Issues of Feeding Strategy for Lactating Cows in Vietnamese Smallholder Dairy Farms
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farm Selection and Farm Visits
2.2. Feeding Regime
2.3. Diets
2.3.1. Feed Intake “As Fed”
2.3.2. Nutrient Composition Analysis
2.3.3. Dry Matter Intake
2.4. Identification of Dietary Imbalance
2.4.1. PCDairy
2.4.2. Background Data of Lactating Herds
2.4.3. Analysing Lactating Cow Diets by PCDairy
2.5. Statistical Analysis
2.5.1. Statistical Comparisons
2.5.2. Multivariate Statistical Analysis
3. Results
3.1. Feeding Regime
3.2. Diets
3.3. Nutrient Composition of Commonly Used Feeds
3.4. Cow Intake and Nutrient Concentrations of the Diets
3.5. Efficiencies of the Diets
4. Discussion
4.1. Feeding Regimes
4.2. Feeds and Diets
4.2.1. Diversity and Quality of the Feeds
4.2.2. Imbalance and Inefficiency of the Diets
4.3. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Price | DM | NEL | TDN | CP | NDF | ADF | Fat | NFC | Starch | ADL | Ash | Ca | K | Mg | Na | P | S | Cu | Fe | Mn | Zn | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Feed Code B | Region-Feed Name | USD/ton | % AF | Mcal/kg | % | % | % | % | % | % | % | % | % | % | % | % | % | % | % | ppm | ppm | ppm | ppm | Ref C |
551 | NL-Napier grass silage | 44 | 31.0 | 1.20 | 58.0 | 6.6 | 71.5 | 42.5 | 2.0 | 10.3 | 0.6 | 5.70 | 9.6 | 0.36 | 2.90 | 0.30 | 0.03 | 0.29 | 0.10 | 11 | 413 | 91 | 45 | 2 |
570 | NL_SH-Corn powder | 3462 | 88.0 | 2.00 | 88.7 | 9.3 | 9.5 | 3.2 | 4.3 | 75.3 | 70.0 | 0.09 | 1.6 | 0.03 | 0.37 | 0.14 | 0.03 | 0.30 | 0.12 | 3 | 35 | 6 | 27 | 1 |
581 | SH-Rice grain with husk | 200 | 89.0 | 1.70 | 81.4 | 9.0 | 11.0 | 9.0 | 1.8 | 72.2 | 66.0 | 0.90 | 6.0 | 0.07 | 0.53 | 0.14 | 0.07 | 0.36 | 0.05 | 3 | 57 | 20 | 71 | 1 |
582 | SL-Rice hay | 170 | 65.0 | 1.20 | 58.4 | 14.8 | 61.2 | 38.0 | 2.1 | 13.1 | 9.0 | 5.90 | 8.8 | 0.30 | 3.64 | 0.15 | 0.01 | 0.40 | 0.20 | 13 | 2 | 25 | 15 | 2 |
600 | SL-Fresh rice straw | 0 | 34.0 | 0.84 | 37.0 | 4.3 | 78.0 | 50.0 | 1.4 | 8.0 | 6.3 | 12.00 | 8.3 | 0.15 | 0.40 | 0.83 | 0.12 | 0.08 | 0.08 | 13 | 2 | 33 | 16 | 2 |
605 | NH-Fresh corn leaves | 58 | 27.4 | 1.44 | 65.0 | 11.4 | 63.6 | 31.8 | 2.0 | 21.8 | 3.5 | 3.70 | 2.2 | 0.63 | 0.17 | 0.35 | 0.01 | 0.15 | 0.22 | 11 | 104 | 256 | 69 | 2 |
607 | SH-Dried distillers’ grain | 330 | 89.0 | 2.21 | 82.0 | 29.5 | 34.2 | 13.6 | 11.1 | 11.0 | 9.3 | 4.30 | 5.4 | 0.16 | 1.03 | 0.33 | 0.24 | 0.79 | 0.40 | 6 | 123 | 21 | 62 | 1 |
608 | SH-Sweet potato tuber | 220 | 30.0 | 1.86 | 80.0 | 5.5 | 11.3 | 5.2 | 1.1 | 78.4 | 69.3 | 1.10 | 3.6 | 0.12 | 1.22 | 0.09 | 0.02 | 0.15 | 0.11 | 7 | 700 | 51 | 43 | 1 |
References
- Duteurtre, G.; Cesaro Nguyen, J.-D.; Huong, M.; Duy, P.; Nguyen, K.; Luan, N. Multiscale Assessment of the Livestock Development Pathways in Vietnam the TH Milk Company (Vietnam): Is Such a Large-Scale Investment Sustainable? Revalter Research Team in Livestock Transition: Hanoi, Vietnam, 2015; Available online: https://agritrop.cirad.fr/579403/1/Report%20visit%20to%20TH%20mega-farm%20VF2.pdf (accessed on 14 January 2018).
- General Statistic Office of Vietnam. Livestock Survey of General Statistic Office; General Statistic Office of Vietnam: Hanoi, Vietnam, 2016.
- An, T. Development of Small and Medium-Scale Dairy Farming with Sustainable Efficiency. Available online: http://nhachannuoi.vn/phat-trien-chan-nuoi-bo-sua-quy-mo-vua-va-nho-hieu-qua-ben-vung/ (accessed on 6 July 2019).
- Vinamilk Vinamilk đầu tư nhiều trang trại bò sữa công nghệ cao. Available online: https://www.vinamilk.com.vn/vi/vung-nguyen-lieu/chi-tiet-tin/383/1515/vinamilk-dau-tu-nhieu-trang-trai-bo-sua-cong-nghe-cao (accessed on 14 January 2018).
