Modulation of Serum Protein Electrophoretic Pattern and Leukocyte Population in Horses Vaccinated against West Nile Virus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Blood Sampling Procedures
2.3. Hematological Analysis
2.4. Serum Protein Electrophoretic Pattern Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- European Centre for Disease Prevention and Control (ECDC). Weekly updates: 2020 West Nile Virus Transmission Season. Stockholm: ECDC. 2020. Available online: https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/disease-data-ecdc (accessed on 10 October 2020).
- Calzolari, M.; Pautasso, A.; Montarsi, F.; Albieri, A.; Bellini, R.; Bonilauri, P.; Defilippo, F.; Lelli, D.; Moreno, A.; Chiari, M.; et al. West Nile Virus surveillance in 2013 via mosquito screening in Northern Italy and the influence of weather on virus circulation. PLoS ONE 2015, 10, e0140915. [Google Scholar] [CrossRef] [Green Version]
- Young, J.J.; Coulombier, D.; Domanović, D. European Union West Nile Fever Working Group, Zeller, H.; Gossner, C.M. One Health approach for West Nile virus surveillance in the European Union: Relevance of equine data for blood safety. Euro Surveill. 2019, 24, 1800349. [Google Scholar] [CrossRef] [PubMed]
- Calistri, P.; Giovannini, A.; Hubalek, Z.; Ionescu, A.; Monaco, F.; Savini, G.; Lelli, R. Epidemiology of west nile in europe and in the mediterranean basin. Open Virol. J. 2010, 4, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisani, G.; Cristiano, K.; Pupella, S.; Liumbruno, G.M. West Nile Virus in Europe and safety of blood transfusion. Transfus. Med. Hemother 2016, 43, 158–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, L.D.; Li, J.; Shi, P.Y. West Nile virus. Lancet Neurol. 2007, 6, 171–181. [Google Scholar] [CrossRef]
- Saegerman, C.; Alba-Casals, A.; García-Bocanegra, I.; Dal Pozzo, F.; van Galen, G. Clinical sentinel surveillance of equine West Nile Fever, Spain. Transbound Emerg. Dis. 2016, 63, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Cantile, C.; Di Guardo, G.; Eleni, C.; Arispici, M. Clinical and neuropathological features of West Nile virus equine encephalomyelitis in Italy. Equine. Vet. J. 2000, 32, 31–35. [Google Scholar] [CrossRef]
- Saiz, J.C. Animal and human vaccines against West Nile Virus. Pathogens 2020, 9, 1073. [Google Scholar] [CrossRef]
- Fiacre, L.; Pagès, N.; Albina, E.; Richardson, J.; Lecollinet, S.; Gonzalez, G. Molecular determinants of West Nile Virus virulence and pathogenesis in vertebrate and invertebrate hosts. Int. J. Mol. Sci. 2020, 21, 9117. [Google Scholar] [CrossRef]
- Diamond, M.S.; Shrestha, B.; Mehlhop, E.; Sitati, E.; Engle, M. Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus. Viral Immunol. 2003, 16, 259–278. [Google Scholar] [CrossRef]
- Diamond, M.S.; Pierson, T.C.; Fremont, D.H. The structural immunology of antibody protection against West Nile virus. Immunol Rev. 2008, 225, 212–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierson, T.C. Waste not. want not: A viral RNA degradation product modulates West Nile virus pathogenesis. Cell Host Microbe 2008, 4, 512–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuel, M.A.; Diamond, M.S. Pathogenesis of West Nile Virus infection: A balance between virulence, innate and adaptive immunity, and viral evasion. J. Virol 2006, 80, 9349–9360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, P.C.; Auer, D.E.; Kramer, H.; Barry, D.; Ng, J.C. Effects of inflammation-associated acute-phase response on hepatic and renal indices in the horse. Aust. Vet. J. 1998, 76, 187–194. [Google Scholar] [CrossRef]
- Andersen, S.A.; Petersen, H.H.; Ersbøll, A.K.; Falk-Rønne, J.; Jacobsen, S. Vaccination elicits a prominent acute phase response in horses. Vet. J. 2012, 191, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Carson, P.J.; Prince, H.E.; Biggerstaff, B.J.; Lanciotti, R.; Tobler, L.H.; Busch, M. Characteristics of antibody responses in West Nile virus-seropositive blood donors. J. Clin. Microbiol. 2014, 52, 57–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, M.T.; Gibbs, E.P.; Mellencamp, M.W.; Bowen, R.A.; Seino, K.K.; Zhang, S.; Beachboard, S.E.; Humphrey, P.P. Efficacy, duration, and onset of immunogenicity of a West Nile virus vaccine, live Flavivirus chimera, in horses with a clinical disease challenge model. Equine. Vet. J. 2007, 39, 491–497. [Google Scholar] [CrossRef]
- Long, M.T.; Gibbs, E.P.; Mellencamp, M.W.; Zhang, S.; Barnett, D.C.; Seino, K.K.; Beachboard, S.E.; Humphrey, P.P. Safety of an attenuated West Nile virus vaccine, live Flavivirus chimera in horses. Equine Vet. J. 2007, 39, 486–490. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). West Nile virus risk assessment tool. Stockholm: ECDC. 2013. Available online: https://www.ecdc.europa.eu/sites/default/files/media/en/publications/Publications/west-nile-virus-risk-assessment-tool.pdf (accessed on 10 October 2020).
