Molecular Characteristics of Enterococcus faecalis and Enterococcus faecium from Bulk Tank Milk in Korea
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Bacterial Isolation
2.2. Antimicrobial Susceptibility Testing
2.3. Detection of Antimicrobial Resistance, Transposons, and Virulence Genes
2.4. Statistical Analysis
3. Results
3.1. Prevalence of Enterococci
3.2. Distribution of Antimicrobial Resistance
3.3. Distribution of MDR Isolates
3.4. Distribution of Antimicrobial Resistance and Transposon Genes in TET- and ERY-Resistant Enterococci
3.5. Distribution of Virulence Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nam, H.M.; Lim, S.K.; Moon, J.S.; Kang, H.M.; Kim, J.M.; Jang, K.C.; Kim, J.M.; Kang, M.I.; Joo, Y.S.; Jung, S.C. Antimicrobial Resistance of Enterococci Isolated from Mastitic Bovine Milk Samples in Korea. Zoonoses Public Health 2010, 57, e59–e64. [Google Scholar] [CrossRef]
- Choi, J.M.; Woo, G.J. Transfer of Tetracycline Resistance Genes with Aggregation Substance in Food-Borne Enterococcus faecalis. Curr. Microbiol. 2015, 70, 476–484. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Zhang, S.; Shang, X.; Wang, X.; Yan, Z.; Li, H.; Li, J. Short communication: Antimicrobial resistance and virulence genes of Enterococcus faecalis isolated from subclinical bovine mastitis cases in China. J. Dairy Sci. 2019, 102, 140–144. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.B.; Seo, K.W.; Shim, J.B.; Son, S.H.; Noh, E.B.; Lee, Y.J. Molecular characterization of antimicrobial-resistant Enterococcus faecalis and Enterococcus faecium isolated from layer parent stock. Poult. Sci. 2019, 98, 5892–5899. [Google Scholar] [CrossRef]
- National Institute of Food and Drug Safety Evaluation (NIFDS). National Antimicrobial Resistance Surveillance on the Domestic and Imported Meat and Fishery Products; NIFDS: Cheongju, Korea, 2019. [Google Scholar]
- Chung, Y.S.; Kwon, K.H.; Shin, S.; Kim, J.H.; Park, Y.H.; Yoon, J.W. Characterization of veterinary hospital-associated isolates of Enterococcus species in Korea. J. Microbiol. Biotechnol. 2014, 24, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Koo, M. Occurrence, Antimicrobial Resistance and Molecular Diversity of Enterococcus faecium in Processed Pork Meat Products in Korea. Foods 2020, 9, 1283. [Google Scholar] [CrossRef] [PubMed]
- Mannu, L.; Paba, A.; Daga, E.; Comunian, R.; Zanetti, S.; Duprè, I.; Sechi, L.A. Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. Int. J. Food Microbiol. 2003, 88, 291–304. [Google Scholar] [CrossRef]
- Chajęcka-Wierzchowska, W.; Zadernowska, A.; Łaniewska-Trokenheim, Ł. Virulence factors of Enterococcus spp. presented in food. LWT Food Sci. Technol. 2017, 75, 670–676. [Google Scholar] [CrossRef]
- Jiménez, E.; Ladero, V.; Chico, I.; Maldonado-Barragán, A.; López, M.; Martín, V.; Fernández, L.; Fernández, M.; Álvarez, M.A.; Torres, C.; et al. Antibiotic resistance, virulence determinants and production of biogenic amines among enterococci from ovine, feline, canine, porcine and human milk. BMC Microbiol. 2013, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Alvarez, V.; Harper, W.J.; Wang, H.H. Persistent, toxin-antitoxin system-independent, tetracycline resistance-encoding plasmid from a dairy Enterococcus faecium Isolate. Appl. Environ. Microbiol. 2011, 77, 7096–7103. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Food and Drug Safety (MFDS). Processing Standards and Ingredient Specifications for Livestock Products; NIFDS: Cheongju, Korea, 2018. [Google Scholar]