- Vu, N.H.; Lambertz, C.; Gauly, M. Factors influencing milk yield, quality and revenue of dairy farms in southern Vietnam. Asian J. Anim. Sci. 2016, 10, 290–299. [Google Scholar] [CrossRef]
- Ashbaugh, H.R.B.A. A Descriptive Survey of Dairy Farmers in Vinh Thinh Commune, Vietnam. Master’s Thesis, The Ohio State University, Columbus, OH, USA, 2010. [Google Scholar]
- Hostiou, N.; Khanh, P.D.; Duteurtre, G.; Binh, V.T.; Dedieu, B. Relationships between work organisation and size of dairy farms: A case study based in Vietnam. Trop. Anim. Health Prod. 2012, 44, 1709–1716. [Google Scholar] [CrossRef] [Green Version]
- Cuong, V.C.; Cuong, P.K.; Cuong, P.H. Test New Diets for HF Cows Imported from the US Raised in Moc Chau—Son La: Initial Results; National Institute of Animal Science: Hanoi, Vietnam, 2006. (In Vietnamese) [Google Scholar]
- NRC. Nutrient Requirements of Dairy Cattle; National Academies Press: Washington, DC, USA, 2001; ISBN 0-309-06997-1. [Google Scholar]
- Tedeschi, L.O.; Cavalcanti, L.F.L.; Fonseca, M.A.; Herrero, M.; Thornton, P.K. The evolution and evaluation of dairy cattle models for predicting milk production: An agricultural model intercomparison and improvement project (AgMIP) for livestock. Anim. Prod. Sci. 2014, 54, 2052–2067. [Google Scholar] [CrossRef]
- Lean, I. Ration formulation|Systems describing nutritional requirements of dairy cattle. In Encyclopedia of Dairy Sciences; Uquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Elsevier: San Diego, CA, USA, 2011; pp. 418–428. ISBN 9780122272356. [Google Scholar]
- Robinson, P.H.; Ahmadi, A. PCDAIRY: Least Cost and Ration Analysis Programs for Dairy Cattle; Version Number 2016; University of California Davis: Davis, CA, USA, 2016. [Google Scholar]
- Phong, L.V.; Thu, N.V. Investigation of growth, production and dairy techniques at Song Hau Farm, Long Hoa and Evergrowth Dairy Cow Cooperative in the Mekong Delta. Can. Tho Univ. J. Sci. 2016, 2, 48–55. [Google Scholar] [CrossRef]
- Chu, T.K.L.; Yokogawa, H.; Kawaguchi, T. An analysis of the factors affecting dairy cow production in the South east of Vietnam. J. Fac. Agric. Kyushu Univ. 2005, 50, 271–294. [Google Scholar]
- Lam, V.; Wredle, E.; Thao, N.T.; Van Man, N.; Svennersten-Sjaunja, K. Smallholder dairy production in Southern Vietnam: Production, management and milk quality problems. Afr. J. Agric. Res. 2010, 5, 2668–2675. [Google Scholar]
- Loan, C.T.K.; Yokogawa, H.; Kawaguchi, T. The econolnics of dairy cow raising in the south east of Vietnam. J. Fac. Agric. Kyushu Univ. 2004, 2, 497–512. [Google Scholar] [CrossRef]
- Dung, N.N.X.; Manh, L.H.; Nhi, N.T.M. The composition & nutritive value of feed plants planted in Cantho city. Can. Tho Univ. J. Sci. 2007, 7, 183–192. [Google Scholar]
- National Institue of Animal Husbandry. Composition and Nutritive Value of Animal Feeds in Vietnam; Agriculture Publishing House: Hanoi, Vietnam, 2000. [Google Scholar]
- Cesaro, J.D.; Nguyen, M.H.; Pham, D.K.; Hoang, V.Q.; Duteurtre, G. Development of dairy production in Vietnam: Smallholder farming and large scale investments. In Proceedings of the Conference “Milk, Factor of Development”, Rennes, France, 21–23 May 2014. [Google Scholar]
- Nga, B.T. An analysis of the fresh milk chain in Ha Nam province of Vietnam. Environ. Sci. Water Res. Technol. 2017, 1, 33–39. [Google Scholar]
- Nga, B.T. Efficiency of milk production in small holders of Cu Chi district, Ho Chi Minh City of Vietnam. Sch. J. Econ. Bus. Manag. 2017, 4, 527–531. [Google Scholar]
- Bang, N.N.; Chanh, N.V.; Trach, N.X.; Khang, D.N.; Hayes, B.J.; Gaughan, J.B.; Lyons, R.E.; Hai, N.T.; David, M. McNeill Assessment of Performance and Some Welfare Indicators of Cows in Vietnamese Smallholder Dairy Farms. Animals 2021, 11, 674. [Google Scholar] [CrossRef]
- Bang, N.N.; Hayes, B.J.; Lyons, R.E.; Randhawa, I.A.S.; Gaughan, J.B.; McNeill, D.M. Genomic diversity and breed composition of Vietnamese smallholder dairy cows. 2021; unpublished work. [Google Scholar]
- Bang, N.N.; Gaughan, J.B.; Hayes, B.J.; Lyons, R.E.; Chanh, N.V.; Trach, N.X.; Khang, D.N.; Mcneill, D.M. Characteristics of cowsheds in Vietnamese smallholder dairy farms and their associations with microclimate—A preliminary study. Animals 2021, 11, 351. [Google Scholar] [CrossRef]
- Vietnam Japan Digital Scale Company Digital Scale Model OCS M 100. Available online: http://www.canvietnhat.com/can-treo-ocs-m-100kg.html (accessed on 18 August 2017).
- Dairy One Forage Laboratory. The Dairy One Forage Lab. Available online: http://dairyone.com/analytical-services/feed-and-forage/about-forage/ (accessed on 25 October 2017).
