Using PRRSV-Resilient Sows Improve Performance in Endemic Infected Farms with Recurrent Outbreaks
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farm, Sows, and Data
2.2. Simulation Model
2.3. Input Parameters
2.4. Economic Modeling
2.5. Comparison of Virtual Farms
3. Results
3.1. Production Performance Outcome for Resilient and Susceptible Sows
3.2. Economic Performance Outcome for Resilient and Susceptible Sows (all the Parameters in Euros)
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holtkamp, D.J.; Kliebenstein, J.B.; Neumann, E.J.; Zimmerman, J.J.; Rotto, H.F.; Yoder, T.K. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J. Swine Health Prod. 2013, 21, 72–84. [Google Scholar]
- Lunney, J.K.; Benfield, D.A.; Rowland, R.R. Porcine reproductive and respiratory syndrome virus: An update on an emerging and re-emerging viral disease of swine. Virus Res. 2010, 154, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Montaner-Tarbes, S.; del Portillo, H.; Montoya, M.; Fraile, L. Key Gaps in the Knowledge of the Porcine Respiratory Reproductive Syndrome Virus (PRRSV). Front. Vet. Sci. 2019, 6, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, A.S.; Islam, Z.; Hess, M.K.; Rowland, R.R.; Lunney, J.K.; Doeschl-Wilson, A.; Plastow, G.S.; Dekkers, J.C. Comparison of host genetic factors influencing pig response to infection with two North American isolates of porcine reproductive and respiratory syndrome virus. Genet. Sel. Evol. 2016, 48, 43. [Google Scholar] [CrossRef] [Green Version]
- Reiner, G. Genetic resistance—An alternative for controlling PRRS? Porcine Health Manag. 2016, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Abella, G.; Pena, R.N.; Nogareda, C.; Armengol, R.; Vidal, A.; Moradell, L.; Tarancon, V.; Novell, E.; Estany, J.; Fraile, L. A WUR SNP is associated with European Porcine Reproductive and Respiratory Virus Syndrome resistance and growth performance in pigs. Res. Vet. Sci. 2016, 104, 117–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, C.R.G.; Torremorell, M.; Galina-Pantoja, L.; Bishop, S.C. Genetic parameters for performance traits in commercial sows estimated before and after an outbreak of porcine reproductive and respiratory syndrome. J. Anim. Sci. 2009, 87, 876–884. [Google Scholar] [CrossRef]
- Rashidi, H.; Mulder, H.A.; Mathur, P.; van Arendonk, J.A.; Knol, E.F. Variation among sows in response to porcine reproductive and respiratory syndrome. J. Anim. Sci. 2014, 92, 95–105. [Google Scholar] [CrossRef]
- Serão, N.V.; Matika, O.; Kemp, R.A.; Harding, J.C.; Bishop, S.C.; Plastow, G.S.; Dekkers, J.C. Genetic analysis of reproductive traits and antibody response in a PRRS outbreak herd. J. Anim. Sci. 2014, 92, 2905–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harding, J.C.S.; Ladinig, A.; Novakovic, P.; Detmer, S.E.; Wilkinson, J.M.; Yang, T.; Lunney, J.K.; Plastow, G.S. Novel insights into host responses and reproductive pathophysiology of porcine reproductive and respiratory syndrome caused by PRRSV-2. Vet. Microbiol. 2017, 209, 114–123. [Google Scholar] [CrossRef]
- Abella, G.; Novell, E.; Tarancon, V.; Varona, L.; Pena, R.N.; Estany, J.; Fraile, L. Identification of resilient sows in porcine reproductive and respiratory syndrome virus–infected farms. J. Anim. Sci. 2019, 97, 3228–3236. [Google Scholar] [CrossRef]
- Nathues, H.; Alarcon, P.; Rushton, J.; Jolie, R.; Fiebig, K.; Jimenez, M.; Geurts, V.; Nathues, C. Modelling the economic efficiency of using different strategies to control Porcine Reproductive & Respiratory Syndrome at herd level. Prev. Vet. Med. 2018, 152, 89–102. [Google Scholar] [CrossRef]
- Thomann, B.; Rushton, J.; Schuepbach-Regula, G.; Nathues, H. Modeling Economic Effects of Vaccination against Porcine Reproductive and Respiratory Syndrome: Impact of Vaccination Effectiveness, Vaccine Price, and Vaccination Coverage. Front. Vet. Sci. 2020, 7, 500. [Google Scholar] [CrossRef]
- Fraile, L.; Fernandez, N.; Pena, R.N.; Balasch, G.; Castella, G.; Puig, P.; Estany, j.; Valls, J. A probabilistic Poisson-based model to detect PRRSV recirculation using sow production records. Prev. Vet. Med. 2020, 177, 104948. [Google Scholar] [CrossRef]
- Plà-Aragonès, L.M.; Pages-Bernaus, A.; Fraile, L.; Abella, G. Use of Simulation to Estimate Economic Performances of Two Phenotypes of Sows. In Proceedings of the 2018 Winter Simulation Conference; Rabe, M., Juan, A.A., Mustafee, N., Skoogh, A., Jain, S., Johansson, B., Eds.; IEEE: Gothenburg, Sweden, 2018; pp. 2354–2362. Available online: https://ieeexplore.ieee.org/document/8632505 (accessed on 24 August 2020).
