Black Soldier Fly Full-Fat Larvae Meal Is More Profitable Than Fish Meal and Fish Oil in Siberian Sturgeon Farming: The Effects on Aquaculture Sustainability, Economy and Fish GIT Development
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Insect Meal and Diet Preparation
2.3. Animal Care
2.4. Sustainability and Economic Assessment
2.5. Somatic Indices
2.6. Histomorphological Examination
2.7. Statistical Analysis
3. Results
3.1. Environmental Sustainability and Economic Profitability
3.2. Somatic Indices and Gastrointestinal Histomorphology
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salin, K.R.; Arun, V.V.; Nair, C.M.; Tidwell, J.H. Sustainable aquafeed. In Sustainable Aquaculture; Fisal, I.H., Visvanathan, C., Bopathy, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 123–151. [Google Scholar]
- Gasco, L.; Gai, F.; Maricchiolo, G.; Genovese, L.; Ragonese, S.; Bottari, T.; Caruso, G. Fishmeal alternative protein sources for aquaculture feeds. In Feeds for the Aquaculture Sector: Current Situation and Alternative Sources; Gasco, L., Gai, F., Maricchiolo, G., Genovese, L., Ragonese, S., Bottari, T., Caruso, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–28. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2018-Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- Nogales-Mérida, S.; Gobbi, P.; Józefiak, D.; Mazurkiewicz, J.; Dudek, K.; Rawski, M.; Kierończyk, B.; Józefiak, A. Insect meals in fish nutrition. Rev. Aquac. 2019, 11, 1080–1103. [Google Scholar] [CrossRef]
- van Huis, A.; Oonincx, D. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 1–14. [Google Scholar] [CrossRef] [Green Version]
- IPIFF. Edible Insects on the European Market. Available online: https://ipiff.org/wp-content/uploads/2020/06/10-06-2020-IPIFF-edible-insects-market-factsheet.pdf (accessed on 19 January 2021).
- Huang, C.; Feng, W.; Xiong, J.; Wang, T.; Wang, W.; Wang, C.; Yang, F. Impact of drying method on the nutritional value of the edible insect protein from black soldier fly (Hermetia illucens L.) larvae: Amino acid composition, nutritional value evaluation, in vitro digestibility, and thermal properties. Eur. Food Res. Technol. 2019, 245, 11–21. [Google Scholar] [CrossRef]
- Wang, T.; Shen, Q.; Feng, W.; Wang, C.; Yang, F. Aqueous ethyl acetate as a novel solvent for the degreasing of black soldier fly (Hermetia illucens L.) larvae: Degreasing rate, nutritional value evaluation of the degreased meal, and thermal properties. J. Sci. Food Agric. 2020, 100, 1204–1212. [Google Scholar] [CrossRef]
- Zhu, D.; Huang, X.; Tu, F.; Wang, C.; Yang, F. Preparation, antioxidant activity evaluation, and identification of antioxidant peptide from black soldier fly (Hermetia illucens L.) larvae. J. Food Biochem. 2020, 44, e13186. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Commission Regulation (EU) 2017/893. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0893&from=EN (accessed on 19 January 2021).
- Józefiak, A.; Nogales-Merida, S.; Mikołajczak, Z.; Rawski, M.; Kierończyk, B.; Mazurkiewicz, J. The utilization of full-fat insect meal in rainbow trout (Oncorhynchus mykiss) nutrition: The effects on growth performance, intestinal microbiota and gastrointestinal tract histomorphology. Ann. Anim. Sci. 2019, 19, 747–765. [Google Scholar] [CrossRef] [Green Version]
- Józefiak, A.; Nogales-Mérida, S.; Rawski, M.; Kierończyk, B.; Mazurkiewicz, J. Effects of insect diets on the gastrointestinal tract health and growth performance of Siberian sturgeon (Acipenser baerii Brandt, 1869). BMC Vet. Res. 2019, 15, 348. [Google Scholar] [CrossRef] [Green Version]