- Dairy One Forage Laboratory. Analytical Procedures; Dairy One Forage Laboratory: Ithaca, NY, USA, 2015. [Google Scholar]
- Moraes, L.E.; Strathe, A.B.; Fadel, J.G.; Casper, D.P.; Kebreab, E. Prediction of enteric methane emissions from cattle. Glob. Chang. Biol. 2014, 20, 2140–2148. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, A.; Robinson, P.H.; Chilibroste, P. PC dairy enterprise: A computer package for formulation and evaluation of rations for dairy cattle. In Proceedings of the 2013 Cenference: Sustainable Agriculture through ICT Innovation, Turin, Italy, 24–27 June 2013. [Google Scholar]
- Mateo, J. Hanoi Training Demonstrates Feed Management Software for Enhancing Dairy Production in Vietnam. Available online: https://vietpigs.net/2016/11/07/dairy-software-training/ (accessed on 22 December 2017).
- Kebreab, E.; Ahmadi, A.; Corner-Dolloff, C. Ration Formulation Software Enhances Farmer Productivity, Decreases Emission Intensity and Trains Nutritionists in Vietnam|Agrilinks. Available online: https://www.agrilinks.org/post/ration-formulation-software-enhances-farmer-productivity-decreases-emission-intensity-and (accessed on 30 August 2020).
- Britt, J.S.; Thomas, R.C.; Speer, N.C.; Hall, M.B. Efficiency of converting nutrient dry matter to milk in Holstein herds. J. Dairy Sci. 2003, 86, 3796–3801. [Google Scholar] [CrossRef]
- Goopy, J.P.; Pelster, D.E.; Onyango, A.; Marshall, K.; Lukuyu, M. Simple and robust algorithms to estimate liveweight in African smallholder cattle. Anim. Prod. Sci. 2018, 58, 1758–1765. [Google Scholar] [CrossRef] [Green Version]
- Asia Technology Service Company Dairy Cow Tape Measure. Available online: http://channuoibo.vn/4-Thiet-bi-Chan-nuoi/Thuoc-do-khoi-luong-gia-suc/Thuo-c-do-kho-i-luo-ng-bo-su-a.html (accessed on 18 August 2017).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Revelle, W. “psych”: Procedures for Psychological, Psychometric, and Personality Research; R Package Version 1.9.12. 2019. Available online: https://personality-project.org/r/psych (accessed on 29 December 2019).
- Ogle, D.; Wheeler, P.; Dinno, A. “FSA”: Simple Fisheries Stock Assessment Methods; R Package Version 0.8.26. 2019. Available online: https://rdrr.io/cran/FSA/man/FSA.html (accessed on 29 December 2019).
- de Mendiburu, F. “agricolae”: Statistical Procedures for Agricultural Research; R Package Version 1.3-1. 2019. Available online: https://cran.r-project.org/web/packages/agricolae/index.html (accessed on 4 May 2019).
- Mangiafico, S. “rcompanion”: Functions to Support Extension Education Program Evaluation; R Package Version 2.3.7. 2019. Available online: https://cran.r-project.org/web/packages/rcompanion/index.html (accessed on 28 October 2019).
- Kuivanen, K.S.; Alvarez, S.; Michalscheck, M.; Adjei-Nsiah, S.; Descheemaeker, K.; Mellon-Bedi, S.; Groot, J.C.J. Characterising the diversity of smallholder farming systems and their constraints and opportunities for innovation: A case study from the Northern Region, Ghana. NJAS Wagening. J. Life Sci. 2016, 78, 153–166. [Google Scholar] [CrossRef]
- Todde, G.; Murgia, L.; Caria, M.; Pazzona, A. A multivariate statistical analysis approach to characterize mechanization, structural and energy profile in Italian dairy farms. Energy Rep. 2016, 2, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Husson, F.; Josse, A.J.; Jérôme, A.; Agrocampus, P. Principal Component Methods-Hierarchical Clustering-Partitional Clustering: Why Would We Need to Choose for Visualizing Data? 2010. Available online: http://www.agrocampus-ouest.fr/math/ (accessed on 27 December 2019).
- Kassambara, A. Practical Guide to Principal Component Methods in R. WIREs Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Kaiser, H.F. A note on Guttman’s lower bound for the number of common factors. Br. J. Stat. Psychol. 1961, 14, 1–2. [Google Scholar] [CrossRef]
- Husson, F.; Josse, J. Multivariate data analysis: Special focus on clustering and multiway methods. In Proceedings of the User! 2010, the R User Conference, Gaithersburg, MD, USA, 20–23 July 2010. [Google Scholar]
- Husson, F.; Josse, J.; Le, S.; Mazet, J. “FactoMineR”: Multivariate Exploratory Data Analysis and Data Mining; R Package Version 2.0. 2019. Available online: http://factominer.free.frEncoding (accessed on 27 December 2019).
- Kassambara, A.; Mundt, F. Package “factoextra”: Extract and Visualize the Results of Multivariate Data Analyses; R Package Version 1.0.6. 2019. Available online: http://www.sthda.com/english/rpkgs/factoextra (accessed on 27 December 2019).