- Dutka-Malen, S.; Evers, S.; Courvalin, P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 1995, 33, 1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). M100 Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Wayne, PA, USA, 2019; Volume 29. [Google Scholar]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- Di Cesare, A.; Pasquaroli, S.; Vignaroli, C.; Paroncini, P.; Luna, G.M.; Manso, E.; Biavasco, F. The marine environment as a reservoir of enterococci carrying resistance and virulence genes strongly associated with clinical strains. Environ. Microbiol. Rep. 2014, 6, 184–190. [Google Scholar] [CrossRef]
- Agersø, Y.; Pedersen, A.G.; Aarestrup, F.M. Identification of Tn5397-like and Tn916-like transposons and diversity of the tetracycline resistance gene tet(M) in enterococci from humans, pigs and poultry. J. Antimicrob. Chemother. 2006, 57, 832–839. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.M.; Woo, G.J. Molecular characterization of high-level gentamicin-resistant Enterococcus faecalis from chicken meat in Korea. Int. J. Food Microbiol. 2013, 165, 1–6. [Google Scholar] [CrossRef]
- Gao, X.; Fan, C.; Zhang, Z.; Li, S.; Xu, C.; Zhao, Y.; Han, L.; Zhang, D.; Liu, M. Enterococcal isolates from bovine subclinical and clinical mastitis: Antimicrobial resistance and integron-gene cassette distribution. Microb. Pathog. 2019, 129, 82–87. [Google Scholar] [CrossRef]
- Okamoto, E.; Miyanishi, H.; Nakamura, A.; Kobayashi, T.; Kobayashi, N.; Terawaki, Y.; Nagahata, H. Bacteriological evaluation of composted manure solids prepared from anaerobic digested slurry for hygienic recycled bedding materials for dairy cows. Anim. Sci. J. 2018, 89, 727–732. [Google Scholar] [CrossRef]
- Nam, H.; Lim, S.; Kang, H.; Kim, J.; Moon, J.; Jang, K.; Joo, Y.; Kang, M.; Jung, S. Antimicrobial resistance of streptococci isolated from mastitic bovine milk samples in Korea. J. Vet. Diagn. Investig. 2009, 701, 698–701. [Google Scholar] [CrossRef]
- Kim, S.-J.; Lee, N.Y.; Song, J.-H.; Kim, S.; Peck, K.R.; Choi, M.S.; Kim, E.C.; Lee, W.G.; Lee, K.; Pai, C.H. A Study on Molecular Epidemiology of Vancomycin-Resistant Enterococci Isolated from hospitals in Korea. Korean J. Infect. Dis. 1998, 30, 1–9. [Google Scholar]
- Sahlström, L.; Rehbinder, V.; Albihn, A.; Aspan, A.; Bengtsson, B. Vancomycin resistant enterococci (VRE) in Swedish sewage sludge. Acta Vet. Scand. 2009, 51, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotzamanidis, C.; Zdragas, A.; Kourelis, A.; Moraitou, E.; Papa, A.; Yiantzi, V.; Pantelidou, C.; Yiangou, M. Characterization of vanA-type enterococcus faecium isolates from urban and hospital wastewater and pigs. J. Appl. Microbiol. 2009, 107, 997–1005. [Google Scholar] [CrossRef]
- Song, J.Y.; Hwang, I.S.; Eom, J.S.; Cheong, H.J.; Bae, W.K.; Park, Y.H.; Kim, W.J. Prevalence and molecular epidemiology of vancomycin-resistant enterococci (VRE) strains isolated from animals and humans in Korea. Korean J. Intern. Med. 2005, 20, 55–62. [Google Scholar] [CrossRef]
- Różańska, H.; Piłat, A.L.-; Kubajka, M.; Weiner, M. Occurrence of enterococci in mastitic cow’ s milk and their antimicrobial resistance. J. Vet. Res. 2019, 63, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Ayobami, O.; Willrich, N.; Reuss, A.; Eckmanns, T.; Markwart, R.E. The ongoing challenge of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in Europe: An epidemiological analysis of bloodstream infections. Emerg. Microbes Infect. 2020, 9, 1180–1193. [Google Scholar] [CrossRef]
