Soybean Molasses in Animal Nutrition
Abstract
:Simple Summary
Abstract
1. Introduction
2. Soybean Molasses Production
3. Composition of Soybean Molasses
3.1. Saponins
3.2. Isoflavones
3.3. Phenolic Acids
3.4. Bowman-Birk Inhibitor
3.5. Fatty Acids
3.6. Amino Acids
4. Soybean Molasses in Animal Feed Production
- as a pelleting aid
- as a source of energy in animal nutrition.
4.1. Soybean Molasses as a Pelleting Aid
4.2. Soybean Molasses as a Feed Ingredient
4.2.1. Use of Soybean Molasses in Ruminant Diets
4.2.2. Use of Soybean Molasses in Pig Diets
4.2.3. Use of Soybean Molasses in Poultry Diets
4.2.4. Use of Soybean Molasses in Fish Diets
5. Limitations of Commercial Application of Soybean Molasses in Animal Nutrition
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Vision Paper towards European Research and Innovation for a Sustainable and Competitive Livestock Production Sector in Europe. Animal Task Force. 2019. Available online: http://animaltaskforce.eu/Portals/0/ATF_Vision_Paper_2019.pdf (accessed on 16 February 2019).
- Food and Agriculture Organization of the United Nations (FAO). Global Food Losses and Food Waste—Extent, Causes and Prevention. Available online: http://www.fao.org/3/ai2697e.pdf (accessed on 4 May 2011).
- Seas at Risk. Priorities for Environmentally Responsible Aquaculture in the EU—Joint NGO Paper. Proc. of the Workshop Brussels. 2014. Available online: https://seas-at-risk.org/images/pdf/archive/2014/Joint_NGO_position_paper_-_aquaculture_-_FINAL_15_August_2014.pdf (accessed on 15 August 2014).
- WWF Mediterranean Marine Initiative. Reviving the Economy of the Mediterranean Sea: Actions for a Sustainable Future. Available online: https://wwfeu.awsassets.panda.org/downloads/reviving_mediterranean_sea_economy_full_rep_lowres.pdf (accessed on 1 September 2017).
- FAO. World Livestock: Transforming the Livestock Sector through the Sustainable Development Goals; FAO: Rome, Italy, 2018; p. 222. [Google Scholar]
- Čolović, D.; Rakita, S.; Banjac, V.; Đuragić, O.; Čabarkapa, I. Plant food by-products as feed: Characteristics, possibilities, environmental benefits, and negative sides. Food Rev. Int. 2019, 35, 363–389. [Google Scholar] [CrossRef]
- Carvalho, V.B.; Leite, R.F.; Almeida, M.T.C.; Paschoaloto, J.R.; Carvalho, E.B.; Lanna, D.P.D.; Perez, H.L.; van Cleef, E.H.C.B.; Homem Junior, A.C.; Ezequiel, J.M.B. Carcass characteristics and meat quality of lambs fed high concentrations of crude glycerin in low-starch diets. Meat Sci. 2015, 110, 285–292. [Google Scholar] [PubMed]
- Röös, E.; Patel, M.; Spångberg, J.; Carlsson, G.; Rydhmer, L. Limiting livestock production to pasture and by-products in a search for sustainable diets. Food Policy 2016, 58, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Parisi, G.; Tulli, F.; Fortina, R.; Marino, R.; Bani, P.; Zotte, A.D.; De Angelis, A.; Piccolo, G.; Pinotti, L.; Schiavone, A.; et al. Protein hunger of the feed sector: The alternatives offered by the plant world. Ital. J. Anim. Sci. 2020, 19, 1205–1227. [Google Scholar] [CrossRef]
- Gasco, L.; Acuti, G.; Bani, P.; Zotte, A.D.; Danieli, P.P.; De Angelis, A.; Fortina, R.; Marino, R.; Parisi, G.; Piccolo, G.; et al. Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. Ital. J. Anim. Sci. 2020, 19, 360–372. [Google Scholar] [CrossRef] [Green Version]