- Humer, E.; Petri, R.M.; Aschenbach, J.R.; Bradford, B.J.; Penner, G.B.; Tafaj, M.; Südekum, K.H.; Zebeli, Q. Invited review: Practical feeding management recommendations to mitigate the risk of subacute ruminal acidosis in dairy cattle. J. Dairy Sci. 2018, 101, 872–888. [Google Scholar] [CrossRef] [Green Version]
- Pilachai, R.; Schonewille, J.T.; Thamrongyoswittayakul, C.; Aiumlamai, S.; Wachirapakorn, C.; Everts, H.; Hendriks, W.H. Diet factors and subclinical laminitis score in lactating cows of smallholder dairy farms in Thailand. Livest. Sci. 2013, 155, 197–204. [Google Scholar] [CrossRef]
- Mai, T.H.; Vu, C.C.; Nguyen, H.L.; Nguyen, X.T. Efficacy of using total mixed ration (TMR) for feeding dairy cattle. J. Sci. Dev. 2011, 9, 584–591. [Google Scholar]
- Trach, N.X.; Thom, M.T.; van Ban, L. Textbook of Cattle and Buffalo Production; Agriculture Publishing House: Hanoi, Vietnam, 2007. [Google Scholar]
- Suzuki, K.; Kanameda, M.; Ogawa, T.; Nguyen, T.T.D.; Dang, T.T.S.; Luu, Q.H.; Pfeiffer, D.U. Productivity and socio-economic profile of dairy cattle farmers amongst rural smallholder communities in northern Vietnam. Livest. Sci. 2006, 101, 242–250. [Google Scholar] [CrossRef]
- Moran, J.; Chamberlain, P. Blueprints for Tropical Dairy Farming: Increasing Domestic Milk Production in Developing Countries; CSIRO Publishing: Melbourne, Australia, 2017; ISBN 9781486306473. [Google Scholar]
- Renaudeau, D.; Collin, A.; Yahav, S.; De Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [Green Version]
- Moran, J.; Doyle, R. Cow Talk. Understanding Dairy Cow Behaviour to Improve Their Welfare on Asian Dairy Farms; Landlinks Press: Melbourne, Australia, 2014. [Google Scholar]
- Macmillan, K.; Gao, X.; Oba, M. Increased feeding frequency increased milk fat yield and may reduce the severity of subacute ruminal acidosis in higher-risk cows. J. Dairy Sci. 2017, 100, 1045–1054. [Google Scholar] [CrossRef]
- Moran, J. Managing High Grade Dairy Cows in the Tropics; CSIRO Publishing: Melbourne, Australia, 2012. [Google Scholar]
- Krause, K.M.; Oetzel, G.R. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Anim. Feed Sci. Technol. 2006, 126, 215–236. [Google Scholar] [CrossRef]
- Abdela, N. Sub-acute ruminal acidosis (SARA) and its consequence in dairy cattle: A review of past and recent research at global prospective. Achiev. Life Sci. 2016, 10, 187–196. [Google Scholar] [CrossRef] [Green Version]
- NRC. Nutrient Requirements of Beef Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2016; ISBN 0309592410. [Google Scholar]
- Rusdy, M. Elephant grass as forage for ruminant animals. Livest. Res. Rural Dev. 2016, 28, 49. [Google Scholar]
- Maaruf, K.; Paputungan, U. Comparison of Protein and Cell Wall Degradation of Selected Tropical and Temperate Roughages. Livest. Res. Rural Dev. 2017, 29, 120. [Google Scholar]
- Khaing, T.; Loh, T.; Saleh, G.; Halim, M.; Samsudin, A.A. Feed intake, growth performance and digestibility in goats fed whole corn plant silage and Napier grass. Malays. J. Anim. Sci. 2015, 18, 87–98. [Google Scholar]
- Neal, W.M.; Becker, R.B.; ARNOLD, P. The digestible nutrients of Napier grass and crotalaria intermédia silages, natal grass hay, and the dried refuses of grape fruit and orange canneries. J. Agric. Res. 1935, 51, 173–176. [Google Scholar]
- Hiep, T.; Bang, N.N.; Trach, N.X.; Thang, C.M. Effects of dietary supplementation of cotton seed oil on intake, performance and enteric methane emissions from lactating cows. J. Anim. Husb. Sci. Technol. 2016, 207, 48–56. [Google Scholar]
