Abattoir Factors Influencing the Incidence of Dark Cutting in Australian Grain-Fed Beef
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sourced
2.2. Weather Data
- (i)
- A nonlinear regression which applies when BGT is greater than 25 °CHLIBGT>25 = 8.62 + (0.38 × RH) + (1.55 × BGT) − (0.5 × WS) + [e2.4−WS ]
- (ii)
- A linear model which applies when BGT falls below 25 °C;HLIBGT<25 = 10.66 + (0.28 × RH) + (1.3 × BGT) − WSwhere RH = Relative Humidity (%); BGT = Black Globe Temperature (°C); WS = wind speed (m/s); and e = the base of the natural logarithm (approximate value of e = 2.71828).
- (i)
- If [HLIACC < HLILower Threshold, (HLIACC − HLILower Threshold)/M]; and
- (ii)
- If [HLIACC > HLIUpper Threshold, (HLIACC − HLIUpper Threshold)/M, 0]where HLIACC = the actual HLI value at a point in time; HLILower Threshold = the HLI lower threshold where cattle will dissipate heat (e.g., 77); HLIUpper Threshold = the HLI upper threshold where cattle will gain heat (e.g., 86); and M = number of measures per hour, i.e., number of times HLI data are collected per hour; If every 10 min, then M = 6 (Gaughan et al.) [15].
2.3. Meat Standards Australia Carcass data
2.4. Lairage Data
2.5. Statistical Analysis
3. Results
3.1. Incidence of Dark Cutting
3.2. Lairage Factors Influencing Dark Cutting
3.3. Climate Conditions during Lairage
3.4. Processor Factors Influencing Dark Cutting
3.5. Carcass Factors Influencing Dark Cutting
3.5.1. Hot Standard Carcass Weight
3.5.2. Ossification
3.5.3. Marbling
3.5.4. Rib Fat
3.5.5. Hump Height
4. Discussion
4.1. Time in Lairage and Time off Feed
4.2. Time to Grading
4.3. Fat Color
4.4. Climatic Conditions during Lairage
4.5. Hot Standard Carcass Weight, Marbling and Rib Fat
4.6. Ossification
4.7. Hump Height
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Ethics Statement
References
- Jose, C.; McGilchrist, P.; Perovic, J.L.; Gardner, G.E.; Pethick, D.W. The economic impact of dark cutting beef in Australia. In Proceedings of the 61st International Congress of Meat Science and Technology, Clermont-Ferrand, France, 23–28th August 2015. [Google Scholar]
- Bartos, L.; Franc, C.; Albiston, G.; Beber, K. Prevention of dark-cutting (DFD) beef in penned bulls at the abattoir. Meat Sci. 1988, 22, 213–220. [Google Scholar] [CrossRef]
- Scanga, J.; Belk, K.; Tatum, J.; Grandin, T.; Smith, G. Factors contributing to the incidence of dark cutting beef. J. Anim. Sci. 1998, 76, 2040–2047. [Google Scholar] [CrossRef] [Green Version]
- McGilchrist, P.; Alston, C.; Gardner, G.; Thomson, K.; Pethick, D. Beef carcasses with larger eye muscle areas, lower ossification scores and improved nutrition have a lower incidence of dark cutting. Meat Sci. 2012, 92, 474–480. [Google Scholar] [CrossRef] [Green Version]
- Tarrant, P.V. Animal Behaviour and Environment in the Dark-Cutting Condition in Beef—A Review. Ir. J. Food Sci. Technol. 1989, 13, 1–21. [Google Scholar]
- Loudon, K.M.W.; Lean, I.J.; Pethick, D.W.; Gardner, G.E.; Grubb, L.J.; Evans, A.C.; McGilchrist, P. On farm factors increasing dark cutting in pasture finished beef cattle. Meat Sci. 2018, 144, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Knee, B.W.; Cummins, L.J.; Walker, P.; Warner, R. Seasonal variation in muscle glycogen in beef steers. Aust. J. Exp. Agric. 2004, 44, 729–734. [Google Scholar] [CrossRef]