- Pinotti, L.; Manoni, M.; Fumagalli, F.; Rovere, N.; Luciano, A.; Ottoboni, M.; Ferrari, L.; Cheli, F.; Djuragic, O. Reduce, reuse, recycle for food waste: A second life for fresh-cut leafy salad crops in animal diets. Animals 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ottoboni, M.; Tretola, M.; Luciano, A.; Giuberti, G.; Gallo, A.; Pinotti, L. Carbohydrate digestion and predicted glycemic index of bakery/confectionary ex-food intended for pig nutrition. Ital. J. Anim. Sci. 2019, 18, 838–849. [Google Scholar] [CrossRef]
- Salami, S.A.; Luciano, G.; O’Grady, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim. Feed. Sci. Technol. 2019, 251, 37–55. [Google Scholar]
- Speedy, A.W. Overview of World Feed Protein Needs and Supply. In FAO: Protein Sources for the Animal Feed Industry; Expert Consultation and Workbook: Rome, Italy, 2004; pp. 9–29. [Google Scholar]
- Luciano, A.; Tretola, M.; Ottoboni, M.; Baldi, A.; Cattaneo, D.; Pinotti, L. Potentials and challenges of former food products (food leftover) as alternative feed ingredients. Animals 2020, 10, 125. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.L.; Pereira-Junior, S.A.G.; Castro-Filho, E.S.; Costa, R.V.; Barducci, R.S.; van Cleef, E.H.C.B.; Ezequiel, J.M.B. Effects of elevated concentrations of soybean molasses on feedlot performance and meat quality of lambs. Livest. Sci. 2020, 240, 104155. [Google Scholar] [CrossRef]
- Siqueira, P.F.; Karp, S.G.; Carvalho, J.C.; Sturm, W.; Rodríguez-León, J.A.; Tholozan, J.L.; Singhania, R.R.; Pandey, A.; Soccol, C.R. Production of bio-ethanol from soybean molasses by Saccharomyces cerevisiae at laboratory, pilot and industrial scales. Bioresour. Technol. 2008, 99, 8156–8163. [Google Scholar] [CrossRef]
- Long, C.C.; Ribbons, W.R. Conversion of soy molasses, soy solubles, and dried soybean carbohydrates into ethanol. Int. J. Agric. Biol. Eng. 2013, 6, 62–68. [Google Scholar] [CrossRef]
- Schopf, N.; Erbino, P.; Puvogel, A. Alternative fuels: Energetic use of liquid by-products from sugar and soy processing. Sugar Tech. 2014, 16, 333–338. [Google Scholar] [CrossRef]
- Chajuss, D. Soy molasses: Processing and utilization as a functional food. In Soybeans as Functional Foods and Ingredients; Liu, K., Ed.; AOCS Press: Champaign, IL, USA, 2004; pp. 212–219. [Google Scholar]
- Chajuss, D. Topical Application of Soy Molasses. U.S. Patent 5,871,743, 16 February 1999. [Google Scholar]
- Karp, S.G.; Woiciechowski, A.L.; Letti, L.A.J.; Soccol, C.R. Bioethanol from soybean molasses. In Green Fuels Technology; Soccol, C.R., Brar, S.K., Faulds, C., Ramos, L.P., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 241–254. [Google Scholar]
- Chajuss, D. Soy Phytochemical Composition. U.S. Patent 2002/0119208A1, 29 August 2002. [Google Scholar]
- Da silva, F.B.; Romão, B.B.; Cardoso, V.L.; Filho, U.C.; Ribeiro, E.J. Production of ethanol from enzymatically hydrolyzed soybean molasses. Biochem. Eng. J. 2012, 69, 61–68. [Google Scholar] [CrossRef]
- Letti, L.A.J.; Karp, S.G.; Woiciechowski, A.L.; Soccol, C.R. Ethanol production from soybean molasses by Zymomonas mobilis. Biomass Bioenerg. 2012, 44, 80–86. [Google Scholar] [CrossRef]
- Loman, A.A.; Ju, L.-K. Soybean carbohydrate as fermentation feedstock for production of biofuels and value-added chemicals. Process Biochem. 2016, 51, 1046–1057. [Google Scholar] [CrossRef]
- Romão, B.B.; da Silva, F.B.; de Resende, M.M.; Cardoso, V.L. Ethanol production from hydrolyzed soybean molasses. Energy Fuels 2012, 26, 2310–2316. [Google Scholar] [CrossRef]
- INRAE-CIRAD-AFZ Feed tables: Composition and nutritive values of feeds for cattle, sheep, goats, pigs, poultry, rabbits, horses and salmonids. Available online: https://www.feedtables.com/content/soybean-molasses (accessed on 1 September 2017).