- Schingoethe, D.J.; Linke, K.N.; Kalscheur, K.F.; Hippen, A.R.; Rennich, D.R.; Yoon, I. Feed efficiency of mid-lactation dairy cows fed yeast culture during summer. J. Dairy Sci. 2004, 87, 4178–4181. [Google Scholar] [CrossRef]
- Neylon, J.M.; Kung, L. Effects of cutting height and maturity on the nutritive value of corn silage for lactating cows1,2. J. Dairy Sci. 2003, 86, 2163–2169. [Google Scholar] [CrossRef]
- Hiep, T.; Bang, N.N.; Thang, C.M. Effects of corn silage diet on performance and methane emission of lactating cows. J. Anim. Sci. Technol. 2014, 51, 10–21. [Google Scholar]
- Kolling, G.J.; Stivanin, S.C.B.; Gabbi, A.M.; Machado, F.S.; Ferreira, A.L.; Campos, M.M.; Tomich, T.R.; Cunha, C.S.; Dill, S.W.; Pereira, L.G.R.; et al. Performance and methane emissions in dairy cows fed oregano and green tea extracts as feed additives. J. Dairy Sci. 2018, 101, 4221–4234. [Google Scholar] [CrossRef] [PubMed]
No | Variables | Data Collection Methods |
---|---|---|
Quantitative variables | Count and/or ask farmers | |
1 | Type of feeds offered to cows | Count |
2 | Roughage feeding times | Count |
3 | Concentrate feeding times | Count |
4 | Feed trough cleaning frequency (times/week) | Ask farmers |
Qualitative variables | Directly classify | |
5 | Quantity of water supplied | Ad libitum, moderate, or insufficient |
6 | Quality of water supplied | Good, medium, or poor |
7 | Use same trough for water and concentrate | Yes or No |
8 | Use partial mixed ration | Yes or No |
9 | Weigh feeds before feeding | Yes or No |
10 | Measure feed dry matter | Yes or No |
11 | Feed concentrates and roughages separately | Yes or No |
12 | Mix concentrates and roughages during feeding | Yes or No |
Parameter | Region A, Mean ± Standard Deviation | Reference | |||
---|---|---|---|---|---|
SL | SH | NL | NH | ||
Lactating cows per farm | 9 ± 5 | 6 ± 2 | 11± 2 | 18 ± 6 | [22] |
Lactation number | 2.0 ± 0.4 | 2.5 ± 0.5 | 1.9 ± 0.7 | 2.5 ± 0.3 | [22] |
Per cent of first lactation cows | 40 ± 26 | 20 ± 22 | 47 ± 23 | 35 ± 13 | [22] |
Per cent of second lactation cows | 34 ± 32 | 32 ± 20 | 31± 12 | 26 ± 12 | [22] |
Days in milk, days | 176 ± 82 | 172 ± 51 | 200 ± 58 | 177 ± 36 | [22] |
Body weight, kg | 450 ± 29 | 496 ± 39 | 513 ± 49 | 535 ± 37 | [22] |
Breed categories | [23] | ||||
Pure Holstein | 1 ± 4 | 37 ± 44 | 26 ± 40 | 98 ± 3 | |
7/8 Holstein:1/8 Zebu B | 59 ± 22 | 38 ± 37 | 63 ± 40 | 0 ± 0 | |
3/4 Holstein:1/4 Zebu | 24 ± 21 | 24 ± 30 | 3 ± 4 | 0 ± 0 | |
Other breeds C | 16 ± 24 | 1 ± 4 | 8 ± 11 | 2 ± 3 | |
Space allowance, m2/cow | 5.2 ± 1.1 | 7.8 ± 2.5 | 7.7 ± 2.8 | 14 ± 4.4 | [24] |
Parameter | Region A, Median or n B | pC | Overall D | |||
---|---|---|---|---|---|---|
SL | SH | NL | NH | |||
Quantitative variables (median) | Mean ± SEM | |||||
Type of feeds | 4.5 | 5 | 4 | 5 | 0.845 | 4.6 ± 0.2 |
Roughage feeding times | 3.5 a | 2.5 b | 4 a | 3 b | <0.001 | 3.3 ± 0.3 |
Concentrate feeding times | 2 b | 2 b | 4 a | 2 b | <0.001 | 2.5 ± 0.5 |
Feed trough cleaning frequency (times/week) | 10 ab | 7 b | 14 a | 7 b | 0.034 | 10.0 ± 2.0 |
Qualitative variables (n) | Frequency (%) | |||||
Supply water ad libitum | 0 b | 2 ab | 7 a | 6 a | <0.001 | 15 (47) |
Same trough for water and concentrate | 8 a | 0 b | 0 b | 0 b | <0.001 | 8 (25) |
Using partial mixed ration | 0 b | 0 b | 0 b | 8 a | <0.001 | 8 (25) |
Water with visual contaminations | 3 | 3 | 0 | 5 | 0.079 | 11 (34) |
Weigh feeds before feeding | 0 | 1 | 2 | 0 | 0.587 | 3 (9) |
Measure feed dry matter | 0 | 0 | 0 | 0 | 1.000 | 0 (00) |
Feed concentrates and roughages separately | 8 a | 0 b | 0 b | 7 a | <0.001 | 15 (47) |
