Molecular Investigation on Tick-Borne Hemoparasites and Coxiella burnetii in Dromedary Camels (Camelusdromedarius) in Al Dhafra Region of Abu Dhabi, UAE
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Targeted Animals and Sample Collection
2.3. Tick Species Identification
2.4. Extraction of DNA from Camels
2.5. Polymerase Chain Reaction
2.6. Reverse Line Blot (RLB) for Babesia and Theileria spp.
2.7. Sequencing
2.8. Phylogenetic Analysis
2.9. Statistical Analysis
3. Results
3.1. Hematology Profile
3.2. Tick-Borne Pathogens
3.3. Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, A.; Baby, B.; Vijayan, R. From Desert to Medicine: A Review of Camel Genomics and Therapeutic Products. Front. Genet. 2019, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Zimmerman, D.; Deem, S.L. A Review of Zoonotic Pathogens of Dromedary Camels. EcoHealth 2019, 16, 356–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wernery, U.; Kinne, J.; Schuster, R.K. Camelid Infectious Disorders; World Organisation for Animal Health (OIE): Paris, France, 2014. [Google Scholar]
- Torina, A.; Villari, S.; Blanda, V.; Vullo, S.; La Manna, M.P.; Azgomi, M.S.S.; Di Di Liberto, D.; De La Fuente, J.; Sireci, G. Innate Immune Response to Tick-Borne Pathogens: Cellular and Molecular Mechanisms Induced in the Hosts. Int. J. Mol. Sci. 2020, 21, 5437. [Google Scholar] [CrossRef] [PubMed]
- Sazmand, A.; Joachim, A.; Otranto, D. Zoonotic parasites of dromedary camels: So important, so ignored. Parasit. Vectors 2019, 12, 1–10. [Google Scholar] [CrossRef]
- Loftis, A.D.; Reeves, W.K.; Szumlas, D.E.; Abbassy, M.M.; Helmy, I.M.; Moriarity, J.R.; Dasch, G.A. Rickettsial agents in Egyptian ticks collected from domestic animals. Exp. Appl. Acarol. 2006, 40, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Sazmand, A.; Harl, J.; Eigner, B.; Hodžić, A.; Beck, R.; Hekmatimoghaddam, S.; Mirzaei, M.; Fuehrer, H.-P.; Joachim, A. Vector-borne bacteria in blood of camels in Iran: New data and literature review. Comp. Immunol. Microbiol. Infect. Dis. 2019, 65, 48–53. [Google Scholar] [CrossRef]
- OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 2018. Available online: https://www.oie.int/standard-setting/terrestrial-manual/access-online/ (accessed on 23 February 2021).
- Nassar, A. Theileria infection in camels (Camelus dromedarius) in Egypt. Vet. Parasitol. 1992, 43, 147–149. [Google Scholar] [CrossRef]
- Osman, F.; Abdelsalam, M.; Mustafa, H. Some Studies on Prevalence and Effect of Thieleria Infection on Erythrocytes Profile in Camel in Some Localities at New-Valley, Governorate, Egypt. J. Anim. Sci. Adv. 2015, 5, 1238–1244. [Google Scholar] [CrossRef]
- Sazmand, A.; Eigner, B.; Mirzaei, M.; Hekmatimoghaddam, S.H.; Harl, J.; Duscher, G.G.; Fuehrer, H.-P.; Joachim, A. Molecular Identification of Hemoprotozoan Parasites in Camels (Camelus dromedarius) of Iran. Iran. J. Parasitol. 2016, 11, 568–573. [Google Scholar]
- Ghafar, M.W.; Shobrak, M.Y. Molecular detection and characterization of Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, in some animals suspected to be competent reservoirs in Taif district, Kingdom of Saudi Arabia. Life Sci. J. 2014, 11, 63–69. [Google Scholar]
- Swelum, A.A.; Ismael, A.B.; Khalaf, A.F.; Abouheif, M.A. Clinical and laboratory findings associated with naturally occurring babesiosis in dromedary camels. Bull. Vet. Inst. Pulawy 2014, 58, 229–233. [Google Scholar] [CrossRef] [Green Version]
