Camera Trapping to Assess Status and Composition of Mammal Communities in a Biodiversity Hotspot in Myanmar
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Monitoring Plan
2.3. Data Analysis
3. Results
3.1. Species Richness
3.2. Occupancy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.J. Anthropogenic impacts on tropical forest biodiversity: A network structure and ecosystem functioning perspective. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3709–3718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derhé, M.A.; Murphy, H.T.; Preece, N.D.; Lawes, M.J.; Menéndez, R. Recovery of mammal diversity in tropical forests: A functional approach to measuring restoration. Restor. Ecol. 2018, 26, 778–786. [Google Scholar] [CrossRef]
- Jansen, P.A.; Elschot, K.; Verkerk, P.J.; Wright, S.J. Seed predation and defleshing in the agouti-dispersed palm Astrocaryum standleyanum. J. Trop. Ecol. 2010, 26, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Suárez-Tangil, B.; Rodríguez, A. Estimates of Species Richness and Composition Depend on Detection Method in Assemblages of Terrestrial Mammals. Animals 2021, 11, 186. [Google Scholar] [CrossRef]
- Branton, M.; Richardson, J.S. Assessing the Value of the Umbrella-Species Concept for Conservation Planning with Meta-Analysis. Conserv. Biol. 2010, 25, 9–20. [Google Scholar] [CrossRef]
- Ahumada, J.A.; Silva, C.E.F.; Gajapersad, K.; Hallam, C.; Hurtado, J.; Martin, E.; McWilliam, A.; Mugerwa, B.; O’Brien, T.; Rovero, F.; et al. Community structure and diversity of tropical forest mammals: Data from a global camera trap network. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 2703–2711. [Google Scholar] [CrossRef]
- Zimbres, B.; Peres, C.A.; Machado, R.B. Terrestrial mammal responses to habitat structure and quality of remnant riparian forests in an Amazonian cattle-ranching landscape. Biol. Conserv. 2017, 206, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Bovendorp, R.S.; Brum, F.T.; Mccleery, R.A.; Baiser, B.; Loyola, R.; Cianciaruso, M.V.; Galetti, M. Defaunation and fragmentation erode small mammal diversity dimensions in tropical forests. Ecography 2018, 42, 23–35. [Google Scholar] [CrossRef]
- Laméris, D.W.; Tagg, N.; Kuenbou, J.K.; Sterck, E.H.M.; Willie, J. Drivers affecting mammal community structure and functional diversity under varied conservation efforts in a tropical rainforest in Cameroon. Anim. Conserv. 2020, 23, 182–191. [Google Scholar] [CrossRef]
- Vitekere, K.; Wang, J.; Karanja, H.; Consolée, K.T.; Jiang, G.; Hua, Y. Dynamic in Species Estimates of Carnivores (Leopard Cat, Red Fox, and North Chinese Leopard): A Multi-Year Assessment of Occupancy and Coexistence in the Tieqiaoshan Nature Reserve, Shanxi Province, China. Animals 2020, 10, 1333. [Google Scholar] [CrossRef]
- Buckley, L.B.; Jetz, W. Linking global turnover of species and environments. Proc. Natl. Acad. Sci. USA 2008, 105, 17836–17841. [Google Scholar] [CrossRef] [Green Version]
- Rovero, F.; Ahumada, J.; Jansen, P.A.; Sheil, D.; Alvarez, P.; Boekee, K.; Espinosa, S.; Lima, M.G.M.; Martin, E.H.; O’Brien, T.G.; et al. A standardized assessment of forest mammal communities reveals consistent functional composition and vulnerability across the tropics. Ecography 2019, 43, 75–84. [Google Scholar] [CrossRef]
- Mazel, F.; Mooers, A.O.; Riva, G.V.D.; Pennell, M.W. Conserving Phylogenetic Diversity Can Be a Poor Strategy for Conserving Functional Diversity. Syst. Biol. 2017, 66, 1019–1027. [Google Scholar] [CrossRef] [Green Version]