- Manson, J.M.; Keis, S.; Smith, J.M.B.; Cook, G.M. A clonal lineage of VanA-type Enterococcus faecalis predominates in vancomycin-resistant enterococci isolated in New Zealand. Antimicrob. Agents Chemother. 2003, 47, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lv, Y.; Cai, J.; Schwarz, S.; Cui, L.; Hu, Z.; Zhang, R.; Li, J.; Zhao, Q.; He, T.; et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J. Antimicrob. Chemother. 2015, 70, 2182–2190. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.; Kim, Y.B.; Seo, K.W.; Ha, J.S.; Noh, E.B.; Lee, Y.J. Characteristics of linezolid-resistant Enterococcus faecalis isolates from broiler breeder farms. Poult. Sci. 2020, 99, 6055–6061. [Google Scholar] [CrossRef] [PubMed]
- Pankey, G.; Ashcraft, D.; Patel, N. In vitro synergy of daptomycin plus rifampin against Enterococcus faecium resistant to both linezolid and vancomycin. Antimicrob. Agents Chemother. 2005, 49, 5166–5168. [Google Scholar] [CrossRef] [Green Version]
- Huys, G.; D’Haene, K.; Collard, J.M.; Swings, J. Prevalence and Molecular Characterization of Tetracycline Resistance in Enterococcus Isolates from Food. Appl. Environ. Microbiol. 2004, 70, 1555–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollenbeck, B.L.; Rice, L.B. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 2012, 3, 421–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archimbaud, C.; Shankar, N.; Forestier, C.; Baghdayan, A.; Gilmore, M.S.; Charbonné, F.; Joly, B. In vitro adhesive properties and virulence factors of Enterococcus faecalis strains. Res. Microbiol. 2002, 153, 75–80. [Google Scholar] [CrossRef]
- Golob, M.; Pate, M.; Kušar, D.; Dermota, U.; Avberšek, J.; Papić, B.; Zdovc, I.; Bondi, M. Antimicrobial Resistance and Virulence Genes in Enterococcus faecium and Enterococcus faecalis from Humans and Retail Red Meat. Biomed. Res. Int. 2019, 2019, 14–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strateva, T.; Atanasova, D.; Savov, E.; Petrova, G.; Mitov, I. Incidence of virulence determinants in clinical Enterococcus faecalis and Enterococcus faecium isolates collected in Bulgaria. Braz. J. Infect. Dis. 2016, 20, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, D.M.; Talavera, G.N.; Hernández, L.A.R.; Weisberg, S.B.; Ambrose, R.F.; Jay, J.A. Virulence Genes among Enterococcus faecalis and Enterococcus faecium Isolated from Coastal Beaches and Human and Nonhuman Sources in Southern California and Puerto Rico. J. Pathog. 2016, 2016, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. (%) of Antimicrobial-Resistant Enterococci Isolates, by Company | |||||
---|---|---|---|---|---|
A | B | C | D | Total | |
Antimicrobials | (n = 132) * | (n = 53) | (n = 58) | (n = 95) | (n = 338) |
β-Lactams | |||||
Penicillin | 1 (0.8) a,b | 0 (0.0) a,b | 3 (5.2) b | 0 (0.0) a | 4 (1.2) |
Ampicillin | 2 (1.5) | 1 (1.9) | 0 (0.0) | 0 (0.0) | 3 (0.9) |
Glycopeptides | |||||
Vancomycin | 0 (0.0) a | 2 (3.8) b | 0 (0.0) a,b | 0 (0.0) a,b | 2 (0.6) |
Macrolides | |||||
Erythromycin | 43 (32.6) a | 23 (43.4) a,b | 41 (70.7) c | 49 (51.6) b | 156 (46.2) |
Tetracyclines | |||||
Tetracycline | 96 (72.7) a,b | 32 (60.4) a | 51 (87.9) c | 69 (72.6) a,b | 248 (73.4) |
Doxycycline | 69 (52.3) | 24 (45.3) | 34 (58.6) | 41 (43.2) | 168 (49.7) |
Fluoroquinolones | |||||
Ciprofloxacin | 3 (2.3) a | 5 (9.4) b | 2 (3.4) a,b | 3 (3.2) a,b | 13 (3.8) |
Phenicols | |||||
Chloramphenicol | 16 (12.1) a | 16 (30.2) b | 33 (56.9) c | 21 (22.1) a,b | 86 (25.4) |