- Abdelwahab, G.E.; Tigani-Asil, E.; Yusof, M.F.; Abdullah, Z.S.; Rifat, J.F.; Al Hosani, M.A.; AlMuhairi, S.S.; Khalafalla, A.I. Salmonella enterica and Theileria co-infection in dromedary camels (Camelus dromedarius) in UAE. Open Vet. J. 2019, 9, 263–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Deeb, M.A.; Bin Muza_ar, S.; Abu-Zeid, Y.A.; Enan, M.R.; Karim, S. First record of a spotted fever group Rickettsia sp. and Theileria annulata in Hyalomma dromedarii (Acari: Ixodidae) ticks in the United Arab Emirates. Fla. Entomol. 2015, 98, 135–139. [Google Scholar] [CrossRef]
- Sharifiyazdi, H.; Jafari, S.; Ghane, M.; Nazifi, S.; Sanati, A. Molecular investigation of Anaplasma and Ehrlichia natural infections in the dromedary camel (Camelus dromedarius) in Iran. Comp. Haematol. Int. 2016, 26, 99–103. [Google Scholar] [CrossRef]
- Noaman, V. Molecular Detection of Novel Genetic Variants Associated to Anaplasma ovis among Dromedary Camels in Iran. Arch. Razi Inst. 2017, 73, 11–18. [Google Scholar] [PubMed]
- Li, Y.; Yang, J.; Chen, Z.; Qin, G.; Li, Y.; Li, Q.; Liu, J.; Liu, Z.; Guan, G.; Yin, H.; et al. Anaplasma infection of Bactrian camels (Camelus bactrianus) and ticks in Xinjiang, China. Parasit. Vectors 2015, 8, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahrami, S.; Hamidinejat, H.; Tafreshi, A.R.G. First molecular detection of Anaplasma phagocytophilum in dromedaries (Camelus dromedarius). J. Zoo Wildl. Med. 2018, 49, 844–848. [Google Scholar] [CrossRef] [PubMed]
- Ismael, A.B.; Swelum, A.A.; Khalaf, A.F.; Abouheif, M.A. Clinical, haematological and biochemical alterations associated with an outbreak of theileriosis in dromedaries (Camelus dromedarius) in Saudi Arabia. Pak. Vet. J. 2014, 34, 209–213. [Google Scholar]
- Al Obaidi, Q.T.; Hasan, S.D.; Alsaad, K.M. Clinical haematological and biochemical parameters in Arabian one-humped camels (Camelus dromedarius) with Babesia caballi infection. Bulg. J. Vet. Med. 2019. [Google Scholar] [CrossRef]
- El-Naga, T.R.A.; Barghash, S.M. Blood Parasites in Camels (Camelus dromedarius) in Northern West Coast of Egypt. J. Bacteriol. Parasitol. 2016, 7, 258. [Google Scholar] [CrossRef]
- Thrall, M.A.; Weiser, G.; Allison, R.; Camppbell, T. Veterinary Haematology and Clinical Chemistry, 2nd Ed. ed; Wiley-Blackwell: Hoboken, NJ, USA, 2012. [Google Scholar]
- Walker, A.R.; Bouattour, A.; Camicas, J.L.; Estrada-Peña, A.; Horak, I.G.; Latif, A.A.; Pegram, R.G.; Preston, P.M. Ticks of Domestic Animals in Africa: A Guide to Identification of Species; Bioscience Reports: Edinburgh, UK, 2014; pp. 74–217. [Google Scholar]
- De Mera, I.G.F.; Blanda, V.; Torina, A.; Dabaja, M.F.; El Romeh, A.; Cabezas-Cruz, A.; De La Fuente, J. Identification and molecular characterization of spotted fever group rickettsiae in ticks collected from farm ruminants in Lebanon. Ticks Tick-borne Dis. 2018, 9, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Dabaja, M.F.; Tempesta, M.; Bayan, A.; Vesco, G.; Greco, G.; Torina, A.; Blanda, V.; La Russa, F.; Scimeca, S.; Ezzedine, M.; et al. Diversity and distribution of ticks from domestic ruminants in Lebanon. Vet. Ital. 2017, 53, 147–155. [Google Scholar]
- Beati, L.; Keirans, J.E. Analysis of the Systematic Relationships among Ticks of the Genera Rhipicephalus and Boophilus (Acari: Ixodidae) Based on Mitochondrial 12S Ribosomal DNA Gene Sequences and Morphological Characters. J. Parasitol. 2001, 87, 32–48. [Google Scholar] [CrossRef]