- Díaz, S.; Purvis, A.; Cornelissen, J.H.C.; Mace, G.M.; Donoghue, M.J.; Ewers, R.M.; Jordano, P.; Pearse, W.D. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 2013, 3, 2958–2975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vetter, D.; Hansbauer, M.M.; Végvári, Z.; Storch, I. Predictors of forest fragmentation sensitivity in Neotropical vertebrates: A quantitative review. Ecography 2010, 34, 1–8. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Phillips, H.R.P.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Blandon, A.; Butchart, S.H.M.; Booth, H.L.; Day, J.; et al. A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc. R. Soc. B Boil. Sci. 2014, 281, 20141371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penone, C.; Weinstein, B.G.; Graham, C.H.; Brooks, T.M.; Rondinini, C.; Hedges, S.B.; Davidson, A.D.; Costa, G.C. Global mammal beta diversity shows parallel assemblage structure in similar but isolated environments. Proc. R. Soc. B Boil. Sci. 2016, 283, 20161028. [Google Scholar] [CrossRef] [PubMed]
- Tordoff, A. Myanmar: Investment Opportunities in Biodiversity Conservation; Birdlife International: Yangon, Myanmar, 2005; pp. 1–23. [Google Scholar]
- Bhagwat, T.; Hess, A.; Horning, N.; Khaing, T.; Thein, Z.M.; Aung, K.H.; Phyo, P.; Tun, Y.L.; Oo, A.H.; Neil, A.; et al. Losing a jewel—Rapid declines in Myanmar’s intact forests from 2002–2014. PLoS ONE 2017, 12, e0176364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, C.S.; Pasha, S.V.; Satish, K.V.; Unnikrishnan, A.; Chavan, S.B.; Jha, C.S.; Diwakar, P.G.; Dadhwal, V.K. Quantifying and predicting multi-decadal forest cover changes in Myanmar: A biodiversity hotspot under threat. Biodivers. Conserv. 2019, 28, 1129–1149. [Google Scholar] [CrossRef]
- Than, K. The Status of the Agricultural Sector in Myanmar in 2004. In Myanmar’s Long Road to National Reconciliation; ISEAS—Yusof Ishak Institute: Singapore, 2006; pp. 98–104. [Google Scholar]
- Evans, T.S.; Myat, T.W.; Aung, P.; Oo, Z.M.; Maw, M.T.; Toe, A.T.; Aung, T.H.; Hom, N.S.; Shein, K.T.; Thant, K.Z.; et al. Bushmeat hunting and trade in Myanmar’s central teak forests: Threats to biodiversity and human livelihoods. Glob. Ecol. Conserv. 2020, 22, e00889. [Google Scholar] [CrossRef]
- McEvoy, J.; Connette, G.; Huang, Q.; Soe, P.; Pyone, K.H.H.; Valitutto, M.; Htun, Y.L.; Lin, A.N.; Thant, A.L.; Htun, W.Y.; et al. Two sides of the same coin—Wildmeat consumption and illegal wildlife trade at the crossroads of Asia. Biol. Conserv. 2019, 238, 108197. [Google Scholar] [CrossRef]
- Cremonesi, G.; Bisi, F.; Gaffi, L.; Zaw, T.; Naing, H.; Moe, K.; Aung, Z.; Gagliardi, A.; Wauters, L.; Preatoni, D.; et al. Evaluation of Human Disturbance on the Activity of Medium–Large Mammals in Myanmar Tropical Forests. Forests 2021, 12, 290. [Google Scholar] [CrossRef]
- Naing, H.; Ross, J.; Burnham, D.; Htun, S.; Macdonald, D.W. Population density estimates and conservation concern for clouded leopards Neofelis nebulosa, marbled cats Pardofelis marmorata and tigers Panthera tigris in Htamanthi Wildlife Sanctuary, Sagaing, Myanmar. Oryx 2019, 53, 654–662. [Google Scholar] [CrossRef] [Green Version]
- Gaffi, L.; Zibordi, F.; Cremonesi, G.; Bisi, F.; Tizard, R.J.; Naing, H.; Moe, K.; Htun, S.; Beffasti, L. Sun Bear Conservation Action Plan: 2020–2029—RYER and Htamanthi WS; Technical Report; Istituto OIKOS: Milan, Italy; Available online: https://www.istituto-oikos.org/files/allegatoprogetto/2020/Sun_bear_Action_Plan_impaginato_web.pdf (accessed on 29 January 2021).