- Weiss, D.J.; Wardrop, K.J. Schalm’s Veterinary Hematology; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2010. [Google Scholar]
- Kaneko, J.J. Clinical Biochemistry of Domestic Animals; Academic Press: Berkeley, CA, USA, 1989; pp. 142–165. [Google Scholar]
- Piccione, G.; Fazio, F.; Giudice, E.; Grasso, F.; Morgante, M. Nycthemeral change of some haematological parameters in horses. J. Appl. Biomed. 2005, 3, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Piccione, G.; Assenza, A.; Fazio, F.; Giudice, E.; Caola, G. Different periodicities of some haematological parameters in exercise-loaded athletic horses and sedentary horses. J. Equine. Sci. 2001, 12, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Piccione, G.; Arfuso, F.; Marafioti, S.; Giannetto, C.; Giudice, E.; Fazio, F. Different training schedules influence serum electrophoretic protein profile in the athletic horse. J. Equine. Vet. Sci. 2015, 35, 856–859. [Google Scholar] [CrossRef]
- Minke, J.M.; Siger, L.; Karaca, K.; Austgen, L.; Gordy, P.; Bowen, R.; Renshaw, R.W.; Loosmore, S.; Audonnet, J.C.; Nordgren, B. Recombinant canarypoxvirus vaccine carrying the prM/E genes of West Nile virus protects horses against a West Nile virus challenge. Arch. Virol. Supp. 2004, 18, 221–230. [Google Scholar]
- Murphy, B.R.; Chanock, R.M. Immunization against viral diseases. In Fields Virology, 4th ed.; Knipe, D.M., Howley, P.M., Griffin, D.E., Martin, M.A., Lamb, R.A., Roizman, B., Eds.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2001; Volume 1, pp. 435–468. [Google Scholar]
- Sigor, L.; Bowen, R.A.; Karaca, K.; Murray, M.J.; Gordy, P.W.; Loosmore, S.M.; Audonnet, J.F.; Nordgren, R.M.; Minke, J.M. Assessment of the efficacy of a single dose of recombinant vaccine against West Nile virus in response to natural challenge with West Nile virus-infected mosquitoes in horses. Am. J. Vet. Res. 2004, 65, 1459–1462. [Google Scholar] [CrossRef] [PubMed]
- Monaco, F.; Purpari, G.; Di Gennaro, A.; Mira, F.; Di Marco, P.; Guercio, A.; Savini, G. Immunological response in horses following West Nile virus vaccination with inactivated or recombinant vaccine. Vet. Ital. 2019, 55, 73–79. [Google Scholar] [PubMed]
- Goundasheva, D.; Chenchev, I.; Katsarova, R.; Karadjov, T.; Tsachev, I.; Barzev, G. Changes in leukocyte and antibody response following exercise in horses with booster vaccination against influenza and equine herpes virus 4/1. Revue. Méd. Vét. 2005, 156, 527–532. [Google Scholar]
- Ahlers, L.R.H.; Goodman, A.G. The immune responses of the animal hosts of West Nile Virus: A comparison of insects, birds, and mammals. Front Cell Infect. Microbiol. 2018, 3, 96. [Google Scholar] [CrossRef] [Green Version]