- McGilchrist, P.; Perovic, J.L.; Gardner, G.E.; Pethick, D.W.; Jose, C.G. The incidence of dark cutting in southern Australian beef production systems fluctuates between months. Anim. Prod. Sci. 2014, 54, 1765–1769. [Google Scholar] [CrossRef] [Green Version]
- Voisinet, B.D.; Grandin, T.; Tatum, D.; O’Connor, S.F.; Struthers, J. Feedlot Cattle with Calm Temperaments Have Higher Average Daily Gains Than Cattle with Excitable Temperaments. J. Anim. Sci. 1997, 75, 892–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coombes, S.V.; Gardner, G.E.; Pethick, D.W.; McGilchrist, P. The impact of beef cattle temperament assessed using flight speed on muscle glycogen, muscle lactate and plasma lactate concentrations at slaughter. Meat Sci. 2014, 98, 815–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warner, R.; Truscott, T.; Eldridge, G.; Franz, P. A survey of the incidence of high pH beef meat in Victorian abattoirs. In Proceedings of the 34th International Congress of Meat Science and Technology, Brisbane, QSL, Australia, 29 August–2 September 1988; pp. 150–151. [Google Scholar]
- Cooke, R.; Bill, E. Kunkle Interdisciplinary Beef Symposium: Temperament and acclimation to human handling influence growth, health, and reproductive responses in Bos taurus and Bos indicus cattle. J. Anim. Sci. 2014, 92, 5325–5333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francisco, C.; Cooke, R.F.; Marques, R.; Mills, R.; Bohnert, D. Effects of temperament and acclimation to handling on feedlot performance of Bos taurus feeder cattle originated from a rangeland-based cow–calf system. J. Anim. Sci. 2012, 90, 5067–5077. [Google Scholar] [CrossRef]
- Meat & Livestock Australia. 2015 Australian Beef Eating Quality Audit; Meat & Livestock Australia: Brisbane, QSL, Australia, 2015. [Google Scholar]
- Gaughan, J.; Mader, T.L.; Holt, S.; Lisle, A. A new heat load index for feedlot cattle. J. Anim. Sci. 2008, 86, 226–234. [Google Scholar]
- Meat Standards Australia. MSA Standards Manual for Beef Grading; Meat and Livestock Australia: Sydney NSW, Australia, 2007. [Google Scholar]
- AUS-MEAT. Handbook of Australian Meat; International Red Meat Manual; Meat & Livestock Australia: Brisbane, QSL, Australia, 2005. [Google Scholar]
- Romans, J.R. The Meat We Eat; Interstate Publishers: Danville, IL, USA, 2001. [Google Scholar]
- Wickham, H. Data manipulation with dplyr. In Proceedings of the R User Conference, Los Angeles, CA, USA, 30 June–3 July 2014. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: Berlin, Germany, 2016. [Google Scholar]
- Wang, E.; Cook, D.; Hyndman, R. tsibble: Tidy Temporal Data Frames and Tools. R Package Version 0.8.3. Available online: https://tsibble.tidyverts.org (accessed on 10 February 2021).
- Jones, S.D.; Newman, J.A.; Tong, A.K.; Martin, A.H.; Robertson, W.M. The effects of two shipping treatments on the carcass characteristics of bulls imAbattoired with zeranol and unimAbattoired steers. J. Anim. Sci. 1986, 62, 1602–1608. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.D.M.; Schaefer, A.L.; Robertson, W.M.; Vincent, B.C. The effects of withholding feed and water on carcass shrinkage and meat quality in beef cattle. Meat Sci. 1990, 28, 131–139. [Google Scholar] [CrossRef]