- Krahl, D. EXTENDSIM 9. In Proceedings of the 2013 Winter Simulation Conference; Pasupathy, R., Kim, S.-H., Tolk, A., Hill, R., Kuhl, M.E., Eds.; IEEE: Washington, DC, USA, 2013; pp. 4065–4072. Available online: https://informssim.org/wsc13papers/includes/files/408.pdf (accessed on 15 February 2020).
- Krahl, D.; Nastasi, A. Reliability modeling with Extendsim. In Proceedings of the 2014 Winter Simulation Conference; Tolk, A., Yilmaz, L., Chan, W.K.V., Moon, I., Roeder, T.M.K., Macal, C., Rossetti, M.D., Eds.; IEEE: Savannah, GA, USA, 2014; pp. 4219–4225. Available online: https://informssim.org/wsc14papers/includes/files/476.pdf (accessed on 15 February 2020).
- BDporc, Report. 2019. Available online: https://porcino.info/wp-content/uploads/2020/05/Resultados-Generales-BDporc-2019.pdf (accessed on 15 February 2020).
- DARP. 2020. Available online: http://agricultura.gencat.cat/web/.content/de_departament/de02_estadistiques_observatoris/08_observatoris_sectorials/04_observatori_porci/informes_periodics_2019/E2_InformeEconomicPorci/Fitxer_Estatic/Informe-Economic-2019.pdf (accessed on 10 February 2020).
- Nan, Y.; Wu, C.; Gu, G.; Sun, W.; Zhang, Y.J.; Zhou, E.M. Improved Vaccine against PRRSV: Current Progress and Future Perspective. Front. Microb. 2017, 8, 1635. [Google Scholar] [CrossRef]
- Rowland, R.R.; Lunney, J.; Dekkers, J. Control of porcine reproductive and respiratory syndrome (PRRS) through genetic improvements in disease resistance and tolerance. Front. Genet. 2012, 3, 260. [Google Scholar] [CrossRef] [Green Version]
- Burkard, C.; Opriessnig, T.; Mileham, A.J.; Stadejek, T.; Ait-Ali, T.; Lillico, S.G.; Whitelaw, C.B.A.; Archibald, A.L. Pigs Lacking the Scavenger Receptor Cysteine-Rich Domain 5 of CD163 Are Resistant to Porcine Reproductive and Respiratory Syndrome Virus 1 Infection. J. Virol. 2018, 92, e00415-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boddicker, N.J.; Bjorkquist, A.; Rowland, R.R.; Lunney, J.K.; Reecy, J.M.; Dekkers, J.C. Genome-wide association and genomic prediction for host response to porcine reproductive and respiratory syndrome virus infection. Gen. Select. Evol. 2014, 46, 18–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boddicker, N.J.; Garrick, D.J.; Rowland, R.R.; Lunney, J.K.; Reecy, J.M.; Dekkers, J.C. Validation and further characterization of a major quantitative trait locus associated with host response to experimental infection with porcine reproductive and respiratory syndrome virus. Anim. Genet. 2014, 45, 48–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pena, R.N.; Fernández, C.; Blasco-Felip, M.; Fraile, L.; Estany, J. Genetic Markers Associated with Field PRRSV-Induced Abortion Rates. Viruses 2019, 11, 706. [Google Scholar] [CrossRef] [Green Version]
- Laplana, M.; Estany, J.; Fraile, L.; Pena, R.N. Resilience effects of SGK1 and TAP1 DNA markers during PRRSV outbreaks in reproductive sows. Animals 2020, 10, 902. [Google Scholar] [CrossRef] [PubMed]