- Chajuss, D. A Novel Use of Soy Molasses. Israel Patent 115,110, 8 December 1995. [Google Scholar]
- OIli, J.J.; Krogdahl, Å. Alcohol soluble components of soybeans seem to reduce fat digestibility in fish-meal-based diets for Atlantic salmon, Salmo salar L. Aquac. Res. 1995, 26, 831–835. [Google Scholar] [CrossRef]
- Krogdahl, Å.; Bakke-Mckellep, A.M.; Røed, K.H.; Baeverfjord, G. Feeding Atlantic salmon Salmo salar L. soybean products: Effects on disease resistance (furunculosis), and lysozyme and IgM levels in the intestinal mucosa. Aquac. Nutr. 2000, 6, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Messina, M. Legumes and soybeans, overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 1999, 70, 439–450. [Google Scholar] [CrossRef] [Green Version]
- Krogdahl, Å; Bakee, A.M. Antinutrients. In Dietary Nutrients, Additives, and Fish Health; Lee, C.S., Lim, C., Gatlin, D.M., III, Webster, C.D., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2015; pp. 212–236. [Google Scholar]
- Hosny, M.; Rosazza, J.P.N. Novel isoflavone, cinnamic acid, and triterpenoid glycosides in soybean molasses. J. Nat. Prod. 1999, 62, 853–858. [Google Scholar] [CrossRef]
- Plewa, M.J.; Wagner, E.D.; Kirchoff, L.; Repetny, K.; Adams, L.C.; Rayburn, A.L. The use of single cell gel electrophoresis and flow cytometry to identify antimutagens from commercial soybean byproducts. Mutat. Res. 1998, 402, 211–218. [Google Scholar] [CrossRef]
- Berhow, M.A.; Wagner, E.D.; Vaughn, S.F.; Plewa, M.J. Characterization and antimutagenic activity of soybean saponins. Mutat. Res. 2000, 448, 11–22. [Google Scholar] [CrossRef]
- Liener, I.E. Implications of antinutritional components in soybean foods. Crit. Rev. Food Sci. Nutr. 1994, 34, 31–67. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.N.; Dilger, R.N. Immunomodulatory potential of dietary soybean-derived isoflavones and saponins in pigs. J. Anim. Sci. 2018, 96, 1288–1304. [Google Scholar] [CrossRef] [Green Version]
- Francis, G.; Kerem, Z.; Makkar, H.P.S.; Becker, K. The biological action of saponins in animal systems: A review. J. Nutr. 2002, 88, 587–605. [Google Scholar] [CrossRef] [PubMed]
- Couto, A.; Kortner, T.M.; Penn, M.; Bakke, A.M.; Krogdahl, Å.; Oliva-Teles, A. Effects of dietary soy saponins and phytosterols on giltheadsea bream (Sparus aurata) during the on-growing period. Anim. Feed Sci. Technol. 2014, 198, 203–214. [Google Scholar] [CrossRef]
- Waggle, H.; Bryan, B.A. Recovery of Isoflavones from Soy Molasses. U.S. Patent 6,083,553, 4 July 2000. [Google Scholar]
- Munro, I.C.; Harwood, M.; Hlywka, J.J.; Stephen, A.M.; Doull, J.; Flamm, W.G.; Adlercreutz, H. Soy isoflavones: A safety review. Nutr. Rev. 2003, 61, 1–33. [Google Scholar] [CrossRef]
- Kuhn, G.; Hennig, U.; Kalbe, C.; Rehfeldt, C.; Ren, M.Q.; Moors, S.; Degen, G.H. Growth performance, carcass characteristics and bioavailability of isoflavones in pigs fed soy bean based diets. Arch. Anim. Nutr. 2004, 58, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.R. The Effect of Dietary Soybean Isoflavones on the Rate and Efficiency of Growth and Carcass Muscle Content in Pigs and Rats. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 1998. [Google Scholar]
- Payne, R.L.; Bidner, T.D.; Southern, L.L.; Geaghan, J.P. Effects of dietary soy isoflavones on growth, carcass traits, and meat quality in growing-finishung pigs. J. Anim. Sci. 2001, 79, 1230–1239. [Google Scholar] [CrossRef] [Green Version]
- Oipeng, H.; Peihua, Z.; Ling, L. The main active components of soybean molasses and its influences on ruminants. China Feed 2015, 18. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLGZ201518010.htm (accessed on 8 October 2020).