- Mikołajczak, Z.; Rawski, M.; Mazurkiewicz, J.; Kierończyk, B.; Józefiak, D. The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta m. trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals 2020, 10, 1031. [Google Scholar] [CrossRef]
- Weththasinghe, P.; Hansen, J.Ø.; Nøkland, D.; Lagos, L.; Rawski, M.; Øverland, M. Full-fat black soldier fly larvae (Hermetia illucens) meal and paste in extruded diets for Atlantic salmon (Salmo salar): Effect on physical pellet quality, nutrient digestibility, nutrient utilization and growth performances. Aquaculture 2021, 530, 735785. [Google Scholar] [CrossRef]
- Gasco, L.; Józefiak, A.; Henry, M. Beyond the protein concept: Health aspects of using edible insects on animals. J. Insects Food Feed 2020, 1–28. [Google Scholar] [CrossRef]
- Rawski, M.; Mazurkiewicz, J.; Kierończyk, B.; Józefiak, D. Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: The effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals 2020, 10, 2119. [Google Scholar] [CrossRef]
- EUMOFA (European Market Observatory for Fisheries and Aquaculture Products). The Caviar Market. Production, Trade and Consumption in and Outside the EU; EUMOFA (Europe, Directorate-General for Maritime Affairs and Fishieries): Brussels, Belgium, 2019. [Google Scholar]
- Kasumyan, A. Olfaction and gustation in Acipenseridae, with special references to the Siberian sturgeon. In The Siberian sturgeon (Acipenser baerii, Brandt, 1869) Volume 1–Biology; Williot, P., Nonnotte, G., Vizziano-Cantonnet, D., Chebanov, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 173–205. [Google Scholar]
- Caimi, C.; Renna, M.; Lussiana, C.; Bonaldo, A.; Gariglio, M.; Meneguz, M.; Dabbou, S.; Schiavone, A.; Gai, F.; Elia, A.C.; et al. First insights on black soldier fly (Hermetia illucens L.) larvae meal dietary administration in Siberian sturgeon (Acipenser baerii Brandt) juveniles. Aquaculture 2020, 515, 734539. [Google Scholar] [CrossRef]
- Caimi, C.; Gasco, L.; Biasato, I.; Malfatto, V.; Varello, K.; Prearo, M.; Pastorino, P.; Bona, M.C.; Francese, D.R.; Schiavone, A.; et al. Could dietary black soldier fly meal inclusion affect the liver and intestinal histological traits and the oxidative stress biomarkers of Siberian sturgeon (Acipenser baerii) juveniles? Animals 2020, 10, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasco, L.; Finke, M.; Huis, A. Can diets containing insects promote animal health? J. Insects Food Feed 2018, 4, 1–4. [Google Scholar] [CrossRef]
- Zarantoniello, M.; Randazzo, B.; Nozzi, V.; Truzzi, C.; Giorgini, E.; Cardinaletti, G.; Freddi, L.; Ratti, S.; Girolametti, F.; Osimani, A.; et al. Physiological responses of Siberian sturgeon (Acipenser baerii) juveniles fed on full-fat insect-based diet in an aquaponic system. Sci. Rep. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Topic Popovic, N.; Strunjak-Perovic, I.; Coz-Rakovac, R.; Barisic, J.; Jadan, M.; Persin Berakovic, A.; Sauerborn Klobucar, R. Tricaine methane-sulfonate (MS-222) application in fish anaesthesia. J. Appl. Ichthyol. 2012, 28, 553–564. [Google Scholar] [CrossRef] [Green Version]
- Leary, S.; Underwood, W.; Anthony, R.; Cartner, S. AVMA Guidelines for the Euthanasia of Animals: 2013 Edition; AVMA: Schaumburg, IL, USA, 2013; pp. 67–73. [Google Scholar]
- Janssen, R.H.; Vincken, J.P.; van den Broek, L.A.; Fogliano, V.; Lakemond, C.M. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.S.O.; Lutes, P.B.; Shqueir, A.A.; Conte, F.S. Effect of feeding rate and water temperature on growth of juvenile white sturgeon (Acipenser transmontanus). Aquaculture 1993, 115, 297–303. [Google Scholar] [CrossRef]