Mix concentrates and roughages during feeding | 0 | 1 | 4 | 0 | 0.034 | 5 (16) |
Feed Intakes (kg DM/cow/day) | Region A | pD | Overall Mean ± SEM | |||||||
---|---|---|---|---|---|---|---|---|---|---|
SL | SH | NL | NH | |||||||
n B | Mean C | n | Mean | n | Mean | n | Mean | |||
Fresh Napier grass | 6 | 2.6 ab | 8 | 5.0 a | 7 | 3.2 ab | 5 | 1.2 b | 0.009 | 3.0 ± 0.8 |
Fresh tropical grass | 2 | 0.7 | 0 | - | 1 | 0.5 | 2 | 0.5 | 0.513 | 0.4 ± 0.1 |
Fresh corn with cob | 0 | - | 2 | 1.1 | 2 | 0.7 | 1 | 0.2 | 0.430 | 0.5 ± 0.2 |
Fresh corn leaves | 0 | - | 0 | - | 0 | - | 1 | 0.3 | <0.001 | 0.1 ± 0.1 |
Corn silage | 0 | - | 4 | 1.4 bc | 7 | 3.2 ab | 8 | 5.0 a | <0.001 | 2.4 ± 1.1 |
Napier grass silage | 0 | - | 0 | - | 1 | 0.2 | 0 | - | <0.001 | 0.0 ± 0.0 |
Fresh rice straw | 1 | 0.6 | 0 | - | 0 | - | 0 | - | <0.001 | 0.2 ± 0.2 |
Dry rice straw | 5 | 1.0 | 0 | - | 0 | - | 0 | - | <0.001 | 0.3 ± 0.3 |
Rice hay | 1 | 0.3 | 0 | - | 0 | - | 0 | - | <0.001 | 0.1 ± 0.1 |
Partial mixed ration | 0 | - | 0 | - | 0 | - | 8 | 2.0 | <0.001 | 0.5 ± 0.5 |
Concentrate pellets | 8 | 6.1 | 8 | 6.4 | 8 | 6.6 | 8 | 7.3 | 0.112 | 6.6 ± 0.2 |
Brewers’ grain | 6 | 1.9 a | 3 | 0.6 b | 0 | - | 5 | 0.7 ab | 0.007 | 0.8 ± 0.4 |
Cassava residue | 7 | 1.3 | 0 | - | 0 | - | 0 | - | <0.001 | 0.3 ± 0.3 |
Corn powder | 0 | - | 5 | 0.8 b | 8 | 1.6 a | 0 | - | <0.001 | 0.6 ± 0.4 |
Whole soybean meal | 0 | - | 1 | 0.1 | 2 | 0.1 | 0 | - | 0.272 | 0.1 ± 0.0 |
Passion fruit pulp | 0 | - | 1 | 0.3 | 0 | - | 0 | - | <0.001 | 0.1 ± 0.1 |
Sweet potato tuber | 0 | - | 1 | 0.3 | 0 | - | 0 | - | <0.001 | 0.1 ± 0.1 |
Dried distillers’ grain | 0 | - | 2 | 0.2 | 0 | - | 0 | - | <0.001 | 0.1 ± 0.1 |
Rice grain with husk | 0 | - | 1 | 0.1 | 0 | - | 0 | - | <0.001 | 0.0 ± 0.0 |
Price | DM | NEL | TDN | CP | NDF | ADF | Fat | NFC | Starch | ADL | Ash | Ca | K | Mg | Na | P | S | Cu | Fe | Mn | Zn | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | Region—Feed Name | USD/ton | % AF | Mcal/kg | % | % | % | % | % | % | % | % | % | % | % | % | % | % | % | ppm | ppm | ppm | ppm |
1 | SL—Fresh Napier grass | 38 | 19.8 | 1.08 | 58 | 15.8 | 65.2 | 41.9 | 2.2 | 10.0 | 0.2 | 5.3 | 6.8 | 0.27 | 3.19 | 0.17 | 0.02 | 0.32 | 0.14 | 7 | 234 | 56 | 55 |
2 | SH—Fresh Napier grass | 38 | 18.7 | 0.90 | 51 | 12.1 | 68.1 | 45.6 | 2.6 | 10.5 | 4.7 | 8.7 | 6.7 | 0.45 | 2.25 | 0.22 | 0.09 | 0.31 | 0.14 | 11 | 452 | 92 | 100 |
3 | NL—Fresh Napier grass | 38 | 19.1 | 0.77 | 49 | 10.1 | 72.5 | 47.9 | 2.7 | 7.9 | 1.0 | 10.1 | 6.8 | 0.51 | 1.74 | 0.36 | 0.09 | 0.34 | 0.18 | 8 | 605 | 91 | 33 |
4 | NH—Fresh Napier grass | 38 | 19.8 | 0.88 | 48 | 16.3 | 66.6 | 42.6 | 2.2 | 8.3 | 0.1 | 11.5 | 6.6 | 0.45 | 2.43 | 0.39 | 0.01 | 0.33 | 0.16 | 7 | 482 | 56 | 26 |
5 | SH—Corn silage | 104 | 23.8 | 1.28 | 61 | 10.4 | 56.3 | 37.4 | 3.0 | 25.1 | 17.8 | 6.4 | 5.2 | 0.22 | 1.23 | 0.18 | 0.90 | 0.23 | 0.13 | 7 | 735 | 84 | 27 |
6 | NL—Corn silage | 104 | 25.9 | 0.88 | 53 | 9.5 | 70.1 | 46.2 | 2.1 | 13.2 | 4.6 | 8.9 | 5.1 | 0.30 | 0.66 | 0.24 | 0.54 | 0.22 | 0.12 | 6 | 319 | 144 | 20 |
7 | NH—Corn silage | 104 | 26.3 | 0.90 | 52 | 13.0 | 69.0 | 49.6 | 2.0 | 10.8 | 0.7 | 9.5 | 5.2 | 0.41 | 1.73 | 0.50 | 0.01 | 0.23 | 0.14 | 6 | 317 | 33 | 25 |
8 | SL—Fresh tropical grass | 38 | 21.6 | 0.84 | 52 | 10.9 | 71.6 | 46.4 | 2.0 | 8.9 | 3.5 | 7.5 | 6.6 | 0.15 | 1.76 | 0.15 | 0.07 | 0.22 | 0.41 | 6 | 470 | 111 | 46 |
9 | NL/NH—Fresh tropical grass | 38 | 20.8 | 0.97 | 54 | 15.6 | 67.9 | 44.3 | 2.8 | 7.0 | 0.4 | 7.6 | 6.7 | 0.39 | 4.08 | 0.22 | 0.01 | 0.34 | 0.23 | 7 | 632 | 58 | 26 |