- Jiang, Z.Y.; Jiang, S.Q.; Lin, Y.C.; Xi, P.B.; Yu, D.Q.; Wu, T.X. Effects of soybean isoflavone on growth performance, meat quality, and antioxidation in male broilers. Poult. Sci. 2007, 86, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Sahin, N.; Onderci, M.; Balci, T.A.; Cikim, G.; Sahin, K.; Kucuk, O. The effect of soy isoflavones on egg quality and bone mineralisation during the late laying period of quail. Br. Poult. Sci. 2007, 48, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Gu, J.N.; Penn, M.; Bakke, A.M.; Lein, I.; Krogdahl, Å. Effects of diet supplementation of soya-saponins, isoflavones and phytosterols on Atlantic salmon (Salmo salar L.) fry fed from start-feeding. Aquac. Nutr. 2014, 21, 604–613. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhao, Y. Chemical composition and functional properties of three soy processing by-products (soy hull, okara and molasses). Qual. Assur. Saf. Crop. 2015, 7, 651–660. [Google Scholar] [CrossRef]
- Kennedy, A.R.; Szuhaj, B.F. Bowman-Birk Inhibitor Product for Use as an Anticarcinogenesis Agent. U.S. Patent 5,338,547, 11 May 1994. [Google Scholar]
- Thomas, M.; van der Poel, A.F.B. Fundamental factors in feed manufacturing: Towards a unifying conditioning/pelleting framework. Anim. Feed Sci. Technol. 2020, 268, 114612. [Google Scholar] [CrossRef]
- Svihus, B. The gizzard: Function, influence of diet structure and effects on nutrient availability. Worlds Poult. Sci. J. 2011, 67, 207–224. [Google Scholar] [CrossRef]
- Larsen, M.; Lund, P.; Storm, A.C.; Weisbjerg, M.R. Effect of conventional and extrusion pelleting on postprandial patterns of ruminal and duodenal starch appearance in dairy cows. Anim. Feed Sci. Technol. 2019, 253, 113–124. [Google Scholar] [CrossRef]
- Thomas, M.; van der Poel, A.F.B. Physical quality of pelleted animal feed 1. Criteria for pellet quality. Anim. Feed Sci. Technol. 1996, 61, 89–112. [Google Scholar] [CrossRef]
- Aarseth, K.A.; Prestløkken, E. Mechanical Properties of Feed Pellets: Weibull Analysis. Biosyst. Eng. 2003, 84, 149–361. [Google Scholar] [CrossRef]
- Thomas, M.; van Vliet, T.; van der Poel, A.F.B. Physical quality of pelleted animal feed 3. Contribution of feedstuff components. Anim. Feed Sci. Technol. 1998, 70, 59–78. [Google Scholar] [CrossRef]
- Dunmire, K.M. Effects of Adding Liquid Lactose or Molasses to Pelleted Swine Diets on Pellet Quality and Pig Performance. Master’s Thesis, Texas A&M University, Bizzell St, TX, USA, 2017. [Google Scholar]
- Creasby, T.G. The feeding value of molasses. In Proceedings of the South African Sugar Technologists’ Association, Durban, South Africa, 5 April 1963. [Google Scholar]
- Shaver, R.D. Recent applications of liquid feed supplements in rations for lactating dairy cows. Prof. Anim. Sci. 2001, 17, 17–19. [Google Scholar] [CrossRef] [Green Version]
- Broderick, G.A.; Radloff, W.J. Effect of molasses supplementation on the production of lactating dairy cows fed diets based on alfalfa and corn silage. J. Dairy Sci. 2004, 87, 2997–3009. [Google Scholar] [CrossRef]
- Chen, L.; Li, B.; Ren, A.; Kong, Z.; Zhou, C.; Tan, Z.; Tang, S.; Fang, R. Effect of soybean molasses-adsorbents on in vitro ruminal fermentation characteristics, milk production performance in lactating dairy cows. BioRxiv 2018. [Google Scholar] [CrossRef]
- Miletić, A.; Stojanović, B.; Grubić, G.; Stojić, P.; Radivojević, M.; Joksimović-Todorović, M.; Popovac, M.; Obradović, S. The soybean molasses in diets for dairy cows. Mljekarstvo 2017, 67, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Qunshan, M.; Rongzhi, Y.; Dejiang, T. Effect of diet supplemented with soybean molasses on mutton sheep growth. J. Heilongjiang August First Land Reclam. Univ. 2008, 20, 63–65. [Google Scholar]
- Li, G.-H.; Ling, B.-M.; Qu, M.-R.; You, J.-M.; Song, X.-Z. Effects of several oligosaccharides on ruminal fermentation in sheep: An in vitro experiment. Rev. Méd. Vét. 2011, 162, 192–197. [Google Scholar]
- Schultz, E.; Macedo Júnior, G.; Paula, C.; Ferreira, I. Soybean molasses. Bull. Anim. Husb. 2020, 77, 1–8. [Google Scholar] [CrossRef]
- Pereira-Junior, S.A.G.; Torrecilhas, J.A.; Castro-Filho, E.S.; Costa, R.V.; Bertoco, J.P.A.; Feliciano, A.L.; Rodrigues, J.L.; Galati, R.L.; van Cleef, E.H.C.B.; Ezequiel, J.M.B. PSIX-10 The replacement of corn by soybean molasses improves ruminal environment of feedlot sheep. J. Anim. Sci. 2019, 97 (Suppl. S3), 396. [Google Scholar] [CrossRef]
- Van Cleef, F.; van Cleef, E.; Almeida, M.; Paschoaloto, J.; Castro, E.; Barducci, R.; Soragni, G.; Zampieri, E.; Ezequiel, J. PSI-13 In vitro digestibility and gas production of diets containing different levels of soybean molasses for feedlot sheep. J. Anim. Sci. 2018, 96 (Suppl. S3), 63. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle: Seventh Revised Edition; The National Academies Press: Washington, DC, USA, 2001; Available online: https://books.google.rs/books?ISBN=0309515211 (accessed on 9 February 2001).