- Ferguson, D.; Bruce, H.; Thompson, J.; Egan, A.; Perry, D.; Shorthose, W. Factors affecting beef palatability—Farmgate to chilled carcass. Aust. J. Exp. Agric. 2001, 41, 879–891. [Google Scholar] [CrossRef] [Green Version]
- Gardner, G.E.; McGilchrist, P.; Pethick, D.W. Ruminant glycogen metabolism. Anim. Prod. Sci. 2014, 54, 1575–1583. [Google Scholar] [CrossRef]
- Immonen, K.; Ruusunen, M.; Hissa, K.; Puolanne, E. Bovine muscle glycogen concentration in relation to finishing diet, slaughter and ultimate pH. Meat Sci. 2000, 55, 25–31. [Google Scholar] [CrossRef]
- Murray, A. Factors affecting beef color at time of grading. Can. J. Anim. Sci. 1989, 69, 347–355. [Google Scholar] [CrossRef]
- Daley, C.A.; Abbott, A.; Doyle, P.S.; Nader, G.A.; Larson, S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 2010, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Murad, H. Differentiation between Normal and Abnormal Yellow Colour of Beef Carcasses in Sulaimani New Slaughterhouse. Nutr. Food Technol. 2015. [Google Scholar] [CrossRef]
- Brink, D.; Lowry, S.; Stock, R.; Parrott, J. Severity of liver abscesses and efficiency of feed utilization of feedlot cattle. J. Anim. Sci. 1990, 68, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Jackson, K.S.; Tedeschi, L.O.; Pinchak, W.E.; Carstens, G.E. Changes in feeding behavior patterns and dry matter intake before clinical symptoms associated with bovine respiratory disease in growing bulls. J. Anim. Sci. 2016, 94, 1644–1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaraja, T.; Lechtenberg, K.F. Liver abscesses in feedlot cattle. Vet. Clin. North Am. Food Anim. Pract. 2007, 23, 351–369. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.; Warner, R.; Winfield, C. Sources of variation in subcutaneous fat color of beef carcasses. In Proceedings of the Australian Society of Animal Production, Melbourne, VIC, Australia, 1–7 August 1990; pp. 416–419. [Google Scholar]
- Voisinet, B.D.; Grandin, T.; O’Connor, S.F.; Tatum, J.D.; Deesing, M.J. Bos indicus-cross feedlot cattle with excitable temperaments have tougher meat and a higher incidence of borderline dark cutters. Meat Sci. 1997, 46, 367–377. [Google Scholar] [CrossRef]
- Peña, F.; Avilés, C.; Domenech, V.; González, A.; Martínez, A.; Molina, A. Effects of stress by unfamiliar sounds on carcass and meat traits in bulls from three continental beef cattle breeds at different ageing times. Meat Sci. 2014, 98, 718–725. [Google Scholar] [CrossRef]
- Berg, E.P. Influence of stress on composition and quality of meat, poultry and meat products. J. Anim. Sci. 2001, 79, 204. [Google Scholar]
- Preston, F.L.; Wilkes, M.J.; McGilchrist, P.; Pitchford, W.S. Pre-Slaughter Hide Washing Affects Meat Quality in Pasture Finished Cattle. Available online: https://digicomst.ie/wp-content/uploads/2020/05/2018_02_01.pdf (accessed on 1 December 2020).