- Law, A.M.; Kelton, W.D. Basic simulation modelling. In Simulation Modeling & Analysis, 3rd ed.; McGraw-Hill, Inc.: New York, NY, USA, 2000; pp. 1–130. [Google Scholar]
- Fraile, L.; Alegre, A.; López-Jiménez, R.; Nofrarías, M.; Segalés, J. Risk factors associated with pleuritis and cranio-ventral pulmonary consolidation in slaughter-aged pigs. Vet. J. 2010, 184, 326–333. [Google Scholar] [CrossRef]
- Ritzmann, M.; Stadler, J.; Adam, L. Möglichkeiten und Grenzen der PRRS-Eliminierung. In LBH: 8. Leipziger Tierärztekongress—Tagungsband 3. University of Leipzig, Leipzig; Rackwitz, R., Pees, M., Aschenbach, J.R., Gäbel, G., Eds.; Lehmanns Media GmbH: Berlin, Germany, 2016; pp. 206–207. [Google Scholar]
- Nathues, H.; Alarcon, P.; Rushton, J.; Jolie, R.; Fiebig, K.; Jimenez, M.; Geurts, V.C.; Nathues, C. Cost of porcine reproductive and respiratory syndrome virus at individual farm level—An economic disease model. Prev. Vet. Med. 2017, 142, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, J.J.; Benfield, D.A.; Dee, S.A.; Murtaugh, M.P.; Stadejek, T.; Stevenson, G.; Torremorell, M. Porcine reproductive and respiratory syndrome. In Diseases of Swine; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Eds.; Iowa State University Press: Ames, IA, USA, 2012; pp. 1675–1774. [Google Scholar]
- Linhares, C.; Johnson, R.B.; Morrison, B. Economic analysis of vaccination strategies for PRRS control. PLoS ONE 2015, 10, e0144265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocadembosch, J.; Amador, J.; Bernaus, J.; Font, J.; Fraile, L.J. Production parameters and pig production cost: Temporal evolution 2010–2014. Porcine Health Manag. 2016, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Karniychuk, U.U.; Nauwynck, H.J. Pathogenesis and prevention of placental and transplacental porcine reproductive and respiratory syndrome virus infection. Vet. Res. 2013, 44, 95. Available online: http://www.veterinaryresearch.org/content/44/1/95 (accessed on 10 February 2020). [CrossRef] [PubMed] [Green Version]
- Jensen, T.B.; Toft, N.; Bonde, M.K.; Kongsted, A.G.; Kristensen, A.R.; Sørensen, J.T. Herd and sow-related risk factors for mortality in sows in group-housed systems. Prev. Vet. Med. 2012, 103, 31–37. [Google Scholar] [CrossRef]
- Harlizius, B.; Mathur, P.; Knol, E.F. Breeding for resilience: New opportunities in a modern pig breeding program. J. Anim. Sci. 2020, 98 (Suppl. 1), S150–S154. [Google Scholar] [CrossRef]
- Clark, B.; Panzone, L.A.; Stewart, G.B.; Kyriziakis, I.; Niemi, J.K.; Latvala, T.; Tranter, R.; Jones, P.; Frewer, L.J. Consumer attitudes towards production diseases in intensive production systems. PLoS ONE 2019, 14, e0210432. [Google Scholar] [CrossRef] [PubMed]
