Role of Long Chain Fatty Acids in Developmental Programming in Ruminants
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. The History of the Importance of Fatty Acid in the Diet
1.2. Fatty Acids in Ruminant Nutrition
2. Fatty Acid Supplementation before and during the Conception in the Developmental Program
2.1. Supplementation with FA to Male Ruminants
2.2. Supplementation with FA on the Flushing Period in Female Ruminants
2.3. Supplementation with FA on the Conception Period
3. Effect of FA Supplementation during Gestation on the Developmental Program
3.1. Placental FA Transport
3.2. Nutritional Programming Effect of FA Supplemented in Early Gestation
3.3. Nutritional Programming Effect of FA Supplemented in Late Gestation
3.3.1. Effect on mRNA Expression and DNA Methylation of the Offspring
3.3.2. Effect in Offspring’s Energy Metabolism
3.3.3. Effects in Offspring’s Immune Response and Inflammatory Markers
4. Effect of FA Supplementation on Early Life for the Developmental Program
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shrestha, N.; Sleep, S.L.; Cuffe, J.S.M.; Holland, O.J.; Perkins, A.V.; Yau, S.Y. Role of omega-6 and omega-3 fatty acids in fetal programming. Clin. Exp. Pharmacol. Physiol. 2020, 47, 907–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanal, P.; Nielsen, M.O. Impacts of prenatal nutrition on animal production and performance: A focus on growth and metabolic and endocrine function in sheep. J. Anim. Sci. Biotechnol. 2017, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J.P. The developmental origins of adult disease. J. Am. Coll. Nutr. 2004, 23 (Suppl. 6), 588S–595S. [Google Scholar] [CrossRef] [PubMed]
- Kabaran, S.; Besler, H.T. Do fatty acids affect fetal programming? J. Health Popul. Nutr. 2015, 33, 14. [Google Scholar] [CrossRef] [Green Version]
- Coleman, D.N.; Rivera-Acevedo, K.C.; Relling, A.E. Prepartum fatty acid supplementation in sheep I. Eicosapentaenoic and docosahexaenoic acid supplementation do not modify ewe and lamb metabolic status and performance through weaning. J. Anim. Sci. 2018, 96, 364–374. [Google Scholar] [CrossRef] [Green Version]
- Coleman, D.N.; Murphy, K.D.; Relling, A.E. Prepartum fatty acid supplementation in sheep. II. Supplementation of eicosapentaenoic acid and docosahexaenoic acid during late gestation alters the fatty acid profile of plasma, colostrum, milk and adipose tissue, and increases lipogenic gene expression. J. Anim. Sci. 2018, 96, 1181–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carranza-Martin, A.C.; Coleman, D.N.; Garcia, L.G.; Furnus, C.C.; Relling, A.E. Prepartum fatty acid supplementation in sheep. III. Effect of eicosapentaenoic acid and docosahexaenoic acid during finishing on performance, hypothalamus gene expression, and muscle fatty acids composition in lambs. J. Anim. Sci. 2018, 96, 5300–5310. [Google Scholar] [CrossRef] [PubMed]
- Nickles, K.R.; Hamer, L.; Coleman, D.N.; Relling, A.E. Supplementation with eicosapentaenoic and docosahexaenoic acids in late gestation in ewes changes adipose tissue gene expression in the ewe and growth and plasma concentration of ghrelin in the offspring. J. Anim. Sci. 2019, 97, 2631–2643. [Google Scholar] [CrossRef] [PubMed]
- Roque-Jimenez, J.A.; Oviedo-Ojeda, M.F.; Whalin, M.; Lee-Rangel, H.A.; Relling, A.E. Eicosapentaenoic and docosahexaenoic acid supplementation during early gestation modified relative abundance on placenta and fetal liver tissue mRNA and concentration pattern of fatty acids in fetal liver and fetal central nervous system of sheep. PLoS ONE 2020, 15, e0235217. [Google Scholar] [CrossRef]