- Sunde, J.; Eiane, S.A.; Rustad, A.; Jensen, H.B.; Opstvedt, J.; Nygård, E.; Venturini, G.; Rungruangsak-Torrissen, K. Effect of fish feed processing conditions on digestive protease activities, free amino acid pools, feed conversion efficiency and growth in Atlantic salmon (Salmo salar L.). Aquac. Nutr. 2004, 10, 261–277. [Google Scholar] [CrossRef]
- Crampton, V.O.; Nanton, D.A.; Ruohonen, K.; Skjervold, P.O.; El-Mowafi, A. Demonstration of salmon farming as a net producer of fish protein and oil. Aquac. Nutr. 2010, 16, 437–446. [Google Scholar] [CrossRef]
- Stejskal, V.; Tran, H.Q.; Prokesova, M.; Gebauer, T.; Giang, P.T.; Gai, F.; Gasco, L. Partially defatted Hermetia illucens larva meal in diet of eurasian perch (Perca fluviatilis) juveniles. Animals 2020, 10, 1876. [Google Scholar] [CrossRef] [PubMed]
- Tacon, A.J.G.; Metian, M. Global overview of the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and Future Prospects. Aquaculture 2008, 285, 146–158. [Google Scholar] [CrossRef]
- Naylor, R.L.; Hardy, R.W.; Bureau, D.P.; Chiu, A.; Elliott, M.; Farrell, P.A.; Forster, I.; Gatlin, D.M.; Goldburg, R.J.; Hua, K.; et al. Feeding aquaculture in an era of finite resources. Proc. Natl. Acad. Sci. USA 2009, 106, 15103–15110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, A. Fish In-Fish Out, Ratios Explained. Aquac. Eur. 2009, 34, 5–10. [Google Scholar]
- Piccolo, G.; Iaconisi, V.; Marono, S.; Gasco, L.; Loponte, R.; Nizza, S.; Bovera, F.; Parisi, G. Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Anim. Feed Sci. Technol. 2017, 226, 12–20. [Google Scholar] [CrossRef]
- Bogucka, J.; Dankowiakowska, A.; Elminowska-Wenda, G.; Sobolewska, A.; Szczerba, A.; Bednarczyk, M. Effects of prebiotics and synbiotics delivered in ovo on broiler small intestine histomorphology during the first days after hatching. Folia Biol. 2016, 64, 131–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakamoto, K.; Hirose, H.; Onizuka, A.; Hayashi, M.; Futamura, N.; Kawamura, Y.; Ezaki, T. Quantitative study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats. J. Surg. Res. 2000, 94, 99–106. [Google Scholar] [CrossRef]
- Peebua, P.; Kruatrachue, M.; Pokethitiyook, P.; Kosiyachinda, P. Histological effects of contaminated sediments in Mae Klong River tributaries, Thailand, on Nile tilapia, Oreochromis niloticus. Sci. Asia 2006, 32, 143–150. [Google Scholar] [CrossRef]
- Elia, A.C.; Capucchio, M.T.; Caldaroni, B.; Magara, G.; Dörr, A.J.M.; Biasato, I.; Biasibetti, E.; Righetti, M.; Pastorino, P.; Prearo, M.; et al. Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture 2018, 496, 50–57. [Google Scholar] [CrossRef]
- Rawski, M.; Kierończyk, B.; Długosz, J.; Świątkiewicz, S.; Józefiak, D. Dietary probiotics affect gastrointestinal microbiota, histological structure and shell mineralization in turtles. PLoS ONE 2016, 11, e0147859. [Google Scholar] [CrossRef] [Green Version]
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.J.; Zeng, C.; Zenger, K.; et al. The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Luna, M.; Llorente, I.; Cobo, Á. Integration of environmental sustainability and product quality criteria in the decision-making process for feeding strategies in seabream aquaculture companies. J. Clean. Prod. 2019, 217, 691–701. [Google Scholar] [CrossRef] [Green Version]