10 | SH—Fresh corn with cob | 75 | 25.0 | 1.19 | 61 | 12.4 | 61.4 | 38.2 | 2.3 | 18.7 | 15.1 | 5.1 | 5.2 | 0.27 | 1.60 | 0.13 | 0.04 | 0.22 | 0.13 | 6 | 688 | 114 | 37 |
11 | NL—Fresh corn with cob | 75 | 24.4 | 1.08 | 59 | 11.5 | 66.7 | 41.4 | 2.4 | 14.2 | 0.9 | 5.4 | 5.2 | 0.70 | 0.77 | 0.29 | 0.01 | 0.19 | 0.18 | 7 | 194 | 62 | 30 |
12 | SL—Concentrate pellets | 471 | 90.6 | 1.61 | 69 | 20.7 | 29.7 | 14.0 | 4.2 | 37.0 | 27.2 | 5.9 | 8.4 | 1.26 | 1.18 | 0.32 | 0.58 | 0.67 | 0.35 | 45 | 468 | 127 | 348 |
13 | SH—Concentrate pellets | 471 | 89.7 | 1.78 | 76 | 21.7 | 25.9 | 11.2 | 4.9 | 40.1 | 32.1 | 3.3 | 7.3 | 1.01 | 1.04 | 0.34 | 0.53 | 0.57 | 0.30 | 41 | 451 | 92 | 492 |
14 | NL—Concentrate pellets | 471 | 89.2 | 1.76 | 75 | 21.2 | 28.3 | 11.4 | 5.8 | 37.0 | 29.8 | 3.8 | 7.8 | 1.40 | 0.98 | 0.31 | 0.39 | 0.57 | 0.35 | 53 | 295 | 135 | 304 |
15 | NH—Concentrate pellets | 471 | 88.6 | 1.74 | 74 | 20.4 | 22.1 | 11.9 | 4.2 | 44.6 | 32.3 | 3.5 | 8.6 | 1.68 | 0.95 | 0.34 | 0.51 | 0.73 | 0.34 | 31 | 419 | 164 | 347 |
16 | SL—Brewers’ grain | 81 | 23.5 | 1.80 | 75 | 29.4 | 55.3 | 24.4 | 8.4 | 2.9 | 2.9 | 5.1 | 4.0 | 0.25 | 0.06 | 0.17 | 0.01 | 0.55 | 0.32 | 14 | 206 | 42 | 84 |
17 | SH—Brewers’ grain | 81 | 25.0 | 1.74 | 72 | 24.9 | 44.2 | 18.2 | 7.9 | 25.1 | 19.0 | 9.5 | 4.0 | 0.15 | 0.14 | 0.15 | 0.01 | 0.46 | 0.27 | 8 | 150 | 33 | 60 |
18 | NH—Brewers’ grain | 81 | 21.3 | 1.50 | 62 | 31.5 | 58.2 | 23.7 | 9.1 | 1.4 | 1.4 | 17.5 | 2.2 | 0.25 | 0.03 | 0.14 | 0.01 | 0.54 | 0.35 | 11 | 153 | 40 | 74 |
19 | SH—Whole soybean meal | 750 | 90.3 | 2.16 | 88 | 47.1 | 21.4 | 10.6 | 11.5 | 15.0 | 2.0 | 3.7 | 5.0 | 0.25 | 1.59 | 0.27 | 0.01 | 0.62 | 0.33 | 12 | 286 | 34 | 48 |
20 | NL—Whole soybean meal | 750 | 84.2 | 2.57 | 90 | 37.3 | 17.2 | 11.9 | 21.6 | 18.9 | 2.8 | 5.8 | 5.0 | 0.21 | 1.56 | 0.20 | 0.01 | 0.52 | 0.29 | 16 | 79 | 20 | 33 |
21 | NH—Partial mixed ration | 289 | 54.7 | 1.50 | 65 | 17.6 | 36.9 | 22.8 | 3.7 | 33.5 | 22.5 | 6.8 | 8.2 | 1.30 | 1.12 | 0.33 | 0.37 | 0.50 | 0.29 | 24 | 763 | 125 | 197 |
22 | SL—Dry rice straw | 173 | 84.2 | 0.68 | 53 | 7.2 | 77.6 | 50.5 | 1.4 | 6.8 | 0.5 | 5.4 | 7.0 | 0.37 | 1.96 | 0.16 | 0.15 | 0.13 | 0.18 | 4 | 532 | 287 | 35 |
23 | SL—Cassava residue | 54 | 19.8 | 1.63 | 72 | 2.5 | 31.2 | 25.6 | 0.1 | 63.2 | 48.6 | 4.8 | 3.0 | 0.50 | 0.23 | 0.10 | 0.02 | 0.02 | 0.02 | 1 | 190 | 39 | 12 |
24 | SH—Passion fruit pulp | 66 | 16.4 | 1.17 | 53 | 10.1 | 52.9 | 43.3 | 0.9 | 27.7 | 0.6 | 9.4 | 8.4 | 0.26 | 2.99 | 0.13 | 0.05 | 0.08 | 0.18 | 2 | 117 | 69 | 10 |
Nutrient A (DM Basis) | Actual Diets of Regions B (Mean) | pC | Mean ± SEM | PCDairy Recommendations D (Mean ± SEM) | |||||
---|---|---|---|---|---|---|---|---|---|
SL | SH | NL | NH | Recommen_1 | Recommen_2 | Max | |||
Intake | |||||||||
DMI, kg/cow/day | 14.4 b | 16.4 ab | 16.2 ab | 17.3 a | 0.007 | 16.1 ± 0.6 | -- | -- | -- |
DMI, % BW | 3.2 | 3.3 | 3.2 | 3.3 | 0.861 | 3.2 ± 0.1 | -- | -- | -- |
Concentration | |||||||||
DM, % as fed | 35.5 ab | 32.3 b | 36.6 ab | 39.2 a | 0.002 | 35.9 ± 1.4 | -- | -- | -- |
NEL, MCal/kg | 1.40 | 1.44 | 1.36 | 1.38 | 0.176 | 1.40 ± 0.02 | 1.50 ± 0.03 | 1.59 ± 0.02 | -- |
TDN, % | 64.7 | 63.7 | 65.4 | 63.4 | 0.481 | 64.3 ± 0.5 | 65.4 ± 2.0 | 69.9 ± 1.8 | -- |
CP, % | 17.1 a | 16.4 ab | 14.8 b | 17.5 a | 0.003 | 16.5 ± 0.6 | 13.8 ± 1.5 | 15.7 ± 0.5 | -- |
NDF, % | 47.4 | 43.9 | 46.9 | 44.9 | 0.192 | 45.8 ± 0.8 | >28 | >28 | -- |
ADF, % | 27.4 | 26.2 | 27.5 | 28.2 | 0.507 | 27.3 ± 0.4 | >21 | >21 | -- |
Fat, % | 3.6 ab | 3.9 ab | 4.1 a | 3.4 b | 0.026 | 3.8 ± 0.2 | >3 | >3 | -- |
NFC, % | 24.9 | 29.3 | 27.9 | 27.4 | 0.163 | 27.4 ± 0.9 | -- | -- | -- |