- Chaintoutis, S.C.; Diakakis, N.; Papanastassopoulou, M.; Banos, G.; Dovas, C.I. Evaluation of cross-protection of a lineage 1 West Nile virus inactivated vaccine against natural infections from a virulent lineage 2 strain in horses, under field conditions. Clin. Vaccine Immunol. 2015, 22, 1040–1049. [Google Scholar] [CrossRef] [Green Version]
- Jain, N.C. Essentials of Veterinary Hematology; Lea & Febiger: Philadelphia, PA, USA, 1993; p. 417. [Google Scholar]
- Ravel, R. Proteínas séricas. In Laboratório Clínico: Aplicações Clínicas dos Dados Laboratoriais, 6th ed.; Ravel, R., Ed.; Guanabara Koogan: Rio de Janeiro, Brazil, 1997; Volume 22, p. 616. [Google Scholar]
- Naoum, P.C. Eletroforese—técnicas e diagnóstico; SAN: São Paulo, Brazil, 1999; p. 154. [Google Scholar]
- Jacobsen, S.; Niewold, T.A.; Halling-Thomsen, M.; Nanni, S.; Lindegaard, C.; Olsen, E.; Andersen, P.H. Serum amyloid A isoforms in serum and synovial fluid in horses with lipopolysaccharide-induced arthritis. Vet. Immun. Immunopathol. 2005, 110, 325–330. [Google Scholar] [CrossRef]
- Jacobsen, S.; Nielsen, J.V.; Kjelgaard-Hansen, M.; Toelboell, T.; Fjeldborg, J.; Halling-Thomsen, M.; Martinussen, T.; Thoefner, M.B. Acute phase response to surgery of varying intensity in horses: A preliminary study. Vet. Surg. 2009, 38, 762–769. [Google Scholar] [CrossRef]
- Jacobsen, S.; Halling-Thomsen, M.; Nanni, S. Concentrations of serum amyloid A in serum and synovial fluid from healthy horses and horses with joint disease. Am. J. Vet. Res. 2006, 67, 1738–1742. [Google Scholar] [CrossRef]
- Jacobsen, S.; Kjelgaard-Hansen, M.; Petersen, H.H.; Jensen, A.L. Evaluation of a commercially available human serum amyloid A (SAA) turbidometric immunoassay for determination of equine SAA concentrations. Vet. J. 2006, 172, 315–319. [Google Scholar] [CrossRef]
- Fehér, O.; Bakonyi, T.; Barna, M.; Nagy, A.; Takács, M.; Szenci, O.; Joó, K.; Sárdi, S.; Korbacska-Kutasi, O. Serum neutralising antibody titres against a lineage 2 neuroinvasive West Nile Virus strain in response to vaccination with an inactivated lineage 1 vaccine in a European endemic area. Vet. Immunol. Immunopathol. 2020, 227, 110087. [Google Scholar] [CrossRef] [PubMed]
- Davidson, A.H.; Traub-Dargatz, J.L.; Rodeheaver, R.M.; Ostlund, E.N.; Pederson, D.D.; Moorehead, R.G.; Stricklin, J.B.; Dewell, R.D.; Roach, S.D.; Long, R.E.; et al. Immunologic responses to West Nile virus in vaccinated and clinically affected horses. J. Am. Vet. Med. Assoc. 2005, 226, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Kutzler, M.A.; Baker, R.J.; Mattson, D.E. Humoral response to West Nile virus vaccination in alpacas and llamas. J. Am. Vet. Med. Assoc. 2004, 225, 414–416. [Google Scholar] [CrossRef] [PubMed]