- Rosa-Velazquez, M.; Batistel, F.; Pinos-Rodriguez, J.M.; Relling, A.E. Effects of maternal dietary omega-3 polyunsaturated fatty acids and methionine during late gestation on fetal growth, DNA methylation, and mRNA relative expression of genes associated with the inflammatory response, lipid metabolism and DNA methylation in. J. Anim. Sci. Biotechnol. 2020, 11, 111. [Google Scholar] [CrossRef]
- Coleman, D.N.; Carranza-Martin, A.C.; Jin, Y.; Lee, K.; Relling, A.E. Prepartum fatty acid supplementation in sheep IV. Effect of calcium salts with eicosapentaenoic acid and docosahexaenoic acid in the maternal and finishing diet on lamb liver and adipose tissue during the lamb finishing period1. J. Anim. Sci. 2019, 97, 3071–3088. [Google Scholar] [CrossRef]
- Oviedo-Ojeda, M.F.; Roque-Jiménez, J.A.; Whalin, M.; Lee-Rangel, H.A.; Relling, A.E. Effect of supplementation with different fatty acid profile to the dam in early gestation and to the offspring on the finishing diet on offspring growth and hypothalamus mRNA expression in sheep. J. Anim. Sci. 2021, skab064. [Google Scholar] [CrossRef]
- Palmquist, D.L. Omega-3 Fatty Acids in Metabolism, Health, and Nutrition and for Modified Animal Product Foods. Prof. Anim. Sci. 2009, 25, 207–249. [Google Scholar] [CrossRef]
- Larqué, E.; Demmelmair, H.; Gil-Sánchez, A.; Prieto-Sánchez, M.T.; Blanco, J.E.; Pagán, A. Placental transfer of fatty acids and fetal implications. Am. J. Clin. Nutr. 2011, 94 (Suppl. 6), 1908S–1913S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burr, G.O.; Burr, M.M. A new deficiency disease produced by the rigid exclusion of fat from the diet. J. Biol. Chem. 1929, 82, 345–367. [Google Scholar] [CrossRef]
- Burr, G.O.; Burr, M.M. The nature and role of the fatty acids essential in nutrition. J. Biol. Chem. 1930, 86, 587–621. [Google Scholar] [CrossRef]
- Burr, G.O.; Burr, M.M.; Miller, E.S. On the fatty acids essential in nutrition III. J. Biol. Chem. 1932, 97, 1–9. [Google Scholar] [CrossRef]
- Holman, R.T. Nutritional and metabolic interrelationships between fatty acids. Fed. Proc. 1964, 23, 1062–1067. [Google Scholar] [PubMed]
- Holman, R.T. The ratio of trienoic:tetraenoic acids in tissue lipids as a measure of essential fatty acid requirement. J. Nutr. 1960, 70, 405–410. [Google Scholar] [CrossRef]
- Holman, R.T. The slow discovery of the importance of ω3 essential fatty acids in human health. J. Nutr. 1998, 128, 427S–433S. [Google Scholar] [CrossRef] [Green Version]
- Brett, K.E.; Ferraro, Z.M.; Yockell-Lelievre, J.; Gruslin, A.; Adamo, K.B. Maternal-fetal nutrient transport in pregnancy pathologies: The role of the placenta. Int. J. Mol. Sci. 2014, 15, 16153–16185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, P.T.; Nelson, C.M.; Clarke, S.D. Omega-3 polyunsaturated fatty acid regulation of gene expression. Curr. Opin. Lipidol. 2000, 11, 3–7. [Google Scholar] [CrossRef]
- Larqué, E.; Ruiz-Palacios, M.; Koletzko, B. Placental regulation of fetal nutrient supply. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Innis, S.M. Essential fatty acid transfer and fetal development. Placenta 2005, 26, S70–S75. [Google Scholar] [CrossRef]
- Innis, S.M. Fatty acids and early human development. Early Hum. Dev. 2007, 83, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Moallem, U. Invited review: Roles of dietary n-3 fatty acids in performance, milk fat composition, and reproductive and immune systems in dairy cattle. J. Dairy Sci. 2018, 101, 8641–8661. [Google Scholar] [CrossRef] [Green Version]
- Palmquist, D.L.; Jenkins, T.C. A 100-Year Review: Fat feeding of dairy cows. J. Dairy Sci. 2017, 100, 10061–10077. [Google Scholar] [CrossRef] [Green Version]
- Doreau, M.; Ferlay, A. Digestion and utilisation of fatty acids by ruminants. Anim. Feed Sci. 1994, 45, 379–396. [Google Scholar] [CrossRef]