- Rich, L.N.; Miller, D.A.; Robinson, H.S.; McNutt, J.W.; Kelly, M.J. Using camera trapping and hierarchical occupancy modelling to evaluate the spatial ecology of an African mammal community. J. Appl. Ecol. 2016, 53, 1225–1235. [Google Scholar] [CrossRef]
- Tobler, M.W.; Hartley, A.Z.; Carrillo-Percastegui, S.E.; Powell, G.V.N. Spatiotemporal hierarchical modelling of species richness and occupancy using camera trap data. J. Appl. Ecol. 2015, 52, 413–421. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Colwell, R.K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 2001, 4, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Ripple, W.J.; Abernethy, K.; Betts, M.G.; Chapron, G.; Dirzo, R.; Galetti, M.; Levi, T.; Lindsey, P.A.; Macdonald, D.W.; Machovina, B.; et al. Bushmeat hunting and extinction risk to the world’s mammals. R. Soc. Open Sci. 2016, 3, 160498. [Google Scholar] [CrossRef] [Green Version]
- Oberosler, V.; Tenan, S.; Zipkin, E.F.; Rovero, F. Poor management in protected areas is associated with lowered tropical mammal diversity. Anim. Conserv. 2020, 23, 171–181. [Google Scholar] [CrossRef]
- MacKenzie, D.I.; Nichols, J.D.; Sutton, N.; Kawanishi, K.; Bailey, L.L. Improving inferences in population studies of rare species that are detected imperfectly. Ecology 2005, 86, 1101–1113. [Google Scholar] [CrossRef] [Green Version]
- Istituto Oikos. BANCA Myanmar Protected Areas Context, Current Status and Challenges; Ancora Libri: Milano, Italy, 2011; p. 86. [Google Scholar]
- Bisi, F.; Cremonesi, G.; Gaffi, L.; Zibordi, F.; Gagliardi, A.; Gueli, L.; Martinoli, A.; Preatoni, D.G. Watching a Movie or Going for a Walk? Testing Different Sun Bear (Helarctos malayanus) Occupancy Monitoring Schemes. Hystrix 2019, 30, 178–182. [Google Scholar]
- Rovero, F.; Zimmermann, F. Camera Trapping for Wildlife Research; Pelagic Publishing Ltd.: Exeter, UK, 2016; p. 293. [Google Scholar]
- Kèry, M.; Schuab, M. Bayesian Population Analysis Using WinBUGS: A Hierarchical Perspective; Academic Press: Waltham, MA, USA, 2011; p. 537. [Google Scholar]
- RoyleRobert, J.A.; Dorazio, R.M. Parameter-expanded data augmentation for Bayesian analysis of capture–recapture models. J. Ornithol. 2012, 152, 521–537. [Google Scholar] [CrossRef]
- Dorazio, R.M.; Royle, J.A. Estimating Size and Composition of Biological Communities by Modeling the Occurrence of Species. J. Am. Stat. Assoc. 2005, 100, 389–398. [Google Scholar] [CrossRef]
- Royle, J.; Dorazio, R. Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities, 1st ed.; Elsevier: London, UK, 2008; p. 435. [Google Scholar]
- MacKenzie, D.I.; Nichols, J.D.; Hines, J.E.; Knutson, M.G.; Franklin, A.B. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 2003, 84, 2200–2207. [Google Scholar] [CrossRef] [Green Version]
- Plummer, M. JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vienna, Austria, 20–22 March 2003; pp. 1–10. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: www.R-project.org/ (accessed on 19 March 2021).
- Brooks, S.P.; Gelman, A. General Methods for Monitoring Convergence of Iterative Simulations. J. Comput. Graph. Stat. 1998, 7, 434–455. [Google Scholar] [CrossRef] [Green Version]
- Wilman, H.; Belmaker, J.; Simpson, J.; De La Rosa, C.; Rivadeneira, M.M.; Jetz, W. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 2014, 95, 2027. [Google Scholar] [CrossRef] [Green Version]
- Oberosler, V.; Tenan, S.; Zipkin, E.F.; Rovero, F. When parks work: Effect of anthropogenic disturbance on occupancy of tropical forest mammals. Ecol. Evol. 2020, 10, 3881–3894. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.F.; Hines, J.E.; Mulindahabi, F.; Masozera, M.K. Factors affecting species richness and distribution spatially and temporally within a protected area using multi-season occupancy models. Anim. Conserv. 2019, 22, 503–514. [Google Scholar] [CrossRef]
- Lynam, A.J.; Khaing, S.T.; Zaw, K.M. Developing a National Tiger Action Plan for the Union of Myanmar. Environ. Manag. 2005, 37, 30–39. [Google Scholar] [CrossRef]
- IUCN; Chutipong, W.; Duckworth, J.W.; Timmins, R.J.; Choudhury, A.; Abramov, A.V.; Roberton, S.; Long, B.; Rahman, H.; Hearn, A.; et al. IUCN Red List of Threatened Species: Martes flavigula. 2015. Available online: https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T41649A45212973.en (accessed on 26 January 2021).