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russel, J.B. Net carbohydrate and protein system for evaluating cattle diets: II carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef]
- Sannes, R.A.; Messman, M.A.; Vagnoni, D.B. Form of rumen degradable carbohydrate and nitrogen on microbial protein synthesis and protein efficiency of dairy cows. J. Dairy Sci. 2002, 85, 900–908. [Google Scholar] [CrossRef]
- Martel, C.A.; Titgemeyer, E.C.; Mamedova, L.K.; Bradford, B.J. Dietary molasses increases ruminal pH and enhances ruminal biohydrogenation during milk fat depression. J. Dairy Sci. 2011, 94, 3995–4004. [Google Scholar] [CrossRef] [Green Version]
- Miletić, A. Efekti Korišćenja Sojine Melase U Obrocima Za Krave U Laktaciji. Ph.D. Thesis, University of Belgrade, Faculty of Agriculture in Belgrade, Belgrade, Serbia, 2018. (In Serbian). [Google Scholar]
- Drouillard, J.S.; Schoenholz, C.K.; Hunter, R.D.; Nutsch, T.A. Soy molasses as a feed ingredient for finishing cattle. Cattlemen’s Day 1999, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Soares, L.C.B.; Sampaio, F.C.; Tobaldini, M.; de Souza, J.M.; Machado, V.A.; Fidelis, A.; Pereira, D.H.; Batista, E.D. The Effect of Soybean Molasses on In Vitro Ruminal Fermentation of Corn Silage-Based Feedlot Finishing Diet. In Proceedings of the 28th Congresso Brasileiro de Zootecnia, Goiânia, Brasil, 27–30 August 2018; Available online: http://www.adaltech.com.br/anais/zootecnia2018/resumos/trab-1434.pdf (accessed on 1 September 2018).
- Dos Santos Fidelis, A.; Sampaio, F.C.; Tobaldini, M.; de Souza, J.M.; Machado, V.A.; Soares, L.C.B.; Pereira, D.H.; Batista, E.D. Effects of Increasing Levels of Soybean Molasses as Replacement of Ground Corn in Sugarcane Bagasse-Based Diets on In Vitro Gas Production. In Proceedings of the 28th Congresso Brasileiro de Zootecnia, Goiânia, Brasil, 27–30 August 2018; Available online: http://www.adaltech.com.br/anais/zootecnia2018/resumos/trab-1786.pdf (accessed on 1 September 2018).