- Santos, J.E.P.; Bilby, T.R.; Thatcher, W.W.; Staples, C.R.; Silvestre, F.T. Long chain fatty acids of diet as factors influencing reproduction in cattle. Reprod. Domest. Anim. 2008, 43 (Suppl. 2), 23–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yan, W.; Duan, E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat. Rev. Genet. 2016, 17, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Donkin, I.; Barrès, R. Sperm epigenetics and influence of environmental factors. Mol. Metab. 2018, 14, 1–11. [Google Scholar] [CrossRef]
- Van Tran, L.; Malla, B.A.; Kumar, S.; Tyagi, A.K. Polyunsaturated Fatty Acids in Male Ruminant Reproduction—A Review. Asian-Australas. J. Anim. Sci. 2017, 30, 622–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghighi, F.; Galfalvy, H.; Chen, S.; Huang, Y.-Y.; Cooper, T.B.; Burke, A.K. DNA methylation perturbations in genes involved in polyunsaturated Fatty Acid biosynthesis associated with depression and suicide risk. Front. Neurol. 2015, 6, 92. [Google Scholar] [CrossRef] [Green Version]
- Esmaeili, V.; Shahverdi, A.H.; Moghadasian, M.H.; Alizadeh, A.R. Dietary fatty acids affect semen quality: A review. Andrology 2015, 3, 450–461. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Wang, L.; Feng, G.; Li, G.; Yu, M. Impaired lipid metabolism by age-dependent DNA methylation alterations accelerates aging. Proc. Natl. Acad. Sci. USA 2020, 117, 4328–4336. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, K.; Jain, S.; Hassan, T.; Dada, R. Novel insights into the genetic and epigenetic paternal contribution to the human embryo. Clinics 2013, 68 (Suppl. 1), 5–14. [Google Scholar] [CrossRef]
- Ward, M.A.; Ward, W.S. A model for the function of sperm DNA degradation. Reprod. Fertil. Dev. 2004, 16, 547–554. [Google Scholar] [CrossRef]
- Shimura, T.; Toyoshima, M.; Taga, M.; Shiraishi, K.; Uematsu, N.; Inoue, M. The Novel Surveillance Mechanism of the Trp53-Dependent S-Phase Checkpoint Ensures Chromosome Damage Repair and Preimplantation-Stage Development of Mouse Embryos Fertilized with X-Irradiated Sperm. Radiat. Res. 2002, 158, 735–742. [Google Scholar] [CrossRef]
- de Castro Barbosa, T.; Ingerslev, L.R.; Alm, P.S.; Versteyhe, S.; Massart, J.; Rasmussen, M. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol. Metab. 2016, 5, 184–197. [Google Scholar] [CrossRef]
- Ferguson-Smith, A.C. Genomic imprinting: The emergence of an epigenetic paradigm. Nat. Rev. Genet. 2011, 12, 565–575. [Google Scholar] [CrossRef]
- Ibeagha-Awemu, E.M.; Zhao, X. Epigenetic marks: Regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs. Front. Genet. 2015, 6, 302. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, H.; Perrier, J.-P. DNA methylation in bull spermatozoa: Evolutionary impacts, interindividual variability, and contribution to the embryo. Can. J. Anim. Sci. 2019, 100, 1–16. [Google Scholar] [CrossRef]
- Nehra, D.; Le, H.D.; Fallon, E.M.; Carlson, S.J.; Woods, D.; White, Y.A. Prolonging the female reproductive lifespan and improving egg quality with dietary omega-3 fatty acids. Aging Cell 2012, 11, 1046–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- O’Doherty, A.M.; O’Gorman, A.; al Naib, A.; Brennan, L.; Daly, E.; Duffy, P. Negative energy balance affects imprint stability in oocytes recovered from postpartum dairy cows. Genomics 2014, 104, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.W.; Mehta, J.P.; McGettigan, P.A.; Browne, J.A.; Forde, N.; Alibrahim, R.M. Effect of the metabolic environment at key stages of follicle development in cattle: Focus on steroid biosynthesis. Physiol. Genom. 2012, 44, 504–517. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sasaki, H. Genomic imprinting in mammals: Its life cycle, molecular mechanisms and reprogramming. Cell Res. 2011, 21, 466–473. [Google Scholar] [CrossRef] [Green Version]