Starch, % | 16.7 b | 22.6 a | 20.3 ab | 16.8 b | 0.004 | 19.1 ± 1.4 | -- | -- | -- |
ADL, % | 5.8 ab | 5.5 b | 5.9 ab | 6.8 a | 0.012 | 6.0 ± 0.3 | -- | -- | -- |
Ash, % | 7.0 | 6.5 | 6.2 | 6.8 | 0.050 | 6.6 ± 0.2 | -- | -- | -- |
Ca, % | 0.71b | 0.59 c | 0.78 b | 1.04 a | <0.001 | 0.78 ± 0.10 | 0.49 ± 0.05 | 0.58 ± 0.03 | 2.0 |
P, % | 0.44 b | 0.41 bc | 0.40 c | 0.49 a | <0.001 | 0.44 ± 0.02 | 0.32 ± 0.03 | 0.37 ± 0.02 | 1.0 |
K, % | 1.40 | 1.44 | 1.12 | 1.26 | 0.070 | 1.31 ± 0.07 | 0.9 | 0.9 | 3.0 |
Mg, % | 0.25 b | 0.25 b | 0.28 b | 0.37 a | <0.001 | 0.29 ± 0.03 | 0.20 | 0.20 | 0.5 |
Na, % | 0.27 | 0.32 | 0.29 | 0.31 | 0.611 | 0.30 ± 0.01 | 0.18 | 0.18 | 1.6 |
S, % | 0.26 a | 0.20 b | 0.23 ab | 0.26 a | <0.001 | 0.24 ± 0.01 | 0.20 | 0.20 | 0.4 |
Cu, ppm | 23 ab | 21 bc | 25 a | 18 c | <0.001 | 22 ± 1 | 10 | 10 | 100 |
Fe, ppm | 346 b | 437 a | 341 b | 402 ab | 0.001 | 381 ± 23 | 50 | 50 | 1000 |
Mn, ppm | 101 a | 83 b | 108 a | 103 a | 0.003 | 99 ± 6 | 40 | 40 | 1000 |
Zn, ppm | 174 b | 232 a | 137 c | 181 b | <0.001 | 181 ± 19 | 40 | 40 | 500 |
Ca:P ratio | 1.6 b | 1.5 b | 2.0 a | 2.1 a | <0.001 | 1.8 ± 0.2 | -- | -- | -- |
Parameter A | Region B, Mean | pC | Mean ± SEM | |||
---|---|---|---|---|---|---|
SL | SH | NL | NH | |||
Predicted milk production | ||||||
NEL-allowable FCM, kg/cow/day | 16.5 | 20.6 | 17.6 | 19.8 | 0.049 | 18.6 ± 0.9 |
CP-allowable FCM, kg/cow/day | 25.0 b | 27.6 ab | 23.9 b | 30.9 a | <0.001 | 26.8 ± 1.6 |
CP-allowable FCM: NEL-allowable FCM | 1.5 | 1.5 | 1.4 | 1.6 | 0.034 | 1.5 ± 0.1 |
Actual milk production and feed efficiency | ||||||
FCM, kg/cow/day | 14.2 b | 16.2 b | 16.9 b | 20.4 a | <0.001 | 16.9 ± 1.3 |
FCM, kg/kg DMI | 0.99 b | 1.00 b | 1.04 ab | 1.19 a | 0.016 | 1.06 ± 0.05 |
Diet costs | ||||||
Diet cost, USD/cow/day | 5.4 c | 6.4 bc | 6.5 b | 7.6 a | <0.001 | 6.4 ± 0.4 |
Roughage cost, USD/cow/day | 1.3 c | 2.0 bc | 2.3 b | 3.4 a | <0.001 | 2.2 ± 0.5 |
Concentrate cost, USD/cow/day | 4.2 | 4.4 | 4.2 | 4.0 | 0.765 | 4.2 ± 0.1 |
Diet cost, USD/kg DMI | 0.37 b | 0.39 b | 0.40 ab | 0.44 a | <0.001 | 0.40 ± 0.01 |
Diet cost, USD/kg FCM | 0.39 | 0.39 | 0.39 | 0.37 | 0.846 | 0.39 ± 0.01 |
Predicted methane emissions | ||||||
CH4, % of gross energy | 5.54 | 5.31 | 5.46 | 5.24 | 0.049 | 5.39 ± 0.07 |
CH4, g/cow/day | 297 | 324 | 329 | 336 | 0.056 | 321 ± 8 |
CH4, g/kg DMI | 20.7 | 19.8 | 20.4 | 19.5 | 0.064 | 20.1 ± 0.3 |
CH4, g/kg FCM | 21.4 a | 20.0 ab | 20.0 ab | 16.5 b | 0.013 | 19.5 ± 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bang, N.N.; Chanh, N.V.; Trach, N.X.; Khang, D.N.; Hayes, B.J.; Gaughan, J.B.; Lyons, R.E.; Hai, N.T.; McNeill, D.M. Issues of Feeding Strategy for Lactating Cows in Vietnamese Smallholder Dairy Farms. Animals 2021, 11, 729. https://doi.org/10.3390/ani11030729
Bang NN, Chanh NV, Trach NX, Khang DN, Hayes BJ, Gaughan JB, Lyons RE, Hai NT, McNeill DM. Issues of Feeding Strategy for Lactating Cows in Vietnamese Smallholder Dairy Farms. Animals. 2021; 11(3):729. https://doi.org/10.3390/ani11030729
Chicago/Turabian StyleBang, Nguyen N., Nguyen V. Chanh, Nguyen X. Trach, Duong N. Khang, Ben J. Hayes, John B. Gaughan, Russell E. Lyons, Nguyen T. Hai, and David M. McNeill. 2021. "Issues of Feeding Strategy for Lactating Cows in Vietnamese Smallholder Dairy Farms" Animals 11, no. 3: 729. https://doi.org/10.3390/ani11030729
APA StyleBang, N. N., Chanh, N. V., Trach, N. X., Khang, D. N., Hayes, B. J., Gaughan, J. B., Lyons, R. E., Hai, N. T., & McNeill, D. M. (2021). Issues of Feeding Strategy for Lactating Cows in Vietnamese Smallholder Dairy Farms. Animals, 11(3), 729. https://doi.org/10.3390/ani11030729