- Niemi, J.; Bennett, R.; Clark, B.; Frewer, L.; Jones, P.; Rimmler, T.; Tranter, R. A value chain analysis of interventions to control production diseases in the intensive pig production sector. PLoS ONE 2020, 15, e0231338. [Google Scholar] [CrossRef] [Green Version]
En | En/Ep | |||
---|---|---|---|---|
Resilient | Susceptible | Resilient | Susceptible | |
Interval to first mating after weaning (days) | ||||
Gestation | N(116,1.8) | N(116,1.8) | N(116,1.8) | N(116,1.8) |
Length (days) Interval from mating to culling (not including gilts) (days) | N(61,29.4) | N(56,34.0) | N(57,28.9) | N(55,32.6) |
Interval from otherwise to culling (not including gilts) (days) | N(26,28.8) | N(26,32.5) | N(21,25.1) | N(21,28.8) |
Interval from gilt incoming to culling before farrowing (days) | logN(3.82,0.67) | logN(3.82,0.67) | logN(3.82,0.67) | LogN(3.82,0.67) |
En | En/Ep | |||
---|---|---|---|---|
Resilient | Susceptible | Resilient | Susceptible | |
Mean 1 | 33 | 26 | 32 | 27 |
Sd 1 | 10.6 | 7.2 | 10.6 | 7.3 |
Probability 1 | 50% | 26% | 38% | 25% |
Mean 2 | 97 | 99 | 100 | 100 |
Sd 2 | 10.1 | 14.0 | 9.7 | 13.5 |
Probability 2 | 50% | 74% | 62% | 75% |
En | En/Ep | |||
---|---|---|---|---|
Resilient | Susceptible | Resilient | Susceptible | |
Mating 1 | 0.903 | 0.908 | 0.902 | 0.915 |
Mating 2 | 0.816 | 0.829 | 0.808 | 0.774 |
Mating > 3 | 0.889 | 0.786 | 0.857 | 0.848 |
En | En/Ep | ||||||||
---|---|---|---|---|---|---|---|---|---|
Resilient | Susceptible | Resilient | Susceptible | ||||||
Parity | mean | sd | mean | sd | mean | sd | mean | sd | |
NBA | 1 | 10.52 | 2.66 | 10.91 | 3.12 | 10.52 | 2.65 | 10.91 | 3.12 |
2 | 11.22 | 3.49 | 11.81 | 3.50 | 11.13 | 3.60 | 11.81 | 3.50 | |
3 | 11.61 | 3.02 | 11.62 | 3.18 | 11.95 | 2.98 | 11.71 | 3.42 | |
4 | 12.00 | 3.36 | 12.49 | 3.22 | 11.91 | 3.22 | 12.31 | 3.49 | |
5 | 12.41 | 3.13 | 11.98 | 2.89 | 12.29 | 3.06 | 12.03 | 3.09 | |
6 | 13.50 | 5.04 | 12.52 | 3.75 | 12.28 | 3.72 | 12.20 | 3.40 | |
>7 | 13.50 | 1.73 | 11.22 | 2.90 | 10.63 | 3.31 | 11.10 | 2.96 | |
Weaned piglets per litter | 1 | 9.95 | 0.61 | 9.94 | 0.53 | 9.93 | 0.64 | 9.94 | 0.53 |
2 | 10.07 | 0.78 | 10.23 | 0.81 | 10.07 | 0.77 | 10.23 | 0.81 | |
3 | 10.54 | 0.96 | 10.39 | 0.74 | 10.48 | 1.01 | 10.31 | 1.61 | |
4 | 10.35 | 0.69 | 10.64 | 1.02 | 10.13 | 1.16 | 10.42 | 1.34 | |
5 | 10.27 | 0.51 | 10.23 | 0.54 | 10.28 | 0.99 | 10.41 | 0.81 | |
6 | 10.67 | 0.82 | 10.48 | 0.68 | 9.83 | 1.43 | 10.06 | 1.42 | |
>7 | 10.23 | 0.64 | 9.69 | 0.69 | 10.23 | 1.14 | 9.69 | 1.39 |
Resilient | Susceptible | |
---|---|---|
Gilt culled before mating | 3.60 | 3.88 |
Gilt culled before farrowing | 5.22 | 6.05 |
Sow parity 1 | 7.38 | 3.59 |
Sow parity 2 | 7.21 | 10.23 |
Sow parity 3 | 3.49 | 7.74 |
Sow parity 4 | 9.09 | 7.29 |
Sow parity 5 | 17.02 | 19.40 |
Sow parity > 6 | 17.02 | 16.13 |
Productive Parameter | Calculus Procedure |
---|---|
Conception rate | (#Pregnancy losses * + #Farrowings)/#matings |
Culling rate per parity, n | #Culled sows in parity n/#Sows in parity, n |
Repetition rate | #matings - #1st matings/#matings |