- Bender, K.; Walsh, S.; Evans, A.C.O.; Fair, T.; Brennan, L. Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows. Reproduction 2010, 139, 1047–1055. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.; Dean, W. Epigenetic reprogramming during early development in mammals. Reproduction 2004, 127, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Bestor, T.H. The DNA methyltransferases of mammals. Hum. Mol. Genet. 2000, 9, 2395–2402. [Google Scholar] [CrossRef] [Green Version]
- Reik, W.; Walter, J. Genomic imprinting: Parental influence on the genome. Nat. Rev. Genet. 2001, 2, 21–32. [Google Scholar] [CrossRef]
- Cassidy, F.C.; Charalambous, M. Genomic imprinting, growth and maternal–fetal interactions. J. Exp. Biol. 2018, 221 (Suppl. 1), jeb164517. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Ford, S.P.; Zhu, M.-J. Optimizing livestock production efficiency through maternal nutritional management and fetal developmental programming. Anim. Front. 2017, 7, 5–11. [Google Scholar] [CrossRef]
- Jones, M.L.; Mark, P.J.; Waddell, B.J. Maternal dietary omega-3 fatty acids and placental function. Biol. Reprod. 2014, 147, R143–R152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haggarty, P. Effect of placental function on fatty acid requirements during pregnancy. Eur. J. Clin. Nutr. 2004, 58, 1559–1570. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, F.C.; Regnault, T.R.H. Placental Transport and Metabolism of Amino Acids. Placenta 2001, 22, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.A.; Bell, S.J.; Ausdal, W.V. Omega-3 Fatty Acid supplementation during pregnancy. Rev. Obstet. Gynecol. 2008, 1, 162–169. [Google Scholar] [PubMed]
- Campbell, F.M.; Clohessy, A.M.; Gordon, M.J.; Page, K.R.; Dutta-Roy, A.K. Uptake of long chain fatty acids by human placental choriocarcinoma (BeWo) cells: Role of plasma membrane fatty acid-binding protein. J. Lipid. Res. 1997, 38, 2558–2568. [Google Scholar] [CrossRef]
- Gil-Sánchez, A.; Demmelmair, H.; Parrilla, J.J.; Koletzko, B.; Larqué, E. Mechanisms Involved in the Selective Transfer of Long Chain Polyunsaturated Fatty Acids to the Fetus. Front. Genet. 2011, 2, 57. [Google Scholar] [CrossRef] [Green Version]
- Muhlhausler, B.S.; Morrison, J.L.; McMillen, I.C. Rosiglitazone increases the expression of peroxisome proliferator-activated receptor-gamma target genes in adipose tissue, liver, and skeletal muscle in the sheep fetus in late gestation. Endocrinology 2009, 150, 4287–4294. [Google Scholar] [CrossRef] [Green Version]
- Duttaroy, A.K. Transport of fatty acids across the human placenta: A review. Prog. Lipid. Res. 2009, 48, 52–61. [Google Scholar] [CrossRef]
- Hanebutt, F.L.; Demmelmair, H.; Schiessl, B.; Larqué, E.; Koletzko, B. Long-chain polyunsaturated fatty acid (LC-PUFA) transfer across the placenta. Clin. Nutr. 2008, 27, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Desantadina, R.; Quintana, S.; Recavarren, M.I.; Relling, A.E. Effect of time of gestation on fatty acid transporters mrna expression in bovine placenta. Biosci. J. 2017, 34, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Moallem, U.; Zachut, M. Short communication: The effects of supplementation of various n-3 fatty acids to late-pregnant dairy cows on plasma fatty acid composition of the newborn calves. J. Dairy Sci. 2012, 95, 4055–4058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, M.; Greco, L.F.; Favoreto, M.G.; Marsola, R.S.; Martins, L.T.; Bisinotto, R.S. Effect of supplementing fat to pregnant nonlactating cows on colostral fatty acid profile and passive immunity of the newborn calf. J. Dairy Sci. 2014, 97, 392–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, T.; Ireland, F.A.; McCann, J.C.; Shike, D.W. 225 Effects of late gestation Calcium salts of fatty acids supplementation to beef cows on offspring pre-weaning growth performance and gene expression. J. Anim. Sci. 2020, 98, 136. [Google Scholar] [CrossRef]
