The Quality and Health-Promoting Value of Meat from Pigs of the Native Breed as the Effect of Extensive Feeding with Acorns
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Feeding, and Housing System
2.1.1. Chemical Analyses and Calculations
2.1.2. Statistical Analysis
3. Results
4. Discussion
4.1. Fattening System and Fattening Performance
4.2. Fattening System vs. Meat Color and Fat Content
4.3. Fattening System vs. AI, TI, PI, and Fatty acid Profile of Meat
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gade, P.B. Welfare of animal production in intensive and organic systems with special reference to Danish organic pig production. Meat Sci. 2002, 62, 353–358. [Google Scholar]
- Hoffman, L.C.; Styger, E.; Muller, M.; Brand, T.S. The growth and carcass and meat characteristics of pigs raised in a free-range or conventional housing system. S. Afr. J. Anim. Sci. 2003, 33, 166–175. [Google Scholar]
- Cava, R.; Ruiz, J.; López-Bote, C.; Martín, L.; García, C.; Ventanas, J. Influence of finishing diet on fatty acid profiles of intramuscular lipids, triglycerides and phospholipids in muscles of the Iberian pig. Meat Sci. 1997, 45, 263–270. [Google Scholar]
- Barzdajn, W. Preliminary results of an experiment with Polish provenances of pedunculate oak (Quercusrobur L) and sessile oak (Q petraea [Matt] Liebl). Annales des sciences forestières. INRA/EDP Sci. 1993, 50, 222–227. [Google Scholar]
- Łuczaj, Ł.; Adamczak, A.; Duda, M. Tannin content in acorns (Quercus spp.) from Poland. Dendrobiology 2014, 72, 103–111. [Google Scholar]
- Rey, A.I.; López-Bote, C.J.; Sanz Arias, R. Effect of extensive feeding on tocopherol concentration and oxidative stability of muscle microsomes from Iberian Pigs. Anim. Sci. 1997, 65, 15–520. [Google Scholar]
- Cava, R.; Ventanas, J.; Tejeda, J.F.; Ruiz, J.; Antequera, T. Effect of free-range rearing and a-tocopherol and copper supplementation on fatty acid profiles and susceptibility to lipid oxidation of fresh meat from Iberian pigs. Food Chem. 2000, 68, 51–59. [Google Scholar]
- Margeta, V.; Gvozdanović, K.; Djurkin Kušec, I.; Margeta, P.; Kušec, G.; Radišić, Ž. The effect of the acorn in feeding on the production and slaughter traits of crnaslavonska pig. In Proceedings of the 11th International Symposium Modern Trends in Livestock Production; Petrović, M., Ed.; Institute for Animal Husbandry: Belgrade, Serbia, 2017; pp. 327–334, ISBN 978-86-82431-73-2. [Google Scholar]
- Górnaś, P. Oak Quercus rubra L. and Quercus robur L. acorns as an unconventional source of gamma- and beta-tocopherol. Eur. Food Res. Techn. 2019, 245, 257–261. [Google Scholar] [CrossRef]
- Kilic, U.; Boga, M.; Guven, I. Chemical composition and nutritive value of oak (Quercus robur) nut and leaves. J. Appl. Anim. Res. 2010, 38, 101–104. [Google Scholar] [CrossRef]
- Orczykowska, M.; Dziubiński, M. Comparison of viscoelastic properties of chestnut and acorn starch by means of mechanical models with an in-built spring pot. Appl. Rheol. 2014, 24, 24766–24767. [Google Scholar]
- Lee, M.H.; Jeang, J.H.; Man-Jin, O. Antioxidant activity of galic acid in acorn. Extract. J. Korean Soc. Food Nutr. 1992, 21, 639–700. [Google Scholar]
- Tejerina, D.; García-Torres, S.; Cabeza de Vaca, M.; Vázquez, F.M.; Cava, R. Acorns (Quercus rotundifolia Lam.) and grass as natural sources of antioxidants and fatty acids in the ‘‘montanera” feeding of Iberian pig: Intra- and inter-annual variations. Food Chem. 2011, 124, 997–1004. [Google Scholar]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar]
