapietra, F.; Bonsembiante, M. Quanti-qualitative evaluation of pectins in the dietary fibre of 24 foods. Ital. J. Anim. Sci. 2005, 4, 49–58. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Beef Cattle: Seventh Revised Edition; The National Academies Press: Washington, DC, USA, 2001; pp. 134–142. [Google Scholar]
- Swanson, K.S.; Grieshop, C.M.; Clapper, G.M.; Shields, R.G.; Belay, T.; Merchen, N.R.; Fahey, G.C. Fruit and vegetable fiber fermentation by gut microflora from canines. J. Anim. Sci. 2001, 79, 919–926. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.A.; White, P.J.; Galloway, R. Soybeans; AOCS Press: Urbana, IL, USA, 2008; pp. 269–296. [Google Scholar]
- Rossi, M.; Corradini, C.; Amaretti, A.; Nicolini, M.; Pompei, A.; Zanoni, S.; Matteuzzi, D. Fermentation of fructooligosaccharides and inulin by bifidobacteria: A comparative study of pure and fecal cultures. Appl. Environ. Microbiol. 2005, 71, 6150–6158. [Google Scholar] [CrossRef] [Green Version]
- Kays, A.E.; Morris, J.B.; Kim, Y. Total and Soluble Dietary Fiber Variation in Cyamopsis tetragonoloba (L.) taub. (guar) genotypes. J. Food Qual. 2006, 29, 383–391. [Google Scholar] [CrossRef]
- Jaworski, N.W.; Lærke, H.N.; Bach Knudsen, K.E.; Stein, H.H. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains1. J. Anim. Sci. 2015, 93, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.; Jacobs, M.; Li, J.; Huang, C.; Li, D.; Navarro, D.M.D.L.; Stein, H.H.; Jaworski, N.W. Technical note: Concentrations of soluble, insoluble, and total dietary fiber in feed ingredients determined using method AOAC 991.43 are not different from values determined using method AOAC 2011.43 with the AnkomTDF dietary fiber analyzer. J. Anim. Sci. 2019, 97, 3972–3983. [Google Scholar] [CrossRef]
- Keegstra, K. Plant cell walls. Plant Physiol. 2010, 154, 483–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keegstra, K.; Talmadge, K.W.; Bauer, W.D.; Albersheim, P. The structure of plant cell walls. Plant Pjysiol. 1972, 51, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Bedford, M. Removal of antibiotic growth promoters from poultry diets: Implications and strategies to minimise subsequent problems. Worlds Poult. Sci. J. 2000, 56, 347–365. [Google Scholar] [CrossRef]
- Choct, M. Managing gut health through nutrition. Br. Poult. Sci. 2009, 50, 9–15. [Google Scholar] [CrossRef]
- Cant, J.P.; McBride, B.W.; Croom, W.J. The Regulation of Intestinal Metabolism and Its Impact on Whole Animal Energetics. J. Anim. Sci. 1996, 74, 2541–2553. [Google Scholar] [CrossRef]
- Ratcliffe, M.J.H. B cell development in gut associated lymphoid tissues. Vet. Immunol. Immunopathol. 2002, 87, 337–340. [Google Scholar] [CrossRef]
- Glick, B.; Chang, T.S.; Jaap, R.G. The Bursa of Fabricius and Antibody Production. Poult. Sci. 1956, 35, 224–225. [Google Scholar] [CrossRef]
- Riddell, C.; Konga, X. The Influence of Diet on Necrotic Enteritis in Broiler Chickens. Am. Avian Pathol. 2017, 36, 499–503. [Google Scholar] [CrossRef]