- Campbell, F.M.; Gordon, M.J.; Dutta-Roy, A.K. Plasma membrane fatty acid-binding protein (FABPpm) of the sheep placenta. Biochim. Biophys. Acta 1994, 1214, 187–192. [Google Scholar] [CrossRef]
- Cetin, I.; Alvino, G.; Cardellicchio, M. Long chain fatty acids and dietary fats in fetal nutrition. J. Physiol. 2009, 587, 3441–3451. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.E.P.; Greco, L.F.; Garcia, M.; Thatcher, W.W.; Staples, C.R. The Role of Specific Fatty Acids on Dairy Cattle Performance and Fertility. In Proceedings of the 24th Annual Ruminant Nutrition Symposium, Gainesville, FL, USA, 5–6 February 2013. [Google Scholar]
- Marques, R.S.; Cooke, R.F.; Rodrigues, M.C.; Brandao, A.P.; Schubach, K.M.; Lippolis, K.D. Effects of supplementing calcium salts of polyunsaturated fatty acids to late-gestating beef cows on performance and physiological responses of the offspring. J. Anim. Sci. 2017, 95, 5347–5357. [Google Scholar] [CrossRef]
- Rosa-Velazquez, M.; Jaborek, J.R.; Pinos-Rodriguez, J.M.; Relling, A.E. Maternal Supply of Fatty Acids during Late Gestation on Offspring’s Growth, Metabolism, and Carcass Characteristics in Sheep. Animals 2021, 11, 719. [Google Scholar] [CrossRef]
- Capper, J.L.; Wilkinson, R.G.; Mackenzie, A.M.; Sinclair, L.A. Polyunsaturated Fatty Acid Supplementation during Pregnancy Alters Neonatal Behavior in Sheep. J. Nutr. 2006, 136, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Capper, J.L.; Wilkinson, R.G.; Mackenzie, A.M.; Sinclair, L.A. The effect of fish oil supplementation of pregnant and lactating ewes on milk production and lamb performance. Animal 2007, 1, 889–898. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.; Greco, L.F.; Favoreto, M.G.; Marsola, R.S.; Wang, D.; Shin, J.H. Effect of supplementing essential fatty acids to pregnant nonlactating Holstein cows and their preweaned calves on calf performance, immune response, and health. J. Dairy Sci. 2014, 97, 5045–5064. [Google Scholar] [CrossRef] [Green Version]
- Bellows, R.A.; Grings, E.E.; Simms, D.D.; Geary, T.W.; Bergman, J.W. Effects of Feeding Supplemental Fat During Gestation to First-Calf Beef. Prof. Anim. Sci. 2001, 17, 81–89. [Google Scholar] [CrossRef]
- Brandão, A.P.; Cooke, R.F.; Schubach, K.M.; Rett, B.; Souza, O.A.; Schachtschneider, C.L. Supplementing Ca salts of soybean oil to late-gestating beef cows: Impacts on performance and physiological responses of the offspring. J. Anim. Sci. 2020, 98, skaa247. [Google Scholar] [CrossRef]
- Ricks, R.E.; Cook, E.K.; Long, N.M. Effects of supplementing ruminal-bypass unsaturated fatty acids during late gestation on beef cow and calf serum and colostrum fatty acids, transfer of passive immunity, and cow and calf performance. Appl. Anim. Sci. 2020, 36, 271–284. [Google Scholar] [CrossRef]
- Brandão, A.P.; Cooke, R.F.; Schubach, K.M.; Marques, R.S.; Bohnert, D.W.; Carvalho, R.S. Supplementing Ca salts of soybean oil after artificial insemination increases pregnancy success in Bos taurus beef cows. J. Anim. Sci. 2018, 96, 2838–2850. [Google Scholar] [CrossRef] [PubMed]
- Banta, J.P.; Lalman, D.L.; Owens, F.N.; Krehbiel, C.R.; Wettemann, R.P. Effects of prepartum supplementation of linoleic and mid-oleic sunflower seed on cow performance, cow reproduction, and calf performance from birth through slaughter, and effects on intake and digestion in steers. J. Anim. Sci. 2011, 89, 3718–3727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banta, J.P.; Lalman, D.L.; Owens, F.N.; Krehbiel, C.R.; Wettemann, R.P. Effects of interval-feeding whole sunflower seeds during mid to late gestation on performance of beef cows and their progeny. J. Anim. Sci. 2006, 84, 2410–2417. [Google Scholar] [CrossRef]