- García-Valverde, R.; Nieto, R.; Lachica, M.; Aguilera, J.F. Effects of herbage ingestion on the digestion site and nitrogen balance in heavy Iberian pigs fed on an acorn based diet. Livest. Sci. 2007, 112, 63–77. [Google Scholar]
- Rodríguez-Estévez, V.; García, A.; Gómez, A.G. Characteristics of the acorns selected by free range Iberian pigs during the montanera season. Livest. Sci. 2009, 122, 169–176. [Google Scholar]
- Canellas, I.; Roig, S.; Poblaciones, M.J.; Gea-Izquierdo, G.; Olea, L. An approach to acorn production in Iberian dehesas. Agroforesty Syst. 2007, 70, 3–9. [Google Scholar]
- Salajpal, K.; Karoly, D.; Beck, R.; Kiš, G.; Vicković, I.; Dikić, M.; Kovačević, D. Effect of acorn (Quercus robur) intake on faecal egg count in outdoor reared Black Slavonian pig. Acta Agric. Sloven. 2004, 1, 173–178. [Google Scholar]
- AOAC. Association of Official Analytical Chemists, Official Methods of Analysis, 18th ed.; Washington by AOAC International, Revision II: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Gąsior, R.; Ślusarczyk, K.; Szczypuła, M. Validation of a method for determining amino acid in acid hydrolysates of seeds. Ann. Anim. Sci. 2005, 5, 181–197. [Google Scholar]
- AOCS. Official Methods and Recommended Practices of the AOCS, 5th ed.; Journal of the American Oil Chemists’ Society, American Oil Chemists’ Society: Champaign, IL, USA, 1998. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary disease, seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar]
- Fernández, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; de la Hoz, L. Fatty acid compositions of selected varieties of Spanish ham related to their nutritional implications. Food Chem. 2007, 101, 107–112. [Google Scholar]
- Arakawa, K.; Sagai, M. Species differences in lipid peroxide levels in lung tissue and investigation of their determining factors. Lipids 1986, 12, 769–775. [Google Scholar]
- Florowski, T.; Pisula, A.; Adamczak, L.; Buczyński, J.T.; Orzechowska, B. Technological parameters of meat in pigs of two Polish local breeds–Zlotnicka Spotted and Pulawska. Anim. Sci. Pap. Rep. 2006, 24, 217–224. [Google Scholar]
- Silió, L. Iberian pig breeding program. In Developing Breeding Strategies for Lower Input Animal Production Environments; Galal, S., Boyazoglou, J., Hammond, K., Eds.; ICAR: Rome, Italy, 2000; pp. 511–519. [Google Scholar]
- Ramos, A.; Mestre, R.; Gouveia, S.; Evans, G.; Zhang, Y.; Cardoso, A.; Rothschild, M.; Plastow, G.; Rangel-Figueiredo, T. Use of Type I DNA markers for initial genetic characterization of two Portuguese swine breeds. Arch. Zootec. 2003, 52, 255–264. [Google Scholar]
- López-Bote, C. Sustained utilization of the Iberian pig breed. Meat Sci. 1998, 49, 17–27. [Google Scholar]
- Gradečki-Poštenjak, M.; Novak Agbaba, S.; Licht, R.; Posarić, D. Dinamika plodnošenja i kvaliteta uroda sjemena hrasta lužnjaka (Quercus robur) u narušenim ekološkim uvjetima. Šumarski List. 2011, 135, 169–181. [Google Scholar]
- Rodríguez-Estévez, V.; Sánchez Rodríguez, M.; García, A.R.; Gómez-Castro, A.G. Average daily weight gain of Iberian fattening pigs when grazing natural resources. Livest. Sci. 2011, 137, 292–295. [Google Scholar]