- McDevitt, R.M.; Brooker, J.D.; Acamovic, T.; Sparks, N.H.C. Necrotic enteritis; a continuing challenge for the poultry industry. Worlds Poult. Sci. J. 2006, 62, 221–247. [Google Scholar] [CrossRef]
- Kaldhusdal, M.; Hofshagen, M. Barley inclusion and avoparcin supplementation in broiler diets. 2. Clinical, pathological, and bacteriological findings in a mild form of necrotic enteritis. Poult. Sci. 1992, 71, 1145–1153. [Google Scholar] [CrossRef]
- Shojadoost, B.; Vince, A.R.; Prescott, J.F. The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens: A critical review. Vet. Res. 2012, 43, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jacob, J.P.; Pescatore, A.J. Using barley in poultry diets-a review. J. Appl. Poult. Res. 2012, 21, 915–940. [Google Scholar] [CrossRef]
- Lloyd, A.B.; Cumming, R.B.; Kent, R.D. Prevention of Salmonella Typhimurium Infection in Poultry By Pretreatment of Chickens and Poults With Intestinal Extracts. Aust. Vet. J. 1977, 53, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Oviedo-Rondón, E.O. Holistic view of intestinal health in poultry. Anim. Feed Sci. Technol. 2019, 250, 1–8. [Google Scholar] [CrossRef]
- Toghyani, M.; Wu, S.B.; Pérez-Maldonado, R.A.; Iji, P.A.; Swick, R.A. Performance, nutrient utilization, and energy partitioning in broiler chickens offered high canola meal diets supplemented with multicomponent carbohydrase and mono-component protease. Poult. Sci. 2017, 96, 3960–3972. [Google Scholar] [CrossRef] [PubMed]
- Awad, W.A.; Mann, E.; Dzieciol, M.; Hess, C.; Schmitz-Esser, S.; Wagner, M.; Hess, M. Age-related differences in the luminal and mucosa-associated gut microbiome of broiler chickens and shifts associated with Campylobacter jejuni infection. Front. Cell. Infect. Microbiol. 2016, 6, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maki, J.J.; Klima, C.L.; Sylte, M.J.; Looft, T. The microbial pecking order: Utilization of intestinal microbiota for poultry health. Microorganisms 2019, 7, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahsan, U.; Cengiz, O.; Raza, I.; Kuter, E.; Chacher, M.F.A.; Iqbal, Z.; Umar, S.; Çakir, S. Sodium butyrate in chicken nutrition: The dynamics of performance, gut microbiota, gut morphology, and immunity. Worlds Poult. Sci. J. 2016, 72, 265–275. [Google Scholar] [CrossRef] [Green Version]
Specie | Ingredient 1 | Effects 2 | % 3 | Age/Duration 4 | Reference |
---|---|---|---|---|---|
Broilers | Oat hulls, sugar beet pulp | ↑ RW of proventriculus and ceca; oat hulls ↑ RW of the gizzard. | 3% | 1 day-old/21 days | [3] |
Broilers | Sugar beet pulp and rice hulls | Sugar beet pulp ↑ RW of jejunum and ileum, whereas rice hulls ↓ RW; rice hulls ↑ jejunal villi height. | 3% | 1 day-old/42 days | [6] |
Turkeys | Mix of sunflower meal and soyhulls | ↑ villi height and morphology parameters inconsistently in duodenum, jejunum, and ileum. | 3, 6, and 9% CF | 1 day-old/98 days | [13] |
Quail | Wheat fiber | ↓ RW of the liver, ↑ RW and villi:crypt ratio of duodenum, jejunum, and ileum at 1.5%. | 0, 0.5, 1, and 1.5% | 1 day-old/28 days | [14] |