Loss of gestation rate | #Pregnancy losses/(#Pregnancy losses + #Farrowings) |
Replacement rate | #Culled sows/#Sows |
Farrowing rate | #Farrowings/(#Pregnancy losses + #Farrowings) |
Parameter | Value |
---|---|
Price per sow slaughtered | 186.00 € |
Price of replacement gilt | 124.00 € |
Price per piglet (6 kg) | 32.30 € |
Feed price/ton | 250.00 € |
Feed consumption per sow and day (open gestation) | 2.5 kg |
Feed consumption per sow and day (lactation) | 5.5 kg |
Insemination price (two doses) | 9.00 € |
Veterinary, management, drugs, vaccines, and housing per sow and year | 333.00 € |
Virtual Farm | RR (%) | Rep (%) | LGR (%) | FI | AI | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Phenotype | PRRSV | Mean | sd | Mean | sd | Mean | sd | Mean | sd | Mean | sd |
Resilient | En/Ep | 46.0% b | 1.7% | 9.7% c | 0.5% | 8.0% a | 0.5% | 156.6 a | 0.9 | 3.20 b | 0.02 |
Susceptible | En/Ep | 45.9% b | 1.4% | 12.3% a | 0.5% | 6.4% b | 0.4% | 156.9 a | 0.9 | 3.26 a | 0.03 |
Resilient | En | 45.4% b | 1.6% | 10.2% b | 0.5% | 5.9% c | 0.3% | 155.3 b | 0.9 | 3.19 b | 0.02 |
Susceptible | En | 48.1% a | 1.7% | 7.9% d | 0.5% | 5.6% c | 0.3% | 154.9 b | 0.8 | 3.14 c | 0.02 |
Virtual Farm | Sow Sales (€) | Piglets (€) | Gilts (€) | Feed (€) | Mating (€) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Phenotype | PRRSV | Mean | sd | Mean | sd | Mean | sd | Mean | sd | Mean | sd |
Resilient | En/Ep | 55.59 a | 2.10 | 726.4 b | 4.74 | 57.0 b | 2.15 | 256.9 c | 0.21 | 28.8 b | 0.2 |
Susceptible | En/Ep | 42.70 b | 1.30 | 721.3 b | 4.98 | 56.9 b | 1.74 | 256.7 c | 0.16 | 29.4 a | 0.2 |
Resilient | En | 54.92 a | 1.91 | 749.3 a | 4.48 | 56.3 b | 1.96 | 257.4 b | 0.19 | 28.7 b | 0.1 |
Susceptible | En | 44.69 b | 1.57 | 748.1 a | 4.11 | 59.6 a | 2.10 | 257.6 a | 0.15 | 28.3 c | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abella, G.; Pagès-Bernaus, A.; Estany, J.; Pena, R.N.; Fraile, L.; Plà-Aragonés, L.M. Using PRRSV-Resilient Sows Improve Performance in Endemic Infected Farms with Recurrent Outbreaks. Animals 2021, 11, 740. https://doi.org/10.3390/ani11030740
Abella G, Pagès-Bernaus A, Estany J, Pena RN, Fraile L, Plà-Aragonés LM. Using PRRSV-Resilient Sows Improve Performance in Endemic Infected Farms with Recurrent Outbreaks. Animals. 2021; 11(3):740. https://doi.org/10.3390/ani11030740
Chicago/Turabian StyleAbella, Gloria, Adela Pagès-Bernaus, Joan Estany, Ramona Natacha Pena, Lorenzo Fraile, and Lluis Miquel Plà-Aragonés. 2021. "Using PRRSV-Resilient Sows Improve Performance in Endemic Infected Farms with Recurrent Outbreaks" Animals 11, no. 3: 740. https://doi.org/10.3390/ani11030740
APA StyleAbella, G., Pagès-Bernaus, A., Estany, J., Pena, R. N., Fraile, L., & Plà-Aragonés, L. M. (2021). Using PRRSV-Resilient Sows Improve Performance in Endemic Infected Farms with Recurrent Outbreaks. Animals, 11(3), 740. https://doi.org/10.3390/ani11030740