- Tejerina, D.; García-Torres, S.; Cabeza de Vaca, M.; Vázquez, F.M.; Cava, R. Study of variability in antioxidant composition and fatty acids profile of Longissimus dorsi and Serratus ventralis muscles from Iberian pigs reared in two different Montanera seasons. Meat Sci. 2012, 90, 414–419. [Google Scholar]
- Szyndler-Nędza, M.; Luciński, P.; Skrzypczak, E.; Szulc, K.; Bajda, Z. Ochrona Zasobów Genetycznych Świń ras Rodzimych-Stan Hodowli i Wyniki Oceny za rok 2018; Wydanie Własne IZ, Kraków, Zeszyt 14; Instytut Zootechniki–Państwowy Instytut Badawczy: Balice, Poland, 2019; pp. 1–42. (In Polish) [Google Scholar]
- Nieto, R.; Rivera, M.; García, M.A.; Aguilera, J.F. Amino acid availability and energy value of acorn in the Iberian pig. Livest. Prod. Sci. 2002, 77, 227–239. [Google Scholar] [CrossRef]
- Lachica, M.; Aguilera, J.F. Estimation of the energy costs of locomotion in the Iberian pig (Sus mediterraneus). Brit. J. Nutr. 2000, 83, 35–41. [Google Scholar]
- López-Bote, C.J.; Rey, A.; Isabel, B. Alimentación del cerdoIbéricoen la dehesa. In PorcinoIbérico: Aspectos Claves; Buxadé, C., Daza, A., Eds.; Ediciones Mundi Prensa: Madrid, Spain, 2000; pp. 215–246. [Google Scholar]
- Özcan, T. Fatty Acid Composition in the Acorn Oil of QuercusrubraL. Cultivated in NW Turkey. J. Appl. Biol. Sci. 2008, 2, 51–55. [Google Scholar]
- Akcan, T.; Gökçe, R.; Asensio, M.; Estévez, M.; Morcuende, D. Acorn (Quercus spp.) as a novel source of oleic acid and tocopherols for livestock and humans: Discrimination of selected species from Mediterranean forest. J. Food Sci. Techn. 2017, 54, 3050–3057. [Google Scholar] [CrossRef]
- Özcan, T. Total Protein and Amino acid Compositions in the Acorns of Turkish Quercus L. Taxa. Gen. Res. Crop Evol. 2006, 53, 419–429. [Google Scholar]
- Petersen, J.S.; Henckel, P.; Oksbjerg, N.; Sorensen, M.T. Adaptations in muscle fibre characteristics induced by physical activity in pigs. Anim. Sci. 1998, 66, 733–740. [Google Scholar]
- Kim, D.H.; Seong, P.N.; Cho, S.H.; Kim, J.H.; Lee, J.M.; Jo, C.; Lim, D.G. Fatty acid composition and meat quality traits of organically reared Korean native black pigs. Livest. Sci. 2009, 120, 96–102. [Google Scholar]
- Gentry, J.G.; Miller, M.F.; McGlone, J.J. Alternative production systems: Influence on pig growth and pork quality. In Proceedings of the Second International Virtual Conference on Pork Quality–via internet, Concordia, Brazil, 5 November–6 December 2001; pp. 1–7. [Google Scholar]
- Tejerina, D.; García-Torres, S.; Cabeza de Vaca, M.; Vázquez, F.M.; Cava, R. Effect of production system on physical-chemical, antioxidant and fatty acids composition of Longissimus dorsi and Serratus ventralis muscles from Iberian pig. Food Chem. 2012, 133, 293–299. [Google Scholar]
- Tejeda, J.F.; Hernández-Matamoros, A.; Paniagua, M.; González, E. Effect of free-range and low-protein concentrated diets on growth performance, carcass traits, and meat composition of Iberian pig. Animals 2020, 10, 273. [Google Scholar] [CrossRef] [Green Version]
- Szulc, K.; Skrzypczak, E. Jakość mięsa polskich rodzimych ras świń. Wiad. Zoot. 2015, 1, 48–57. Available online: https://wz.izoo.krakow.pl/files/WZ_2015_1_art06.pdf (accessed on 16 January 2021).
- Blicharski, T. Current Dietary Value of Pork, Its Importance in the Diet and Impact on Consumer Health. Development of Laboratory Test Results. Polish Pig Breeders and Producers Association “POLSUS”. 2015. Available online: https://www.polsus.pl/index.php/opracowania-ipublikacje (accessed on 16 January 2021). (In Polish).