- Harrison, A.; Smith, M.; Allen, D.M.; Hunt, M.C.; Klastner, C.; Kroft, D. Nutritional regime effects on quality and yield characteristics of beef. J. Anim. Sci. 1978, 47, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Kreikemeier, K.K.; Unruh, J.A.; Eck, T.P. Factors affecting the occurrence of dark-cutting beef and selected carcass traits in finished beef cattle. J. Anim. Sci. 1998, 76, 388–395. [Google Scholar] [CrossRef]
- Page, J.K.; Wulf, D.M.; Schwotzer, T.R. A survey of beef muscle color and pH. J. Anim. Sci. 2001, 79, 678–687. [Google Scholar] [CrossRef] [Green Version]
- Gardner, G.; McIntyre, B.; Tudor, G.; Pethick, D. The impact of nutrition on bovine muscle glycogen metabolism following exercise. Aust. J. Agric. Res. 2001, 52, 461–470. [Google Scholar] [CrossRef]
- Brandstetter, A.M.; Picard, B.; Geay, Y. Muscle fiber characteristics in four muscles of growing bulls: I. Postnatal differentiation. Livest. Prod. Sci. 1998, 53, 15–23. [Google Scholar] [CrossRef]
- Wegner, J.; Albrecht, E.; Fiedler, I.; Teuscher, F.; Papstein, H.-J.; Ender, K. Growth-and breed-related changes of muscle fiber characteristics in cattle. J. Anim. Sci. 2000, 78, 1485–1496. [Google Scholar] [CrossRef]
- Lorenzen, C.; Hale, D.; Griffin, D.; Savell, J.; Belk, K.; Frederick, T.; Miller, M.; Montgomery, T.; Smith, G. National Beef Quality Audit: Survey of producer-related defects and carcass quality and quantity attributes. J. Anim. Sci. 1993, 71, 1495–1502. [Google Scholar] [CrossRef]
- Tyler, R.; Taylor, D.; Cheffins, R.; Rickard, M. Bruising and muscle pH in zebu crossbred and British breed cattle. Vet. Rec. 1982, 110, 444–445. [Google Scholar] [CrossRef]
Feedlot | A (n = 7472) | B (n = 18,546) | C (n = 18,989) | D (n = 62,349) | E (n = 6082) | F (n = 8237) | G (n = 19,147) | Overall (n = 140,822) |
---|---|---|---|---|---|---|---|---|
ABATTOIR | ||||||||
A | 0 (0%) | 0 (0%) | 0 (0%) | 62,349 (100%) | 6082 (100%) | 0 (0%) | 0 (0%) | 68,431 (48.6%) |
B | 0 (0%) | 18,546 (100%) | 4000 (21.1%) | 0 (0%) | 0 (0%) | 0 (0%) | 19,147 (100%) | 41,693 (29.6%) |
C | 7472 (100%) | 0 (0%) | 14,989 (78.9%) | 0 (0%) | 0 (0%) | 8237 (100%) | 0 (0%) | 30,698 (21.8%) |
HGP | ||||||||
Y | 7472 (100%) | 0 (0%) | 15,899 (83.7%) | 55,129 (88.4%) | 5741 (94.4%) | 8237 (100%) | 9933 (51.9%) | 102,411 (72.7%) |
N | 0 (0%) | 18,546 (100%) | 3090 (16.3%) | 7220 (11.6%) | 341 (5.6%) | 0 (0%) | 9214 (48.1%) | 38,411 (27.3%) |
SEX | ||||||||
F | 7221 (96.6%) | 2488 (13.4%) | 14,166 (74.6%) | 10,105 (16.2%) | 6 (0.1%) | 4756 (57.7%) | 1401 (7.3%) | 40,143 (28.5%) |
M | 251 (3.4%) | 16,058 (86.6%) | 4823 (25.4%) | 52,244 (83.8%) | 6076 (99.9%) | 3481 (42.3%) | 17,746 (92.7%) | 100,679 (71.5%) |
Hot standard carcass weight (kg) | ||||||||
Mean (SD) | 287 (29.5) | 424 (43.2) | 298 (57.2) | 324 (35.3) | 333 (37.5) | 260 (24.4) | 349 (62.6) | 332 (60.5) |
Median [Min, Max] | 288 [197, 381] | 426 [196, 694] | 281 [169, 554] | 324 [102, 483] | 332 [187, 471] | 259 [172, 348] | 351 [61.0, 602] | 324 [61.0, 694] |
OSSIFICATION (100–590) | ||||||||
Mean (SD) | 159 (28.6) | 168 (55.5) | 154 (23.4) | 153 (18.4) | 151 (13.2) | 143 (16.9) | 163 (37.4) | 156 (30.4) |