- Choi, E.-H.; Lee, S.K.; Ihm, C.; Sohn, Y.-H. Rapid DNA Extraction from Dried Blood Spots on Filter Paper: Potential Applications in Biobanking. Osong Public Health Res. Perspect. 2014, 5, 351–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De La Fuente, J.; Bussche, R.A.V.D.; Prado, T.M.; Kocan, K.M. Anaplasma marginale msp1 Genotypes Evolved under Positive Selection Pressure but Are Not Markers for Geographic Isolates. J. Clin. Microbiol. 2003, 41, 1609–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torina, A.; Agnone, A.; Blanda, V.; Alongi, A.; D’Agostino, R.; Caracappa, S.; Marino, A.M.; Di Marco, V.; de la Fuente, J. Development and validation of two PCR tests for the detection of and differentiation between Anaplasma ovis and Anaplasma marginale. Ticks Tick-borne Dis. 2012, 3, 283–287. [Google Scholar] [CrossRef] [PubMed]
- De La Fuente, J.; Massung, R.F.; Wong, S.J.; Chu, F.K.; Lutz, H.; Meli, M.; Von Loewenich, F.D.; Grzeszczuk, A.; Torina, A.; Caracappa, S.; et al. Sequence Analysis of the msp4 Gene of Anaplasma phagocytophilum Strains. J. Clin. Microbiol. 2005, 43, 1309–1317. [Google Scholar] [CrossRef] [Green Version]
- To, H.; Kako, N.; Zhang, G.Q.; Otsuka, H.; Ogawa, M.; Ochiai, O.; Nguyen, S.V.; Yamaguchi, T.; Fukushi, H.; Nagaoka, N.; et al. Q fever pneumonia in children in Japan. J. Clin. Microbiol. 1996, 34, 647–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagore, D.; Garía-Sanmartín, J.; Garía-Pérez, A.L.; Juste, R.A.; Hurtado, A. Identification, genetic diversity and prevalence of Theileria and Babesia species in a sheep population from Northern Spain. Int. J. Parasitol. 2004, 34, 1059–1067. [Google Scholar] [CrossRef]
- Georges, K.; Loria, G.; Riili, S.; Greco, A.; Caracappa, S.; Jongejan, F.; Sparagano, O. Detection of haemoparasites in cattle by reverse line blot hybridisation with a note on the distribution of ticks in Sicily. Vet. Parasitol. 2001, 99, 273–286. [Google Scholar] [CrossRef]
- Gubbels, J.M.; De Vos, A.P.; Van Der Weide, M.; Viseras, J.; Schouls, L.M.; De Vries, E.; Jongejan, F. Simultaneous Detection of BovineTheileria and Babesia Species by Reverse Line Blot Hybridization. J. Clin. Microbiol. 1999, 37, 1782–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnittger, L.; Yin, H.; Qi, B.; Gubbels, M.J.; Beyer, D.; Niemann, S.; Jongejan, F.; Ahmed, J.S. Simultaneous detection and differentiation of Theileria and Babesia parasites infecting small ruminants by reverse line blotting. Parasitol. Res. 2004, 92, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Deeb, M.A.; Frangoulidis, D.; Walter, M.C.; Kömpf, D.; Fischer, S.F.; Petney, T.; Bin Muzaffar, S. Coxiella-like endosymbiont in argasid ticks (Ornithodoros muesebecki) from a Socotra Cormorant colony in Umm Al Quwain, United Arab Emirates. Ticks Tick-borne Dis. 2016, 7, 166–171. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna. 2018. Available online: https://www.R-project.org (accessed on 23 February 2021).
- Alanazi, A.D.; Nguyen, V.L.; Alyousif, M.S.; Manoj, R.R.S.; Alouffi, A.S.; Donato, R.; Sazmand, A.; Mendoza-Roldan, J.A.; Dantas-Torres, F.; Otranto, D. Ticks and associated pathogens in camels (Camelus dromedarius) from Riyadh Province, Saudi Arabia. Parasit. Vectors 2020, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, H.H.A.M.; El-Shanawany, E.E.; Abdel-Shafy, S.; Abou-Zeina, H.A.A.; Abdel-Rahman, E.H. Molecular and immunological characterization of Hyalomma dromedarii and Hyalomma excavatum (Acari: Ixodidae) vectors of Q fever in camels. Vet. World 2018, 11, 1109–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargili, A.; Estrada-Peña, A.; Spengler, J.R.; Lukashev, A.; Nuttall, P.A.; Bente, D.A. The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: A review of published field and laboratory studies. Antivir. Res. 2017, 144, 93–119. [Google Scholar] [CrossRef]