- Jolazadeh, A.R.; Mohammadabadi, T.; Dehghan-Banadaky, M.; Chaji, M.; Garcia, M. Effect of supplementation fat during the last 3 weeks of uterine life and the preweaning period on performance, ruminal fermentation, blood metabolites, passive immunity and health of the newborn calf. Br. J. Nutr. 2019, 122, 1346–1358. [Google Scholar] [CrossRef]
- Garcia, M.; Greco, L.F.; Lock, A.L.; Block, E.; Santos, J.E.P.; Thatcher, W.W. Supplementation of essential fatty acids to Holstein calves during late uterine life and first month of life alters hepatic fatty acid profile and gene expression. J. Dairy Sci. 2016, 99, 7085–7101. [Google Scholar] [CrossRef] [Green Version]
- Rosa-Velazquez, M.; Batistel, F.; Relling, A.E. Effect of polyunsaturated fatty acid and methionine supplementation during late gestation on offspring duodenal amino acid and peptides transporters in sheep. J. Anim. Sci. 2020, 98, 215–216. [Google Scholar] [CrossRef]
- Du, M.; Zhao, J.X.; Yan, X.; Huang, Y.; Nicodemus, L.V.; Yue, W. Fetal muscle development, mesenchymal multipotent cell differentiation, and associated signaling pathways. J. Anim. Sci. 2011, 89, 583–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, M.; Tong, J.; Zhao, J.; Underwood, K.R.; Zhu, M.; Ford, S.P. Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci. 2010, 88, E51–E60. [Google Scholar] [CrossRef] [Green Version]
- Le Grand, F.; Rudnicki, M.A. Skeletal muscle satellite cells and adult myogenesis. Curr. Opin. Cell Biol. 2007, 19, 628–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdiguero, E.; Sousa-Victor, P.; Ballestar, E.; Muñoz-Cánoves, P. Epigenetic regulation of myogenesis. Epigenetics 2009, 4, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Doulla, M.; McIntyre, A.D.; Hegele, R.A.; Gallego, P.H. A novel MC4R mutation associated with childhood-onset obesity: A case report. Paediatr. Child. Health 2014, 19, 515–518. [Google Scholar] [CrossRef] [Green Version]
- Samama, P.; Rumennik, L.; Grippo, J.F. The melanocortin receptor MCR4 controls fat consumption. Regul. Pept. 2003, 113, 85–88. [Google Scholar] [CrossRef]
- Fisher-Heffernan, R.E.; Or’Rashid, M.M.; AlZahal, O.; Quinton, M.; Boermans, H.J.; McBride, B.W. Fishmeal supplementation during ovine pregnancy and lactation protects against maternal stress-induced programming of the offspring immune system. BMC Vet. Res. 2015, 11, 266. [Google Scholar] [CrossRef] [Green Version]
- Snowder, G.D.; Van Vleck, L.D.; Cundiff, L.V.; Bennett, G.L. Bovine respiratory disease in feedlot cattle: Environmental, genetic, and economic factors. J. Anim. Sci. 2006, 84, 1999–2008. [Google Scholar] [CrossRef] [Green Version]
- Wittum, T.E.; Perino, L.J. Passive immune status at postpartum hour 24 and long-term health and performance of calves. Am. J. Vet. Res. 1995, 56, 1149–1154. [Google Scholar]
- Israel, E.J.; Taylor, S.; Wu, Z.; Mizoguchi, E.; Blumberg, R.S.; Bhan, A. Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells. Immunology 1997, 92, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Mayer, B.; Zolnai, A.; Frenyó, L.V.; Jancsik, V.; Szentirmay, Z.; Hammarström, L. Redistribution of the sheep neonatal Fc receptor in the mammary gland around the time of parturition in ewes and its localization in the small intestine of neonatal lambs. Immunology 2002, 107, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Polyunsaturated fatty acids and inflammatory processes: New twists in an old tale. Biochimie 2009, 91, 791–795. [Google Scholar] [CrossRef]