- Veveris, A.; Hazners, J.; Benga, E. Perspective development of new species in Latvian aquaculture. In Proceedings of the 2016 International Conference Economic Science for Rural Development, LLU ESAF, Jeglava, Latvia, 21–22 April 2016; pp. 164–172. [Google Scholar]
- Arru, B.; Furesi, R.; Gasco, L.; Madau, F.A.; Pulina, P. The introduction of insect meal into fish diet: The first economic analysis on European sea bass farming. Sustainability 2019, 11, 1697. [Google Scholar] [CrossRef] [Green Version]
- Craig, J.M.; Thomas, M.V.; Nichols, S.J. Length–weight relationship and a relative condition factor equation for lake sturgeon (Acipenser fulvescens) from the St Clair River system (Michigan, USA). J. Appl. Ichthyol. 2005, 21, 81–85. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Belghit, I.; Liland, N.S.; Waagbø, R.; Biancarosa, I.; Pelusio, N.; Li, Y.; Krogdahl, Å.; Lock, E.J. Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture 2018, 491, 72–81. [Google Scholar] [CrossRef]
- Zarantoniello, M.; Randazzo, B.; Gioacchini, G.; Truzzi, C.; Giorgini, E.; Riolo, P.; Gioia, G.; Bertolucci, C.; Osimani, A.; Cardinaletti, G.; et al. Zebrafish (Danio rerio) physiological and behavioural responses to insect-based diets: A multidisciplinary approach. Sci. Rep. 2020, 10, 10648. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ji, H.; Zhang, B.; Tian, J.; Zhou, J.; Yu, H. Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 2016, 465, 43–52. [Google Scholar] [CrossRef]
Treatment | CON | H5 | H10 | H15 | H20 | H25 | H30 |
---|---|---|---|---|---|---|---|
Diet composition (g/1000 g) | |||||||
Fish meal | 261 | 234 | 208 | 181 | 155 | 128 | 101 |
Red blood cells | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
BSFL | 0 | 50 | 100 | 150 | 200 | 250 | 300 |
Soy protein isolate | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Wheat gluten | 150 | 150 | 150 | 150 | 150 | 150 | 150 |
Wheat meal | 145 | 130 | 117 | 104 | 89 | 76 | 63 |
Maltodextrin | 130 | 130 | 130 | 130 | 130 | 130 | 130 |
Fish oil | 65 | 55 | 44 | 34 | 24 | 14 | 3 |
Lecithin | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Premix 1 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Vitamin premix 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Choline chloride | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Limestone | 18 | 18 | 16 | 14 | 3 | 11 | 10 |
Phosphate 1-Ca | 0 | 2 | 4 | 6 | 8 | 10 | 12 |
TiO2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Total | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
Analysed chemical feed composition (g/1000 g) | |||||||
Dry matter | 938.4 | 937.4 | 934.5 | 934.7 | 934.9 | 936.0 | 935.9 |
Crude protein | 485.5 | 487.7 | 491.4 | 497.9 | 503.5 | 507.4 | 507.9 |
Crude fat | 99.7 | 102.4 | 101 | 95.5 | 92.1 | 92.3 | 91.0 |
Crude fibre | 6.7 | 9.9 | 13.3 | 16.7 | 19.9 | 23.2 | 26.5 |
Ash | 82.1 | 82.3 | 82.2 | 80.9 | 81.2 | 80.1 | 80.1 |
Nitrogen-free extract | 264.4 | 255.1 | 246.6 | 243.7 | 238.2 | 233.0 | 230.4 |
ITEM | CON | H5 | H10 | H15 | H20 | H25 | H30 | SEM | p-Value |
---|---|---|---|---|---|---|---|---|---|
Environmental Sustainability | |||||||||
FCE | 1.13 c | 1.27 b | 1.43 a | 1.42 a | 1.47 a | 1.42 a | 1.47 a | 0.019 | <0.001 |
FMU | 230 a | 186 b | 145 c | 127 d | 106 e | 88 f | 69 g | 7.676 | <0.001 |
FOU | 57.3 a | 43.6 b | 30.6 c | 23.9 d | 16.4 e | 9.58 f | 2.03 g | 2.605 | <0.001 |
FIFO | 1.04 a | 0.83 b | 0.64 c | 0.55 d | 0.44 e | 0.35 f | 0.26 g | 0.037 | <0.001 |
Economic Profitability | |||||||||
FC | 1.72 | 1.80 | 1.87 | 1.95 | 2.02 | 2.10 | 2.17 | - | - |
ECR | 1.52 a | 1.43 bc | 1.30 d | 1.37 cd | 1.38 c | 1.44 bc | 1.47 ab | 0.013 | <0.001 |