Ansamycins | |||||
Rifampin | 29 (22.0) | 12 (22.6) | 10 (17.2) | 20 (21.1) | 71 (21.0) |
Genes | No. (%) of Isolates with Antimicrobial Resistance Gene(s) and Transposon Gene(s), by Company | ||||
---|---|---|---|---|---|
A | B | C | D | Total | |
(n = 40) * | (n = 18) | (n = 45) | (n = 43) | (n = 146) | |
erm(B) | 2 (5.0) | 0 (0) | 0 (0) | 0 (0) | 2 (1.4) |
tdnX | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
erm(B) + tet(O) | 0 (0) | 1 (5.6) | 0 (0) | 0 (0) | 1 (0.7) |
erm(B) + tet(L) | 2 (5.0) | 0 (0) | 2 (4.4) | 0 (0) | 4 (2.7) |
erm(B) + tet(M) | 3 (7.5) | 0 (0) | 5 (11.1) | 2 (4.7) | 10 (6.8) |
erm(B) + IntTn | 1 (2.5) | 0 (0) | 0 (0) | 0 (0) | 1 (0.7) |
tet(L) + tet(M) | 1 (2.5) | 0 (0) | 1 (2.2) | 0 (0) | 2 (1.4) |
tet(L) + tet(M) + IntTn | 0 (0) | 1 (5.6) | 1 (2.2) | 0 (0) | 2 (1.4) |
erm(B) + tet(O) + IntTn | 0 (0) | 1 (5.6) | 0 (0) | 0 (0) | 1 (0.7) |
erm(B) + erm(A) + tet(L) + tet(M) | 0 (0) | 1 (5.6) | 0 (0) | 0 (0) | 1 (0.7) |
erm(B) + tet(L) + tet(M) | 6 (15.0) a,b | 6 (33.3) b | 6 (13.3) a,b | 2 (4.7) a | 20 (13.7) |
erm(B) + tet(L) + IntTn | 0 (0) | 1 (5.6) | 0 (0) | 0 (0) | 1 (0.7) |
erm(B) + tet(M) + IntTn | 20 (50.0) a | 2 (11.1) b | 22 (48.9) a | 6 (14.0) b | 50 (34.2) |
erm(B) + tet(L) + tet(M) + IntTn | 5 (12.5) a | 5 (27.8) a | 8 (17.8) a | 32 (74.4) b | 50 (34.2) |
None | 0 (0) | 0 (0) | 0 (0) | 1 (2.3) | 1 (0.7) |
No. (%) of E. faecalis Isolates Carrying the Gene, by Company | No. (%) of E. faecium Isolates Carrying the Gene, by Company | E. faecalis vs. E. faecium | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | Total | A | B | C | D | Total | ||
Virulence Genes | (n = 54) * | (n = 39) | (n = 88) | (n = 124) | (n = 305) | (n = 8) | (n = 14) | (n = 4) | (n = 8) | (n = 33) | p Value |
ace | 54 (100) | 37 (94.9) | 87 (98.9) | 124 (100) | 302 (99.0) | 0 (0.0) | 3 (21.4) | 1 (25.0) | 0 (0.0) | 4 (12.1) | >0.001 |
asa1 | 38 (70.4) b | 24 (61.5) a,b | 41 (46.6)a | 59 (47.6) a | 162 (53.1) | 0 (0.0) | 2 (14.3) | 1 (25.0) | 0 (0.0) | 3 (9.1) | >0.001 |
cad1 | 54 (100) | 39 (100) | 86 (97.7) | 113 (91.1) | 292 (95.7) | 6 (75.0) | 12 (85.7) | 3 (75.0) | 6 (75.0) | 27 (81.8) | 0.002 |
cylA | 8 (14.8) b | 4 (10.3) b | 7 (8.0)b | 1 (0.8) a | 20 (6.6) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.241 |
efaA | 54 (100) | 35 (89.7) | 87 (98.9) | 122 (98.4) | 298 (97.7) | 0 (0.0) | 3 (21.4) | 1 (25.0) | 0 (0.0) | 4 (12.1) | >0.001 |
esp | 2 (3.7) | 6 (15.4) | 16 (18.2) | 22 (17.7) | 46 (15.1) | 0 (0.0) | 1 (7.1) | 0 (0.0) | 0 (0.0) | 1 (3.0) | 0.064 |
gelE | 46 (85.2) a,b | 31 (79.5) a | 68 (77.3) a | 117 (94.4) b | 262 (85.9) | 0 (0.0) | 2 (14.3) | 0 (0.0) | 0 (0.0) | 2 (6.1) | >0.001 |
hyl | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.; Lee, Y.J. Molecular Characteristics of Enterococcus faecalis and Enterococcus faecium from Bulk Tank Milk in Korea. Animals 2021, 11, 661. https://doi.org/10.3390/ani11030661
Yoon S, Lee YJ. Molecular Characteristics of Enterococcus faecalis and Enterococcus faecium from Bulk Tank Milk in Korea. Animals. 2021; 11(3):661. https://doi.org/10.3390/ani11030661
Chicago/Turabian StyleYoon, Sunghyun, and Young Ju Lee. 2021. "Molecular Characteristics of Enterococcus faecalis and Enterococcus faecium from Bulk Tank Milk in Korea" Animals 11, no. 3: 661. https://doi.org/10.3390/ani11030661
APA StyleYoon, S., & Lee, Y. J. (2021). Molecular Characteristics of Enterococcus faecalis and Enterococcus faecium from Bulk Tank Milk in Korea. Animals, 11(3), 661. https://doi.org/10.3390/ani11030661