- Alan, A.D.; Abdullah, S.; Helps, C.; Wall, R.; Puschendor, R.; Alharbi, S.A.; Abdel-Shaf, S.; Shaapan, R.M. Tick-Borne Pathogens in Ticks and Blood Samples Collected from Camels in Riyadh Province, Saudi Arabia. Int. J. Zool. Res. 2017, 14, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Angelakis, E.; Raoult, D. Q fever. Vet. Microbiol. 2010, 140, 297–309. [Google Scholar] [CrossRef] [Green Version]
- Ben Said, M.; Selmi, R.; Rhouma, M.H.; Belkahia, H.; Messadi, L. Molecular phylogeny and genetic diversity based on msp1a, groEL and gltA genes of Anaplasma ovis Tunisian isolates compared to available worldwide isolates and strains. Ticks Tick-borne Dis. 2020, 11, 101447. [Google Scholar] [CrossRef] [PubMed]
- Lbacha, H.A.; Zouagui, Z.; Alali, S.; Rhalem, A.; Petit, E.; Ducrotoy, M.J.; Boulouis, H.-J.; Maillard, R. “Candidatus anaplasma camelii” in one-humped camels (Camelus dromedarius) in Morocco: A novel and emerging Anaplasma species? Infect. Dis. Poverty 2017, 6, 1–8. [Google Scholar] [CrossRef]
- Fournier, P.-E.; Raoult, D. Comparison of PCR and Serology Assays for Early Diagnosis of Acute Q Fever. J. Clin. Microbiol. 2003, 41, 5094–5098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Wen, X.; Li, M.; Moumouni, P.F.A.; Galon, E.M.; Guo, Q.; Rizk, M.A.; Liu, M.; Li, J.; Ji, S.; et al. Molecular detection of tick-borne pathogens harbored by ticks collected from livestock in the Xinjiang Uygur Autonomous Region, China. Ticks Tick-borne Dis. 2020, 11, 101478. [Google Scholar] [CrossRef] [PubMed]
- Eldin, C.; Mélenotte, C.; Mediannikov, O.; Ghigo, E.; Million, M.; Edouard, S.; Mege, J.-L.; Maurin, M.; Raoult, D. From Q Fever to Coxiella burnetii Infection: A Paradigm Change. Clin. Microbiol. Rev. 2017, 30, 115–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verso, M.G.; Vesco, G.; Villari, S.; Galluzzo, P.; Gargano, V.; Matranga, D.; De Marchis, P.; Picciotto, D. Analysis of seroprevalence against Coxiella burnetii in a sample of farm workers in Western Sicily. Ann. Agric. Environ. Med. 2015, 23, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Klemmer, J.; Njeru, J.; Emam, A.; El-Sayed, A.; Moawad, A.A.; Henning, K.; Elbeskawy, M.A.; Sauter-Louis, C.; Straubinger, R.K.; Neubauer, H.; et al. Q fever in Egypt: Epidemiological survey of Coxiella burnetii specific antibodies in cattle, buffaloes, sheep, goats and camels. PLoS ONE 2018, 13, e0192188. [Google Scholar] [CrossRef] [Green Version]
- Pirouz, H.J.; Mohammadi, G.; Mehrzad, J.; Azizzadeh, M.; Shirazi, M.H.N. Seroepidemiology of Q fever in one-humped camel population in northeast Iran. Trop. Anim. Heal. Prod. 2015, 47, 1293–1298. [Google Scholar] [CrossRef]
- DePuy, W.; Benka, V.; Massey, A.; Deem, S.L.; Kinnaird, M.; O’Brien, T.; Wanyoike, S.; Njoka, J.; Butt, B.; Foufopoulos, J.; et al. Q Fever Risk Across a Dynamic, Heterogeneous Landscape in Laikipia County, Kenya. EcoHealth 2014, 11, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Chelling, E.; Diguimbaye, C.; Daoud, S.; Nicolet, J.; Boerlin, P.; Tanner, M.; Zinsstag, J. Brucellosis and Q-fever seroprevalences of nomadic pastoralists and their livestock in Chad. Prev. Vet. Med. 2003, 61, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Khalafalla, A.I.; Al Eknah, M.M.; Abdelaziz, M.; Ghoneim, I.M. A study on some reproductive disorders in dromedary camel herds in Saudi Arabia with special references to uterine infections and abortion. Trop. Anim. Heal. Prod. 2017, 49, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.M.; Kadle, A.A.H.; Nyingilili, H.S. Microscopic and Molecular Detection of Camel Piroplasmosis in Gadarif State, Sudan. Veter- Med. Int. 2017, 2017, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Jasim, H.J.; Azzal, G.Y.; Othman, R.M. Conventional and molecular detection of Babesia caballi and Theileria equi parasites in infected camels in south of Iraq. Basra J. Vet. Res. 2015, 14, 110–121. [Google Scholar]