Median [Min, Max] | 150 [110, 400] | 160 [100, 590] | 150 [100, 400] | 150 [100, 500] | 150 [100, 250] | 140 [100, 280] | 160 [100, 590] | 150 [100, 590] |
MSA MARBLING (100–1190) | ||||||||
Mean (SD) | 380 (56.1) | 619 (227) | 392 (72.5) | 351 (54.5) | 353 (48.8) | 358 (52.6) | 301 (113) | 387 (140) |
Median [Min, Max] | 360 [210, 590] | 560 [100, 1190] | 360 [120, 980] | 350 [100, 1000] | 350 [100, 780] | 350 [180, 600] | 300 [100, 1050] | 350 [100, 1190] |
RIB FAT (mm) | ||||||||
Mean (SD) | 7.43 (2.04) | 11.5 (4.50) | 7.59 (2.48) | 9.08 (3.41) | 9.92 (3.71) | 6.22 (1.49) | 8.74 (3.58) | 8.93 (3.61) |
Median [Min, Max] | 7.00 [1.00, 25.0] | 10.0 [3.00, 55.0] | 7.00 [2.00, 56.0] | 8.00 [1.00, 60.0] | 9.00 [1.00, 32.0] | 6.00 [2.00, 40.0] | 9.00 [1.00, 55.0] | 8.00 [1.00, 60.0] |
HUMP HEIGHT (mm) | ||||||||
Mean (SD) | 49.4 (9.18) | 66.3 (18.1) | 51.0 (12.2) | 64.0 (17.3) | 66.0 (14.9) | 47.5 (9.08) | 67.1 (19.9) | 61.3 (17.7) |
Median [Min, Max] | 45.0 [20.0, 150] | 65.0 [15.0, 160] | 45.0 [20.0, 140] | 60.0 [15.0, 265] | 65.0 [30.0, 220] | 45.0 [20.0, 170] | 65.0 [20.0, 280] | 60.0 [15.0, 280] |
DAYS ON FEED (days) | ||||||||
Mean (SD) | 82.2 (17.0) | 285 (92.0) | 96.3 (36.3) | 105 (25.3) | 98.2 (7.07) | 61.0 (3.05) | 136 (38.2) | 128 (76.3) |
Median [Min, Max] | 82.0 [8.00, 279] | 223 [22.0, 565] | 83.0 [43.0, 256] | 103 [8.00, 282] | 100 [70.0, 100] | 60.0 [60.0, 70.0] | 134 [69.0, 440] | 103 [8.00, 565] |
Abattoir | Total Carcasses | Compliant | Non-Compliant | Proportion Non-Compliant |
---|---|---|---|---|
A | 68 431 | 66 474 | 1 957 | 2.86% |
B | 41 693 | 40 379 | 1 314 | 3.15% |
C | 30 698 | 29 913 | 785 | 2.56% |
Predictors | Odds Ratio | Confidence Interval | Significance |
---|---|---|---|
Intercept | 0.197 | 0.131–0.294 | p < 0.001 |
DOF (10 day increments) | 1.019 | 1.009–1.030 | p < 0.001 |
HCSW (10 kg increments) | 0.919 | 0.912–0.927 | p < 0.001 |
HGP Status | 2.292 | 2.034–2.584 | p < 0.001 |
Fat Color (1) | 1.972 | 1.772–2.195 | p < 0.001 |
Fat Color (2) | 2.465 | 2.204–2.756 | p < 0.001 |
Fat Color (3) | 4.076 | 3.357–4.949 | p < 0.001 |
Fat Color (4+) | 5.362 | 3.752–7.663 | p < 0.001 |
Time to Grading (12–16 h) | 0.691 | 0.608–0.785 | p < 0.001 |
Time to Grading (16–20 h) | 0.949 | 0.813–1.108 | p = 0.514 |
Time to Grading (20–24 h) | 0.698 | 0.582–0.837 | p < 0.001 |
Time to Grading (24–48 h) | 0.414 | 0.311–0.552 | p < 0.001 |
Time to Grading (48 h +) | 0.645 | 0.549–0.757 | p < 0.001 |
Hump Height (10 mm increments) | 0.950 | 0.931–0.970 | p < 0.001 |
Rib Fat | 0.844 | 0.833–0.855 | p < 0.001 |
MSA Marble (300–500) | 0.571 | 0.521–0.625 | p < 0.001 |
MSA Marble (500–700) | 0.685 | 0.551–0.852 | p = 0.001 |
MSA Marble (700+) | 0.401 | 0.282–0.568 | p < 0.001 |
Ossification (10 score increments) | 1.054 | 1.046–1.063 | p < 0.001 |
Sex (Steer) | 1.145 | 1.036–1.267 | p = 0.008 |
Abattoir B | 3.659 | 2.491–5.374 | p < 0.001 |
Abattoir C | 0.880 | 0.572–1.353 | p = 0.561 |
Feedlot B | 1.266 | 0.876–1.829 | p = 0.208 |
Feedlot C | 0.950 | 0.682–1.322 | p = 0.762 |
Feedlot D | 2.207 | 1.729–2.816 | p < 0.001 |
Feedlot F | 0.512 | 0.345–0.759 | p = 0.001 |
Feedlot G | 0.975 | 0.744–1.276 | p = 0.855 |
Predictors | Base Model | Lairage Model | Transport Model | Time off Feed Model | ||||