Geese | Alfalfa, barley hulls, rice hulls, cellulose, lignin, or pectin | ↑ in villi height with alfalfa meal, rice hulls or pectin and reductions with lignin. | Vary | 14 days-old/28 days | [25] |
Broiler | Soyhulls and cellulose | Soyhulls ↑ duodenal, jejunal, and ileal villus height. | 2–8% CF | 1 day-old/20 days | [26] |
Broiler | Wood shavings | ↑ RW of proventriculus and gizzard; ↓ RW of small intestine. | 6% | 1 day-old/21 days | [28] |
Broilers | Oat hulls, soyhulls | ↑ RW of proventriculus and gizzard; ↓ RW of small intestine. | 3% | 1 day-old/21 days | [21] |
Broilers | Inulin | ↑ villi height either at 0.5 or 1%. | 0.5, 1% | 1 day-old/42 days | [29] |
Broilers | Oat and barley hulls | ↑ RW of gizzard and of intestines. | 15% | 1 day-old/17 to 32 d-of-age | [30] |
Broilers | Pectin and beet pulp | Pectin ↓ the liver weight. | 1.5 and 3% | 1 day-old/6–27 days | [31] |
Specie | Ingredient 1 | Effects 2 | % 3 | Iso-Nutrient 4 | Age/Duration 5 | Reference |
---|---|---|---|---|---|---|
Broilers | Oat hulls | ↑ the TAR of dry matter, organic matter, nitrogen, ether extract, and amen. | 3% | No | 1 day-old/21 days | [3] |
Broilers | Oat hulls | ↑ starch digestibility. | 10% | No | 11 day-old/22 days | [15] |
Broilers | Soyhulls and cellulose | Soyhulls ↑ amino acids digestibility. | 2–8% CF | Yes | 1 day-old/20 days | [26] |
Broilers | Cellulose | 9% ↑ starch digestibility. | 6% | No | 1 day-old/21 days | [28] |
Broilers | Oat hulls | ↑ TTAD of dry matter, nitrogen and ether extract digestibility. | 3% | Yes | 1 day-old/21 days | [21] |
Broilers | Oat and barley hulls at 50:50, wt:wt; coarse and fine | ↓ AMEn digestibility, and ↑ starch digestibility. | 15% | No | 1 day-old/18 to 32 d-of-age | [30] |
Broilers | Oat hulls | 10% oat hulls ↓ AMEn but ↑ starch digestibility. | 4, 10% | No | 7 day-old/14 days | [41] |
Broilers | Guar gum | ↓ AD of lipids, starch, protein, and AMEn at 1 and 3 g/kg. | 1 or 3 g/kg diet | Yes | 7 day-old/14 days | [42] |
Broilers | Pectin from citrus pulp | ↑ AME and AMEn with levels of pectin; quadratic ↓ in dry matter digestibility; ↓ in nutrient digestibility. | 1, 3, 5% | Yes | 1 day-old/31 days | [43] |
Broilers | Cellulose | ↑ Arginine, and Valine digestibility. | 3, 8% CF | No | 1 day-old/21 days | [27] |
Specie | Ingredient 1 | Effects 2 | % 3 | Age/Duration 4 | Reference |
---|---|---|---|---|---|
Quail | Wheat fiber | No effects. | 0, 0.5, 1, and 1.5% | 1 day-old/28 days | [14] |
Broilers | Inulin | ↑ bifidobacteria and decrease E. Coli counts in cecal contents. | 0.5, 1% | 1 day-old/42 days | [29] |
Broiler | Mix DDG and wheat | ↑ Selenomonadales, Enterobacteriales, and Campylobacterales. | 6 (starter) and 8% (grower) | 1 day-old/21 days | [52] |
Laying hen | Mix DDG and wheat | No changes. | 6 (starter) and 8% (grower) | 1 day-old/21 days | [52] |
Broilers | Rye or pectin | Ileal segments had 2 or 3-log higher counts compared to control group. | 4.50% | 1 day-old/14 days | [58] |
Specie | Ingredient 1 | Effects 2 | % 3 | Iso-Nutrient 4 | Age/Duration 5 | Reference | |