Parameters | First WNV Vaccine-Dose | WNV Vaccine-Booster | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T0 | T1I | T2I | T3I | T4I | T5I | T6I | TPREII | T1II | T2II | T3II | T4II | T5II | T6II | |
RBCs (×106/µL) | 6.9 ± 0.4 | 6.8 ± 0.3 | 6.8 ± 0.4 | 6.8 ± 0.3 | 7.0 ± 0.5 | 7.1 ± 0.2 | 6.9 ± 0.3 | 7.0 ± 0.7 | 6.6 ± 0.6 | 6.6 ± 0.4 | 6.8 ± 0.7 | 6.9 ± 0.7 | 6.7 ± 0.5 | 6.6 ± 0.6 |
Hb (g/dL) | 12.9 ± 1.1 | 12.5 ± 1.1 | 12.6 ± 1.0 | 12.3 ± 0.8 | 13.4 ± 0.5 | 13.2 ± 0.7 | 12.5 ± 0.9 | 13.2 ± 1.5 | 12.4 ± 0.6 | 12.0 ± 0.5 | 12.1 ± 0.6 | 12.0 ± 1.3 | 12.3 ± 1.0 | 12.1 ± 0.7 |
Hct (%) | 32.5 ± 1.4 | 31.7 ± 1.5 | 32.6 ± 1.6 | 32.3 ± 1.6 | 33.6 ± 2.1 | 33.9 ± 1.2 | 31.2 ± 1.5 | 32.9 ± 3.4 | 30.5 ± 1.9 | 30.3 ± 1.0 | 30.8 ± 1.6 | 32.0 ± 2.9 | 31.6 ± 1.5 | 31.0 ± 1.6 |
MCV (fL) | 47.3 ± 1.5 | 47.4 ± 1.8 | 48.2 ± 1.5 | 47.6 ± 1.2 | 47.4 ± 1.0 | 47.5 ± 1.1 | 46.5 ± 1.1 | 46.8 ± 1.6 | 46.3 ± 1.2 | 46.3 ± 1.6 | 46.0 ± 1.3 | 46.4 ± 1.4 | 46.4 ± 1.6 | 46.2 ± 1.6 |
MCH (pg) | 18.7 ± 1.0 | 18.3 ± 1.0 | 18.7 ± 0.9 | 18.1 ± 0.4 | 19.2 ± 0.7 | 18.4 ± 0.7 | 18.5 ± 0.8 | 18.8 ± 0.9 | 18.0 ± 0.7 | 18.1 ± 0.9 | 18.2 ± 0.7 | 17.2 ± 0.7 | 17.9 ± 1.4 | 17.6 ± 1.7 |
MCHC (%) | 39.6 ± 1.7 | 38.3 ± 1.0 | 38.6 ± 1.6 | 37.9 ± 0.6 | 40.3 ± 1.3 | 38.5 ± 0.6 | 39.8 ± 0.9 | 40.3 ± 1.5 | 38.8 ± 1.3 | 39.1 ± 1.7 | 38.7 ± 0.8 | 37.3 ± 0.7 | 38.7 ± 2.8 | 37.4 ± 4.9 |
WBCs (×103/µL) | 5.5 ± 0.6 | 6.4 ± 0.9 | 6.1 ± 1.0 | 5.3 ± 0.7 | 5.7 ± 0.6 | 5.6 ± 0.7 | 4.8 ± 0.6 | 5.7 ± 1.1 | 5.7 ± 1.2 | 5.3 ± 1.1 | 5.2 ± 1.0 | 4.9 ± 0.9 | 5.1 ± 0.9 | 5.0 ± 0.9 |
Lymphocytes (%) | 28 ± 6 | 38 ± 7 | 35 ± 8 | 39 ± 6 * | 37 ± 4 | 30 ± 5 | 28 ± 5 | 46 ± 14 * | 39 ± 6 * | 32 ± 9 | 31 ± 6 | 35 ± 7 | 32 ± 8 | 32 ± 6 |
Neutrophils) (%) | 67 ± 5 | 68 ± 7 | 63 ± 8 | 58 ± 6 * | 62 ± 4 | 67 ± 5 | 69 ± 7 | 52 ± 12 * | 59 ± 5 | 64 ± 7 | 63 ± 7 | 60 ± 8 | 61 ± 7 | 64 ± 6 |
Monocytes (%) | 2 ± 1 | 1 ± 1 | 1 ± 1 | 2 ± 1 | 1 ± 1 | 2 ± 1 | 1 ± 1 | 1 ± 1 | 1 ± 1 | 2 ± 1 | 3 ± 2 * | 3 ± 2 * | 4 ± 2 * | 2 ± 1 |
Eosinophils) (%) | 1 ± 1 | 1 ± 1 | 1 ± 1 | 1 ± 1 | 1 ± 0 | 2 ± 1 | 1 ± 1 | 1 ± 1 | 0 ± 0 | 2 ± 1 | 3 ± 1 | 2 ± 2 | 3 ± 3 | 2 ± 1 |
Basophils (%) | 1 ± 1 | 1 ± 1 | 1 ± 1 | 1 ± 1 | 0 ± 0 | 1 ± 1 | 1 ± 1 | 0 ± 0 | 1 ± 1 | 1 ± 1 | 1 ± 1 | 0 ± 0 | 1 ± 1 | 0 ± 0 |
PLTs (×103/µL) | 131.8 ± 22 | 127.6 ± 23 | 136.9 ± 33 | 128.3 ± 17 | 123.7 ± 13 | 132.3 ± 17 | 122.3 ± 15 | 126.8 ± 19 | 121.1 ± 14 | 120.1 ± 14 | 119.6 ± 21 | 129.6 ± 21 | 118.3 ± 16 | 125.2 ± 13 |