- Wojtysiak, D.; Połtowicz, K. Carcass quality, physico-chemical parameters, muscle fibre traits and myosin heavy chain composition of m. longissimus lumborum from Puławska and Polish Large White pigs. Meat Sci. 2014, 97, 395–403. [Google Scholar]
- Ventanas, S.; Tejeda, J.F.; Estévez, M. Chemical composition and oxidative status of tissues from Iberian pigs as affected by diets: Extensive feeding v. oleic acid- and tocopherol-enriched mixed diets. Animal 2008, 2, 621–630. [Google Scholar]
- Wood, J.D.; Lambe, N.R.; Walling, G.A.; Whitney, H.; Jagger, S.; Fullarton, P.J.; Bayntun, J.; Hallett, K.; Bünger, L. Effects of low protein diets on pigs with a lean genotype. 1. Carcass composition measured by dissection and muscle fatty acid composition. Meat Sci. 2013, 95, 123–128. [Google Scholar]
- Doran, O.; Moule, S.K.; Teye, G.A.; Whittington, F.M.; Hallett, K.G.; Wood, J.D. A reduced protein diet induces stearoyl-CoA desaturase protein expression in pig muscle but not in subcutaneous adipose tissue: Relationship with intramuscular lipid formation. Brit. J. Nutr. 2006, 95, 609–617. [Google Scholar]
- Gómez, R.S.; Lewis, A.J.; Miller, P.S.; Chen, H.Y.; Diedrichsen, R.M. Body composition and tissue accretion rates of barrows fed corn-soybean meal diets or low-protein, amino acid-supplemented diets at different feeding levels. J. Anim. Sci. 2002, 80, 654–662. [Google Scholar]
- Lebret, B. Effects of feeding and rearing systems on growth, carcass composition and meat quality in pigs. Animal 2008, 2, 1548–1558. [Google Scholar]
- Ghaeni, M.; Ghahfarokhi, K.N.; Zaheri, L. Fatty Acids Profile, Atherogenic (IA) and Thrombogenic (IT) Health Lipid Indices in Leiognathusbindus and Upeneussulphureus. J. Mar. Sci. Res. Dev. 2013, 3, 138. [Google Scholar] [CrossRef] [Green Version]
- Attia, Y.F.; Al-Harthi, M.A.; Korish, M.A.; Shiboob, M.M. Fatty acid and cholesterol profiles, hypocholesterolemic, atherogenic, and thrombogenic indices of broiler meat in the retail market. Lipids Health Dis. 2017, 16, 40. [Google Scholar]
- Jiménez-Colmenero, F.; Ventanas, J.; Toldrá, F. Nutritional composition of dry-cured ham and its role in a healthy diet. Meat Sci. 2010, 84, 585–593. [Google Scholar]
- Kalač, P.; Samkowa, E. The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech J. Anim. Sci. 2010, 55, 521–537. Available online: https://www.agriculturejournals.cz/publicFiles/32247.pdf (accessed on 16 January 2021).
- Rey, A.I.; Daza, A.; López-Carrasco, C.; López-Bote, C.J. Feeding Iberian pigs with acorns and grass in either free-range or confinement affects the carcass characteristics and fatty acids and tocopherols accumulation in Longissimus dorsi muscle and backfat. Meat Sci. 2006, 73, 66–74. [Google Scholar]
- Rakić, S.; Povrenović, D.; Tešević, V.; Simić, M.; Maletić, R. Oak acorn, polyphenols and antioxidant activity in functional food. J. Food Eng. 2006, 74, 416–423. [Google Scholar]
Conventional Intensive Fattening | Extensive Backyard Fattening | ||