- Krause, D.O.; Easter, R.A.; Mackie, R.I. Fermentation of stachyose and raffinose by hind-gut bacteria of the weanling pig. Lett. Appl. Microbiol. 1994, 18, 349–352. [Google Scholar] [CrossRef]
- Singh, N.M.; Singh, L.A.; Kumari, V.; Kadirvel, G.; Patir, M. Effect of supplementation of molasses (Saccharum officinarum) on growth performance and cortisol profile of growing pig in north eastern hill ecosystem of India. J. Entomol. Zool. Stud. 2020, 8, 302–305. [Google Scholar]
- Karamitros, D. Sugar beet molasses for growing and fattening pigs. Anim. Feed Sci. Technol. 1987, 18, 131–142. [Google Scholar] [CrossRef]
- Mavromichalis, I.; Hancock, J.D.; Hines, R.H.; Senne, B.W.; Cao, H. Lactose, sucrose, and molasses in simple and complex diets for nursery pigs. Anim. Feed Sci. Technol. 2001, 93, 127–135. [Google Scholar] [CrossRef]
- Elgilani, H.M. The Feeding Value of Sugar Cane Molasses in Broiler Diets. Master’s Thesis, University of Khartoum, Khartoum, Sudan, 2007. [Google Scholar]
- Van den lngh, T.S.G.A.M.; OIli, J.J.; Krogdahl, Å. Alcohol-soluble components in soybeans cause morphological changes in the distal intestine of Atlantic salmon, Salmo salar L. J. Fish Dis. 1996, 19, 47–53. [Google Scholar] [CrossRef]
- Knudsen, D.; Urán, P.; Arnous, A.; Koppe, W.; Frøkiær, H. Saponin-containing subfractions of soybean molasses induce enteritis in the distal intestine of Atlantic salmon. J. Agric. Food Chem. 2007, 55, 2261–2267. [Google Scholar] [CrossRef]
- Francis, G.; Makkar, H.P.S.; Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
Component | Content (% d.m.) |
---|---|
Crude matter | 53.1–82.5 |
Crude protein | 5–12 |
Crude fat | 4–20 |
Ash | 3–21.9 |
Sugars | 58–65 |
Oligosaccharides | |
Stachyose | 15.5–34.2 |
Raffinose | 4–25.5 |
Disaccharides | |
Saccharose | 18.5–32 |
Monosaccharides | |
Fructose | 1.2–3.0 |
Glucose | 0.2–4.7 |
Saponins | 6–15 |
Isoflavones | 0.8–2.5 |
Other compounds (phenolic acids, leucoanthocyanins, etc.) | difference to 100 |
Total energy | 1400 kJ/100g |
Fatty Acids | Content (%) |
---|---|
Myristic acid (C14:0) | 0.1–0.2 |
Pentadecanoic acid (C15:0) | 0.1 |
Palmitic acid (C16:0) | 11.2–21.2 |
Palmitoleic acid (C16:1) | 0.1 |
Margaric acid (C17:0) | 0.2 |
Stearic acid (C18:0) | 3.8–3.9 |
Trans oleic acid (C18:1n9t) | 0.1 |
Oleic acid (C18:1n9c) | 9.9–23.1 |
Trans linoleic acid (C18:2n6t) | 0.2 |
Linoleic acid (C18:2n6c) | 54–56 |
Arachidic acid (C20:0) | 0.1–0.3 |
Eicosenoic acid (C20:1) | 0–0.2 |
α-linolenic acid (C18:3n3) | 7.2 |
Behenic acid (C22:0) | 0.4–0.5 |
Tricosylic acid (C23:0) | 0.2 |
Erucic acid (C22:1) | 0.2 |
Lignoceric acid (C24:0) | 0.2–0.3 |
Saturated fatty acids | 16.2–26.4 |
Monounsaturated fatty acids | 10.1–23.6 |
Polyunsaturated fatty acids | 61.2–63.4 |
Amino Acids | Content (g/kg Dry Matter) |
---|---|
Aspartic acid | 3.2–8.7 |
Threonine | 1.8–2.9 |
Serine | 1.3–3.6 |
Glutamic acid | 5.0–13.7 |
Proline | 2.2–3.8 |
Glycine | 0.9–3.2 |
Alanine | 2.2–3.4 |
Cystine | 1.2–7.6 |
Valine | 1.6–3.7 |
Methionine | 1.1–3.6 |
Isoleucine | 1.5–3.5 |
Leucine | 1.2–5.9 |
Tyrosine | 2.7–4.6 |
Phenylalanine | 3.9–5.1 |
Histidine | 2.1–5.4 |
Lysine | 0.9–4.8 |
Arginine | 5.6–7.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakita, S.; Banjac, V.; Djuragic, O.; Cheli, F.; Pinotti, L. Soybean Molasses in Animal Nutrition. Animals 2021, 11, 514. https://doi.org/10.3390/ani11020514
Rakita S, Banjac V, Djuragic O, Cheli F, Pinotti L. Soybean Molasses in Animal Nutrition. Animals. 2021; 11(2):514. https://doi.org/10.3390/ani11020514
Chicago/Turabian StyleRakita, Sladjana, Vojislav Banjac, Olivera Djuragic, Federica Cheli, and Luciano Pinotti. 2021. "Soybean Molasses in Animal Nutrition" Animals 11, no. 2: 514. https://doi.org/10.3390/ani11020514