Serum Parameters (g/dL) | First WNV Vaccine-Dose | WNV Vaccine-Booster | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T0 | T1I | T2I | T3I | T4I | T5I | T6I | TPREII | T1II | T2II | T3II | T4II | T5II | T6II | |
Total proteins | 5.4 ± 0.5 | 6.5 ± 0.4 * | 6.6 ± 0.4 * | 6.6 ± 0.4 * | 6.5 ± 0.4 * | 6.5 ± 0.5 * | 6.6 ± 0.3 * | 8.5 ± 0.1 * | 6.9 ± 0.3 * | 6.3 ± 0.2 * | 6.4 ± 0.3 * | 6.5 ± 0.2 * | 6.3 ± 0.3 * | 6.7 ± 0.4 * |
Albumin | 2.3 ± 0.4 | 2.8 ± 0.4 | 2.8 ± 0.4 | 2.7 ± 0.5 | 2.7 ± 0.4 | 2.8 ± 0.4 | 2.7 ± 0.3 | 2.9 ± 0.1 | 2.3 ± 0.1 | 2.7 ± 0.3 | 2.2 ± 0.2 | 2.5 ± 0.3 | 2.3 ± 0.4 | 2.3 ± 0.3 |
α1-globulins | 0.2 ± 0.05 | 0.2 ± 0.06 | 0.2 ± 0.04 | 0.2 ± 0.05 | 0.2 ± 0.05 | 0.2 ± 0.06 | 0.2 ± 0.05 | 0.2 ± 0.04 | 0.2 ± 0.06 | 0.2 ± 0.03 | 0.3 ± 0.04 * | 0.3 ± 0.04 * | 0.2 ± 0.06 | 0.2 ± 0.05 |
α2-globulins | 0.6 ± 0.09 | 0.9 ± 0.04 * | 0.9 ± 0.04 * | 0.9 ± 0.05 * | 0.8 ± 0.1 * | 0.7 ± 0.05 * | 0.8 ± 0.08 * | 1.2 ± 0.08 * | 0.9 ± 0.04as * | 0.8 ± 0.04 * | 0.9 ± 0.04 * | 0.8 ± 0.04 * | 0.9 ± 0.1 * | 1.1 ± 0.3 * |
β-globulins | 0.9 ± 0.1 | 1.3 ± 0.2 * | 1.2 ± 0.1 * | 1.3 ± 0.1 * | 1.1 ± 0.05 * | 1.1 ± 0.07 * | 1.1 ± 0.07 * | 1.3 ± 0.07 * | 1.1 ± 0.04 * | 1.1 ± 0.1 * | 1.2 ± 0.09 * | 1.1 ± 0.1 * | 1.1 ± 0.1 * | 1.2 ± 0.2 * |
γ-globulins | 1.4 ± 0.2 | 1.4 ± 0.3 | 1.4 ± 0.3 | 1.5 ± 0.3 | 1.7 ± 0.4 | 1.7 ± 0.5 | 1.7 ± 0.4 | 2.9 ± 0.2 * | 2.4 ± 0.2 * | 1.6 ± 0.2 | 1.9 ± 0.4 * | 1.7 ± 0.5 | 1.8 ± 0.4 | 1.9 ± 0.3 * |
A/G ratio | 0.74 ± 0.1 | 0.74 ± 0.2 | 0.74 ± 0.2 | 0.72 ± 0.2 | 0.70 ± 0.2 | 0.75 ± 0.2 | 0.69 ± 0.1 | 0.55 ± 0.02 * | 0.49 ± 0.04 * | 0.75 ± 0.1 | 0.52 ± 0.1 * | 0.56 ± 0.1 * | 0.58 ± 0.1 * | 0.53 ± 0.1 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arfuso, F.; Giudice, E.; Di Pietro, S.; Piccione, G.; Giannetto, C. Modulation of Serum Protein Electrophoretic Pattern and Leukocyte Population in Horses Vaccinated against West Nile Virus. Animals 2021, 11, 477. https://doi.org/10.3390/ani11020477
Arfuso F, Giudice E, Di Pietro S, Piccione G, Giannetto C. Modulation of Serum Protein Electrophoretic Pattern and Leukocyte Population in Horses Vaccinated against West Nile Virus. Animals. 2021; 11(2):477. https://doi.org/10.3390/ani11020477
Chicago/Turabian StyleArfuso, Francesca, Elisabetta Giudice, Simona Di Pietro, Giuseppe Piccione, and Claudia Giannetto. 2021. "Modulation of Serum Protein Electrophoretic Pattern and Leukocyte Population in Horses Vaccinated against West Nile Virus" Animals 11, no. 2: 477. https://doi.org/10.3390/ani11020477
APA StyleArfuso, F., Giudice, E., Di Pietro, S., Piccione, G., & Giannetto, C. (2021). Modulation of Serum Protein Electrophoretic Pattern and Leukocyte Population in Horses Vaccinated against West Nile Virus. Animals, 11(2), 477. https://doi.org/10.3390/ani11020477