- Schubach, K.M.; Cooke, R.F.; Brandão, A.P.; de Sousa, O.A.; Schumaher, T.F.; Jump, D.B. Supplementing calcium salts of soybean oil to beef steers early in life to enhance carcass development and quality. J. Anim. Sci. 2019, 97, 4182–4192. [Google Scholar] [CrossRef] [PubMed]
Reference | Specie—Animal Model | Developmental Period | FA Source (Treatment Comparation) | Offspring Performance |
---|---|---|---|---|
Oviedo-Ojeda et al. [12] | Sheep | First third of gestation | Dam supplementation (DS): 1.6% of Ca salts enriched with SFA + MUFA or EPA+DHA. |
|
Carranza-Martin et al. [7] | Sheep | Last third of gestation | Dam supplementation (DS): a diet containing 0.39% (dry matter basis) Ca salts enriched with SFA + MUFA or EPA+DHA. |
|
Nickles et al. [8] | Sheep | Last third of gestation. | Dam supplementation (DS): diets with Ca salts enriched with EPA and DHA at concentrations of 0, 1 or 2% of DMI. |
|
Marques et al. [70] | Beef Cattle | Late gestation | Dam supplementation: (1) 190 g/cow daily of Ca salts of PUFA (EPA+DHA) or (2) 190 g/cow daily of Ca salts of SFA + MUFA based on palmitic and oleic acids. |
|
Garcia et al. [74] | Dairy Cattle | Late Gestation (8 weeks before calculated parturition date) | Dam supplementation: (1) no fat supplement, (2) 1.7% SFA supplement, or (3) 2.0% of PUFA (EPA+DHA). |
|
Rosa-Velazquez et al. [83] | Sheep | Last 50 days of gestation | Dam supplementation: (1) no FA (NF); (2) a source of SFA +MUFA (1.01 % of Ca salts); or (3) a source of PUFA (1.01 % of Ca salts containing EPA and DHA). |
|
Bellows et al. [75] | Beef cattle | Late gestation (last 68.2 ± 5.5 d before calving) | Dam diets: control or added sunflower seeds. |
|
Ricks et al. [77] | Beef cattle | Late gestation | Dam diets: (1) No Fat or (2) 200 g Essential FA (EFA) (Essentiom, Church and Dwight Co., Princeton, NJ). |
|
Brandão et al. [76] | Beef cattle | Late gestation | Dam supplementation: (1) SFA or (2) n-6 PUFA (Ca salts of soybean oil). |
|
Banta et al. [79] | Beef cattle | Late gestation (for an average of 83 d during mid to late gestation) | Dam supplementation: (1) soybean hull-based supplement; (2) linoleic sunflower seed, and (3) mid-oleic sunflower seed. |
|
Banta et al. [80] | Beef cattle | During mid to late gestation | Dam supplementation: (1) soybean meal/feeding; (2) soybean hull-based supplement; and (3) whole sunflower seeds high in linoleic acid. |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roque-Jiménez, J.A.; Rosa-Velázquez, M.; Pinos-Rodríguez, J.M.; Vicente-Martínez, J.G.; Mendoza-Cervantes, G.; Flores-Primo, A.; Lee-Rangel, H.A.; Relling, A.E. Role of Long Chain Fatty Acids in Developmental Programming in Ruminants. Animals 2021, 11, 762. https://doi.org/10.3390/ani11030762
Roque-Jiménez JA, Rosa-Velázquez M, Pinos-Rodríguez JM, Vicente-Martínez JG, Mendoza-Cervantes G, Flores-Primo A, Lee-Rangel HA, Relling AE. Role of Long Chain Fatty Acids in Developmental Programming in Ruminants. Animals. 2021; 11(3):762. https://doi.org/10.3390/ani11030762
Chicago/Turabian StyleRoque-Jiménez, José Alejandro, Milca Rosa-Velázquez, Juan Manuel Pinos-Rodríguez, Jorge Genaro Vicente-Martínez, Guillermo Mendoza-Cervantes, Argel Flores-Primo, Héctor Aarón Lee-Rangel, and Alejandro E. Relling. 2021. "Role of Long Chain Fatty Acids in Developmental Programming in Ruminants" Animals 11, no. 3: 762. https://doi.org/10.3390/ani11030762
APA StyleRoque-Jiménez, J. A., Rosa-Velázquez, M., Pinos-Rodríguez, J. M., Vicente-Martínez, J. G., Mendoza-Cervantes, G., Flores-Primo, A., Lee-Rangel, H. A., & Relling, A. E. (2021). Role of Long Chain Fatty Acids in Developmental Programming in Ruminants. Animals, 11(3), 762. https://doi.org/10.3390/ani11030762