---|---|---|---|---|---|---|---|---|
Odds Ratio | Significance | Odds Ratio | Significance | Odds Ratio | Significance | Odds Ratio | Significance | |
Intercept | 0.10 | p = 0.087 | 0.03 | p = 0.015 | 0.17 | p = 0.226 | 0.02 | p = 0.010 |
lairage time | 1.06 | <0.001 | ||||||
transport time | 1.00 | 0.927 | ||||||
time off feed | 1.06 | <0.001 |
Predictors | Mean Model | Range Model | Max Model | Min Model | ||||
---|---|---|---|---|---|---|---|---|
Odds Ratio | Significance | Odds Ratio | Significance | Odds Ratio | Significance | Odds Ratio | Significance | |
Intercept | 0.0116 | p < 0.001 | 0.0094 | p < 0.001 | 0.0108 | p < 0.001 | 0.0091 | p < 0.001 |
SRMEAN Watts/m2 | 0.9997 | p = 0.748 | 0.9996 | p = 0.576 | 0.9998 | p = 0.816 | ||
SRMAX Watts/m2 | 0.9996 | p = 0.084 | ||||||
WSMEAN (m/s) | 1.0288 | p = 0.014 | 1.0268 | p = 0.034 | ||||
WSMAX (m/s) | 1.0324 | p < 0.001 | ||||||
WSMIN (m/s) | 1.0513 | p = 0.009 | ||||||
RHMEAN | 0.9977 | p = 0.571 | ||||||
RHRANGE | 0.9940 | p = 0.125 | ||||||
RHMAX | 0.9963 | p = 0.362 | ||||||
RHMIN | 1.0014 | p = 0.681 | ||||||
TA,MEAN °C | 0.9897 | p = 0.336 | ||||||
TA, RANGE °C | 1.0154 | p = 0.183 | ||||||
TA, MAX °C | 1.0044 | p = 0.640 | ||||||
TA, MIN °C | 0.9971 | p = 0.742 | ||||||
Rain (mm) | 1.2315 | p < 0.001 | 1.2213 | p < 0.001 | 1.2141 | p < 0.001 | 1.2266 | p < 0.001 |
Time Category | Time to Grading, h | Total Carcasses | Proportion Graded |
---|---|---|---|
1 h | 8 h to 12 h | 8 179 | 5.81 |
2 h | 12 h to 16 h | 63 498 | 45.09 |
3 h | 16 h to 20 h | 19 635 | 13.94 |
4 h | 20 h to 24 h | 26 969 | 19.15 |
5 h | 24 h to 48 h | 3 456 | 2.45 |
6 h | ≥48 h | 19 085 | 13.55 |
Fat Colour | Total Carcasses | Compliant | Non-Compliant | Proportion Non-Compliant |
---|---|---|---|---|
0 | 37 244 | 36 776 | 468 | 1.30% |
1 | 67 644 | 65 410 | 2 234 | 3.30% |
2 | 33 261 | 32 122 | 1 139 | 3.40% |
3 | 2 296 | 2 130 | 166 | 7.20% |
4 + | 377 | 328 | 49 | 13.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steel, C.C.; Lees, A.M.; Bowler, D.; Gonzalez-Rivas, P.A.; Tarr, G.; Warner, R.D.; Dunshea, F.R.; Cowley, F.C.; McGilchrist, P. Abattoir Factors Influencing the Incidence of Dark Cutting in Australian Grain-Fed Beef. Animals 2021, 11, 474. https://doi.org/10.3390/ani11020474
Steel CC, Lees AM, Bowler D, Gonzalez-Rivas PA, Tarr G, Warner RD, Dunshea FR, Cowley FC, McGilchrist P. Abattoir Factors Influencing the Incidence of Dark Cutting in Australian Grain-Fed Beef. Animals. 2021; 11(2):474. https://doi.org/10.3390/ani11020474
Chicago/Turabian StyleSteel, Cameron C., Angela. M. Lees, D. Bowler, P. A. Gonzalez-Rivas, G. Tarr, R. D. Warner, F. R. Dunshea, Frances C. Cowley, and P. McGilchrist. 2021. "Abattoir Factors Influencing the Incidence of Dark Cutting in Australian Grain-Fed Beef" Animals 11, no. 2: 474. https://doi.org/10.3390/ani11020474
APA StyleSteel, C. C., Lees, A. M., Bowler, D., Gonzalez-Rivas, P. A., Tarr, G., Warner, R. D., Dunshea, F. R., Cowley, F. C., & McGilchrist, P. (2021). Abattoir Factors Influencing the Incidence of Dark Cutting in Australian Grain-Fed Beef. Animals, 11(2), 474. https://doi.org/10.3390/ani11020474