EPI | 0.45 c | 0.53 b | 0.61 a | 0.61 a | 0.63 a | 0.61 a | 0.62 a | 0.010 | <0.001 |
PRO | 6.48 d | 6.57 bc | 6.70 a | 6.63 ab | 6.62 b | 6.56 bc | 6.53 cd | 0.013 | <0.001 |
ITEM | CON | H5 | H10 | H15 | H20 | H25 | H30 | SEM | p-Value |
---|---|---|---|---|---|---|---|---|---|
CF | 0.31 d | 0.33 cd | 0.34 bc | 0.36 abc | 0.35 abc | 0.37 a | 0.36 ab | 0.004 | 0.0005 |
VSI (%) | 0.16 b | 0.17 b | 0.20 ab | 0.19 ab | 0.22 a | 0.20 ab | 0.22 a | 0.005 | 0.0130 |
HSI (%) | 3.26 | 3.73 | 3.75 | 3.64 | 3.35 | 3.33 | 3.42 | 0.064 | 0.1893 |
PCI (%) | 0.40 b | 0.54 a | 0.60 a | 0.61 a | 0.55 a | 0.66 a | 0.61 a | 0.015 | 0.0001 |
GIT/FTL (%) | 65.8 | 68.5 | 68.2 | 71.16 | 69.1 | 70.1 | 70.0 | 0.488 | 0.0875 |
IL/FTL (%) | 35.2 | 35.4 | 36.3 | 37.3 | 36.2 | 38.2 | 36.5 | 0.300 | 0.1087 |
PL/FTL (%) | 17.6 | 18.3 | 19.1 | 19.7 | 19.7 | 21.1 | 19.3 | 0.230 | 0.1900 |
DL/FTL (%) | 17.6 | 17.0 | 17.2 | 17.6 | 16.5 | 17.1 | 17.2 | 0.163 | 0.5743 |
IL/GIT (%) | 53.6 | 51.6 | 53.2 | 52.6 | 52.4 | 54.6 | 52.2 | 0.320 | 0.2144 |
PL/GIT (%) | 26.8 b | 26.7 b | 28.1 b | 28.5 ab | 28.5 ab | 30.1 a | 27.5 b | 0.263 | 0.0079 |
DL/GIT (%) | 26.8 a | 24.8 b | 25.2 b | 24.9 b | 23.9 b | 24.5 b | 24.7 b | 0.231 | 0.0341 |
ITEM | CON | H5 | H10 | H15 | H20 | H25 | H30 | SEM | p-Value |
---|---|---|---|---|---|---|---|---|---|
VH (µm) | 690 c | 707 cb | 720 b | 715 cb | 742 b | 802 a | 807 a | 9.136 | <0.0001 |
VW (µm) | 97.7 abc | 94.1 bc | 98.8 ab | 95.6 abc | 100.6 a | 98.9 ab | 93.1 bc | 1.162 | 0.0098 |
VS (µm2) | 214,296 c | 208,396 c | 221,771 bc | 215,272 c | 232,865 ab | 249,766 a | 235,655 ab | 260.5 | <0.0001 |
MLT (µm) | 127.7 | 117.3 | 122.7 | 117.1 | 127.1 | 123.0 | 130.7 | 11.64 | 0.1051 |
ITEM | CON | H5 | H10 | H15 | H20 | H25 | H30 | SEM | p-Value |
---|---|---|---|---|---|---|---|---|---|
Congestion | 0.21 | 0.57 | 0.50 | 0.21 | 0.36 | 0.14 | 0.14 | 0.010 | 0.2406 |
Necrosis | 0.86 | 0.64 | 0.86 | 1.29 | 1.21 | 0.93 | 0.64 | 0.021 | 0.5762 |
Fibrosis | 0.36 | 0.43 | 0.71 | 0.64 | 0.43 | 0.43 | 0.50 | 0.016 | 0.7653 |
Hepatocyte vacuolization | 1.36 | 1.50 | 1.57 | 1.21 | 1.14 | 1.00 | 1.5 | 0.026 | 0.7653 |
Fat vacuolization | 0.5 | 0.57 | 0.57 | 0.36 | 0.36 | 0.43 | 0.57 | 0.017 | 0.7912 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rawski, M.; Mazurkiewicz, J.; Kierończyk, B.; Józefiak, D. Black Soldier Fly Full-Fat Larvae Meal Is More Profitable Than Fish Meal and Fish Oil in Siberian Sturgeon Farming: The Effects on Aquaculture Sustainability, Economy and Fish GIT Development. Animals 2021, 11, 604. https://doi.org/10.3390/ani11030604
Rawski M, Mazurkiewicz J, Kierończyk B, Józefiak D. Black Soldier Fly Full-Fat Larvae Meal Is More Profitable Than Fish Meal and Fish Oil in Siberian Sturgeon Farming: The Effects on Aquaculture Sustainability, Economy and Fish GIT Development. Animals. 2021; 11(3):604. https://doi.org/10.3390/ani11030604
Chicago/Turabian StyleRawski, Mateusz, Jan Mazurkiewicz, Bartosz Kierończyk, and Damian Józefiak. 2021. "Black Soldier Fly Full-Fat Larvae Meal Is More Profitable Than Fish Meal and Fish Oil in Siberian Sturgeon Farming: The Effects on Aquaculture Sustainability, Economy and Fish GIT Development" Animals 11, no. 3: 604. https://doi.org/10.3390/ani11030604
APA StyleRawski, M., Mazurkiewicz, J., Kierończyk, B., & Józefiak, D. (2021). Black Soldier Fly Full-Fat Larvae Meal Is More Profitable Than Fish Meal and Fish Oil in Siberian Sturgeon Farming: The Effects on Aquaculture Sustainability, Economy and Fish GIT Development. Animals, 11(3), 604. https://doi.org/10.3390/ani11030604