---|---|---|---|---|---|---|---|
Broilers | Oat hulls, sugar beet pulp | Oat hulls ↑ daily ABW by 7.6%. | 3% | No | 1 day-old/21 days | [3] | |
Broilers | Sugar beet pulp | ↓ FE by 9%. | 3% | No | 1 day-old/42 days | [6] | |
Broilers | Oat hulls | ↑ FE by 3%. | 10% | No | 11 day-old/22 days | [15] | |
Broilers | Oat hulls | 10% oat hulls ↓ FE by 6%. | 4 and 10% | No | 7 day-old/14 days | [12] | |
Turkey | Sunflower meal and soyhulls | 6% CF ↑ 2.5% BW; 9% CF ↓ FE by 3.8%. | 3, 6, 9% CF | Yes | 1 day-old/98 days | [13] | |
Quail | Wheat fiber | ↑ BW by 5% and ↑ FE by 5% at 1.5% in the diet. | 0, 0.5, 1, and 1.5% | No | 1 day-old/28 days | [14] | |
Broilers | Soyhulls and cellulose | ↑ FE by 8% compared to cellulose. | 2–8% CF | Yes | 1 day-old/20 days | [26] | |
Broilers | Wood shavings | ↑ FE by 4.7%. | 6% | No | 1 day-old/21 days | [28] | |
Broilers | Oat hulls, soyhulls | ↑ FE by 3.8%. | 3% | Yes | 1 day-old/21 days | [21] | |
Broilers | Inulin | ↑ BWG by 8% from 25–42 days when at 1% in the diet. | 0.5, 1% | Yes | 1 day-old/42 days | [29] | |
Broilers | Oat and barley hulls | Fine hulls ↓ FE by 4.7%; coarse ↑ BWG by 2%. | 15% | No | 1 day-old/17 to 32 days-of-age | [30] | |
Broilers | Guar gum | ↓ FE by 4% when fed at 3 g/kg. | 1 or 3 g/kg diet | Yes | 7 day-old/14 days | [42] | |
Broilers | Pectin and beet pulp | Pectin ↓ BWG by 28% and FE by 28% when fed at 3%. | 1.5 and 3% | Yes | 1 day-old/6–27 days | [31] |
Ingredient | IF 1, % | SF 1, % | Major NSP 2 | Structure-Linkages | Reference |
---|---|---|---|---|---|
Oat hulls | 83.3 | 1.7 | Cellulose/lignin | Glu β 1–4/β-O-4 | [70] |
Beet pulp | 1.9–3 | 28 | Uronic acid | β 1–4 | [71] |
Rice hulls | 87.3 | 2.7 | Cellulose/arabinoxylan/lignin | Glu β 1–4/β-O-4 | [72] |
Sunflower meal | 11.3 | 3.9 | Xylose/uric acid | β 1–4 | [73] |
Wheat fiber | 44.9 | 7.6 | Cellulose | Glu β 1–4 | [71] |
Alfalfa meal | 46.7 | 7.9 | Cellulose/lignin | Glu β 1–4/β-O-4 | [74] |
Barley hulls | 20.3 | 9.8 | Cellulose/hemicellulose/lignin | Glu β 1–4/β-O-4 | [75] |
Cellulose | 97 | 2.3 | Cellulose | Glu β 1–4 | [76] |
Pectin | 0 | 65.4 | Uronic acid | β 1–4 | [76] |
Soyhulls | 49.3 | 13.3 | Pectin/galacturonic acid | galacturonic acid 1α→4 linkages | [77] |
Wood shavings | 91.7 | - | Cellulose/lignin | Glu β 1–4/β-O-4 | [15] |
Inulin 3 | - | >90 | Fructose units | β 2–1 | [29,78] |
Guar gum | 26 | 32 | Mannose/galactose | β 1–4/1–6 | [79] |
DDGS 4 | 25.5 | 3.4 | Arabinoxylan | β 1–4 | [80] |
Wheat | 9.3 | 1.9 | Arabinoxylan | β 1–4 | [80,81] |
Rye | 11 | 4.2 | Arabinoxylan | β 1–4 | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
J. Tejeda, O.; K. Kim, W. Role of Dietary Fiber in Poultry Nutrition. Animals 2021, 11, 461. https://doi.org/10.3390/ani11020461
J. Tejeda O, K. Kim W. Role of Dietary Fiber in Poultry Nutrition. Animals. 2021; 11(2):461. https://doi.org/10.3390/ani11020461
Chicago/Turabian StyleJ. Tejeda, Oscar, and Woo K. Kim. 2021. "Role of Dietary Fiber in Poultry Nutrition" Animals 11, no. 2: 461. https://doi.org/10.3390/ani11020461