---|---|---|---|
Item | Feed Mixture | Feed Mixture | Acorns |
C6:0 | 0.52 | 0.00 | 0.00 |
C12:0 | 0.00 | 0.00 | 0.01 |
C14:0 | 0.82 | 0.17 | 0.16 |
C15:0 | 0.00 | 0.06 | 0.08 |
C15:1 | 0.00 | 0.00 | 0.02 |
C16:0 | 0.22 | 12.31 | 15.87 |
C16:1 n-9 | 0.31 | 0.08 | 0.00 |
C16:1 n-7 | 1.29 | 0.28 | 0.08 |
C17:0 | 0.25 | 0.08 | 0.09 |
C17:1 | 0.30 | 0.00 | 0.05 |
C18:0 | 9.36 | 2.84 | 2.05 |
C18:1 n-9 | 50.47 | 29.64 | 59.36 |
C18:1 n-7 | 3.66 | 1.92 | 0.65 |
C18:2 n-6 | 28.29 | 43.16 | 19.42 |
C18:3 n-3 | 2.72 | 8.48 | 0.82 |
C20:0 | 0.61 | 0.15 | 0.36 |
CLA | 0.32 | 0.13 | 0.00 |
C20:1 n-9 | 0.00 | 0.00 | 0.32 |
C20:2 n-9 | 0.00 | 0.17 | 0.05 |
C20:3 n-6 | 0.00 | 0.00 | 0.10 |
C20:1 | 0.00 | 0.00 | 0.05 |
C22:0 | 0.00 | 0.00 | 0.19 |
C23:0 | 0.00 | 0.00 | 0.08 |
C24:0 | 0.00 | 0.00 | 0.18 |
C22:1 | 0.00 | 0.34 | 0.00 |
C22:5 n-6 | 0.85 | 0.00 | 0.00 |
Sum of FA | 99.99 | 99.81 | 99.82 |
SFA | 11.78 | 15.61 | 19.07 |
UFA | 88.21 | 84.20 | 80.75 |
MUFA | 56.03 | 32.26 | 60.53 |
PUFA | 32.18 | 51.94 | 20.39 |
PUFA n-3 | 2.72 | 8.48 | 0.82 |
PUFA n-6 | 29.46 | 43.46 | 19.52 |
PUFA n-6/n-3 ratio | 10.83 | 5.13 | 23.80 |
PUFA n-3/n-6 ratio | 0.09 | 0.20 | 0.04 |
IV | 104.18 | 124.67 | - |
PI | 40.21 | 61.09 | - |
MUFA/SFA | 4.76 | 2.07 | 3.17 |
PUFA/SFA | 2.73 | 3.33 | 1.07 |
UFA/SFA | 7.49 | 5.39 | 4.23 |
MUFA/PUFA | 1.74 | 0.62 | 2.97 |
Conventional Intensive Fattening | Extensive Backyard Fattening | ||
---|---|---|---|
Amino Acids | Feed Mixture | Feed Mixture | Acorns |
Threonine | 6.38 | 6.07 | 2.64 |
Valine | 5.64 | 6.17 | 3.56 |
Methionine | 0.71 | 1.10 | 0.51 |
Isoleucine | 4.01 | 4.08 | 2.85 |
Leucine | 8.61 | 8.38 | 5.42 |
Phenylalanine | 6.15 | 6.42 | 3.51 |
Histidine | 2.05 | 1.82 | 2.46 |
Lysine | 2.74 | 3.49 | 4.02 |
Total EAAs | 36.29 | 37.53 | 24.97 |
Aspartic acid | 7.30 | 7.12 | 9.84 |
Serine | 5.07 | 4.85 | 2.95 |
Glutamic acid | 17.03 | 16.21 | 10.92 |
Proline | 9.85 | 9.56 | 2.95 |
Glycine | 11.62 | 11.88 | 2.15 |
Alanine | 4.75 | 4.75 | 3.84 |
Tyrosine | 2.59 | 2.71 | 1.39 |
Arginine | 5.48 | 5.41 | 5.24 |
Total NEAAs | 63.69 | 62.57 | 39.28 |
EAA/NEAA | 0.569 | 0.599 | 0.636 |
Trait | Conventional Intensive Fattening n = 6 | Extensive Backyard Fattening n = 7 |
---|---|---|
Body weight (kg) | 100.83 a ± 2.79 | 121.29 b ± 4.07 |
Carcass weight (kg) | 76.80 a ± 3.41 | 95.61 b ± 4.36 |
Animal age (m) | 9.34 a ± 0.35 | 12.00 b ± 0.00 |
Cold dressing yield (%) | 76.12 a ± 1.39 | 78.81 b ± 1.10 |
Average daily weight gain (g) | 580 a ± 0.06 | 340 b ± 0.01 |
Item | Intensive Conventional Fattening n = 6 | Extensive Backyard Fattening n = 7 |
---|---|---|
Dry matter (g/kg) | 270.5 ± 1.96 | 283.1 ± 1.13 |
Water (g/kg) | 729.5 ± 1.96 | 716.9 ± 1.13 |
Protein (g/kg) | 234.3 ± 2.00 | 232.2 ± 0.59 |
Fat (g/kg) | 21.7 a ± 0.42 | 36.0 b ± 1.14 |
Ash (g/kg) | 11.2 ± 0.02 | 11.3 ± 0.04 |
Meat color | ||
L* | 47.86 ± 4.65 | 49.62 ± 4.94 |
a* | 12.71 ± 1.84 | 12.14 ± 1.93 |
b* | 12.61 ± 2.02 | 12.22 ± 2.50 |