- Wernery, U.; Kaaden, O. Infectious Diseases of Camelids; Blackwell Science Inc.: London, UK, 2002; pp. 99–116. [Google Scholar]
Organism | Host | Country | GenBank Accession Number |
---|---|---|---|
C. burnetii | Homo sapiens | Russia | MK335933.1 |
C. burnetii | Amblyomma variegatum | Nigeria | JQ346185.1 JQ346188 |
C. burnetii | Hyalomma impeltatum | Tunisia | MK416231.1 |
C. burnetii | Cattle | China | MK345478.1 |
C. burnetii | Rhipicephalus evertsi evertsi | South Africa | MH751472.1 |
C. burnetii | Panthera leo | Italy | EF547935.1 |
C. burnetii | Ixodes ricinus | Belarus | JQ711247.1 |
C. burnetii | Dermacentor reticulatus | Slovakia | MG860513.1 |
C. burnetii | Sheep | France | EU888864.1 |
C. burnetii | Cattle | France | EU888861.1 |
C. burnetii | Goat | France | EU888862.1 |
Coxiella endosymbiont of Argas monachus | Argas monachus | Argentina | KP985445.1 |
Coxiella endosymbiont of Argas persicus | Argas persicus | Iran | MF370854.1 |
Coxiella endosymbiont of Ornithodoros capensis | Ornithodoros capensis | France | KP985451.1 |
Coxiella endosymbiont of Ornithodoros amblus | Ornithodoros amblus | Peru | KP985447.1 |
Coxiella endosymbiont of Haemaphysalis punctata | Haemaphysalis punctata | England | KP985492.1 |
Uncultured Coxiella sp. | Ornithodoros capensis sensu lato | Chile | KJ459055.1 |
Coxiella endosymbiont of Amblyomma cajennense | Amblyomma cajennense | Brazil | KP985482.1 |
Coxiella endosymbiont of Rhipicephalus decoloratus | Rhipicephalus decoloratus | South Africa | KY678192.1 |
Investigation on Dromedarian Camels | Overall |
---|---|
Analyzed dromedarian camels | 93 |
TBPs Prevalence | 16.1% * |
Anaplasma marginale/A. ovis | |
Prevalence | 0 |
Anaplasma phagocytophilum | |
Prevalence | 11.8% |
Coxiella burnetii | |
Prevalence | 3.2% |
Babesia/Theileria spp. | |
Prevalence | 2.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Tigani-Asil, E.T.A.; Blanda, V.; Abdelwahab, G.E.; Hammadi, Z.M.A.; Habeeba, S.; Khalafalla, A.I.; Alhosani, M.A.; La Russa, F.; Migliore, S.; Torina, A.; et al. Molecular Investigation on Tick-Borne Hemoparasites and Coxiella burnetii in Dromedary Camels (Camelusdromedarius) in Al Dhafra Region of Abu Dhabi, UAE. Animals 2021, 11, 666. https://doi.org/10.3390/ani11030666
El Tigani-Asil ETA, Blanda V, Abdelwahab GE, Hammadi ZMA, Habeeba S, Khalafalla AI, Alhosani MA, La Russa F, Migliore S, Torina A, et al. Molecular Investigation on Tick-Borne Hemoparasites and Coxiella burnetii in Dromedary Camels (Camelusdromedarius) in Al Dhafra Region of Abu Dhabi, UAE. Animals. 2021; 11(3):666. https://doi.org/10.3390/ani11030666
Chicago/Turabian StyleEl Tigani-Asil, El Tigani Ahmed, Valeria Blanda, Ghada Elderdiri Abdelwahab, Zulaikha Mohamed Al Hammadi, Shameem Habeeba, Abdelmalik Ibrahim Khalafalla, Mohamed Ali Alhosani, Francesco La Russa, Sergio Migliore, Alessandra Torina, and et al. 2021. "Molecular Investigation on Tick-Borne Hemoparasites and Coxiella burnetii in Dromedary Camels (Camelusdromedarius) in Al Dhafra Region of Abu Dhabi, UAE" Animals 11, no. 3: 666. https://doi.org/10.3390/ani11030666
APA StyleEl Tigani-Asil, E. T. A., Blanda, V., Abdelwahab, G. E., Hammadi, Z. M. A., Habeeba, S., Khalafalla, A. I., Alhosani, M. A., La Russa, F., Migliore, S., Torina, A., Loria, G. R., & Al Muhairi, S. S. (2021). Molecular Investigation on Tick-Borne Hemoparasites and Coxiella burnetii in Dromedary Camels (Camelusdromedarius) in Al Dhafra Region of Abu Dhabi, UAE. Animals, 11(3), 666. https://doi.org/10.3390/ani11030666