Item | Intensive Conventional Fattening (n = 6) | Extensive Backyard Fattening (n = 7) |
---|---|---|
C10:0 | 0.09 a ± 0.01 a | 0.11 b ± 0.03 b |
C12:0 | 0.13 ± 0.09 | 0.08 ± 0.01 |
C14:0 | 1.58 a ± 0.23 a | 1.30 b ± 0.07 b |
C14:1 | 0.02 ± 0.01 | 0.02 ± 0.02 |
C15:0 | 0.04 ± 0.03 | 0.04 ± 0.01 |
C16:0 | 27.97 ± 1.74 | 27.40 ± 1.28 |
C16:1 n-9 | 0.64 a ± 0.06 a | 0.72 b ± 0.09 b |
C16:1 n-7 | 3.40 a ± 0.16 a | 3.34 b ± 0.65 b |
C17:0 | 0.17 ± 0.04 | 0.15 ± 0.05 |
C17:1 | 0.17 ± 0.03 | 0.16 ± 0.02 |
C18:0 | 13.37 ± 0.29 | 12.48 ± 1.91 |
C18:1 n-9 | 43.55 ± 1.06 | 44.79 ± 1.96 |
C18:1 n-7 | 2.75 a ± 0.18 a | 4.33 b ± 0.41 b |
C18:2 n-6 | 3.89 ± 0.73 | 3.44 ± 0.80 |
C18:3 n-6 | 0.04 a ± 0.01 a | 0.02 b ± 0.00 b |
C18:3 n-3 | 0.22 ± 0.05 | 0.17 ± 0.07 |
CLA | 0.08 a ± 0.01 a | 0.05 b ± 0.02 b |
C20:0 | 0.15 ± 0.02 | 0.16 ± 0.02 |
C20:1 n-9 | 0.57 ± 0.06 | 0.62 ± 0.05 |
C20:2 n-6 | 0.20 a ± 0.03 a | 0.14 b ± 0.03 b |
C20:3 n-6 | 0.09 a ± 0.03 a | 0.04 b ± 0.02 b |
C20:4 n-6 | 0.45 a ± 0.24 a | 0.19 b ± 0.10 b |
C20:4 n-3 | 0.07 ± 0.01 a | 0.03 b ± 0.02 b |
C20:5 n-3 | 0.01 ± 0.00 | 0.02 ± 0.01 |
C22:4 n-6 | 0.09 a ± 0.05 a | 0.05b ± 0.02 b |
C22:5 n-6 | 0.01 a ± 0.01 a | 0.02 b ± 0.00 b |
C22:5 n-3 | 0.10 a ± 0.03 a | 0.04 b ± 0.02 b |
C22:6 n-3 | 0.07 ± 0.03 | 0.04 ± 0.02 |
Sum of FA | 99.92 a ± 0.02 a | 99.95 b ± 0.01 b |
SFA | 43.50 ± 1.60 | 41.72 ± 3.21 |
UFA | 56.42 ± 1.59 | 58.23 ± 3.20 |
MUFA | 51.10 a ± 0.89 a | 53.98 b ± 2.87 b |
PUFA | 5.32 ± 0.96 | 4.25 ± 1.00 |
PUFA n-3 | 0.47 a ± 0.10 a | 0.30 b ± 0.11 b |
PUFA n-6 | 4.85 ± 0.92 | 3.95 ± 0.90 |
PUFA n-6/n-3 ratio | 10.32 ± 2.56 | 13.17 ± 2.59 |
PUFA n-3/n-6 ratio | 0.10 a ± 0.02 a | 0.08 b ± 0.01 b |
AI | 0.61 ± 0.03 | 0.56 ± 0.05 |
TI | 1.10 a ± 0.12 a | 0.96 b ± 0.06 b |
h/H | 1.73 ± 0.14 | 1.85 ± 0.17 |
PI | 9.77 a ± 2.07 a | 7.25 b ± 1.64 b |
IV | 51.54 ± 1.79 | 53.07 ± 3.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szyndler-Nędza, M.; Świątkiewicz, M.; Migdał, Ł.; Migdał, W. The Quality and Health-Promoting Value of Meat from Pigs of the Native Breed as the Effect of Extensive Feeding with Acorns. Animals 2021, 11, 789. https://doi.org/10.3390/ani11030789
Szyndler-Nędza M, Świątkiewicz M, Migdał Ł, Migdał W. The Quality and Health-Promoting Value of Meat from Pigs of the Native Breed as the Effect of Extensive Feeding with Acorns. Animals. 2021; 11(3):789. https://doi.org/10.3390/ani11030789
Chicago/Turabian StyleSzyndler-Nędza, Magdalena, Małgorzata Świątkiewicz, Łukasz Migdał, and Władysław Migdał. 2021. "The Quality and Health-Promoting Value of Meat from Pigs of the Native Breed as the Effect of Extensive Feeding with Acorns" Animals 11, no. 3: 789. https://doi.org/10.3390/ani11030789
APA StyleSzyndler-Nędza, M., Świątkiewicz, M., Migdał, Ł., & Migdał, W. (2021). The Quality and Health-Promoting Value of Meat from Pigs of the Native Breed as the Effect of Extensive Feeding with Acorns. Animals, 11(3), 789. https://doi.org/10.3390/ani11030789