- IUCN; Roberton, S.; Duckworth, J.W.; Timmins, R.J.; Abramov, A.V.; Chutipong, W.; Choudhury, A.; Willcox, D.H.A.; Dinets, V. IUCN Red List of Threatened Species: Mustela strigidorsa. 2015. Available online: https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T14027A45201218.en (accessed on 26 January 2021).
- IUCN; Sun, N.C.-M.; Ghose, A.; Suwal, T.L.; Wu, S.; Mohapatra, R.K.; Kaspal, P.; Khatiwada, A.; Challender, D. IUCN Red List of Threatened Species: Manis pentadactyla. 2019. Available online: https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T12764A168392151.en (accessed on 26 January 2021).
- IUCN; Duckworth, J.W.; Long, B.; Willcox, D.H.A.; Coudrat, C.N.Z.; Timmins, R.J.; Abramov, A.V.; Chan, B.; Chutipong, W. IUCN Red List of Threatened Species: Melogale personata. 2015. Available online: https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T41627A45209826.en (accessed on 26 January 2021).
- Ripple, W.J.; A Estes, J.; Beschta, R.L.; Wilmers, C.C.; Ritchie, E.G.; Hebblewhite, M.; Berger, J.; Elmhagen, B.; Letnic, M.; Nelson, M.P.; et al. Status and Ecological Effects of the World’s Largest Carnivores. Science 2014, 343, 1241484. [Google Scholar] [CrossRef] [Green Version]
- Roemer, G.W.; Gompper, M.E.; Van Valkenburgh, B. The Ecological Role of the Mammalian Mesocarnivore. BioScience 2009, 59, 165–173. [Google Scholar] [CrossRef]
- Gray, M.A.; Baldauf, S.L.; Mayhew, P.J.; Hill, J.K. The Response of Avian Feeding Guilds to Tropical Forest Disturbance. Conserv. Biol. 2007, 21, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Karanth, K.U.; Sunquist, M.E. Prey Selection by Tiger, Leopard and Dhole in Tropical Forests. J. Anim. Ecol. 1995, 64, 439. [Google Scholar] [CrossRef]
- Kamler, J.F.; Johnson, A.; Vongkhamheng, C.; Bousa, A. The diet, prey selection, and activity of dholes (Cuon alpinus) in northern Laos. J. Mammal. 2012, 93, 627–633. [Google Scholar] [CrossRef] [Green Version]
- Rostro-García, S.; Kamler, J.; Ash, E.; Clements, G.; Gibson, L.; Lynam, A.; McEwing, R.; Naing, H.; Paglia, S. Endangered leopards: Range collapse of the Indochinese leopard (Panthera pardus delacouri) in Southeast Asia. Biol. Conserv. 2016, 201, 293–300. [Google Scholar] [CrossRef]
- Naing, H.; Htun, S.; Kamler, J.F.; Burnham, D.; Macdonald, D.W. Large carnivores as potential predators of sun bears. Ursus 2019, 2019, 51. [Google Scholar] [CrossRef]
- Kerley, L.L.; Goodrich, J.M.; Miquelle, D.G.; Smirnov, E.N.; Quigley, H.B.; Hornocker, M.G. Effects of Roads and Human Disturbance on Amur Tigers. Conserv. Biol. 2002, 16, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Ngoprasert, D.; Lynam, A.J.; Gale, G.A. Human disturbance affects habitat use and behaviour of Asiatic leopard Panthera pardus in Kaeng Krachan National Park, Thailand. Oryx 2007, 41, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.D.; Leberg, P.L. Impacts of human recreation on carnivores in protected areas. PLoS ONE 2018, 13, e0195436. [Google Scholar] [CrossRef]
- Li, X.Y.; Bleisch, W.V.; Liu, X.W.; Hu, W.Q.; Jiang, X.L. Human disturbance and prey occupancy as predictors of carnivore richness and biomass in a Himalayan hotspot. Anim. Conserv. 2021, 24, 64–72. [Google Scholar] [CrossRef]
- Treves, A.; Karanth, K.U. Human-Carnivore Conflict and Perspectives on Carnivore Management Worldwide. Conserv. Biol. 2003, 17, 1491–1499. [Google Scholar] [CrossRef]
- Johnson, A.; Vongkhamheng, C.; Hedemark, M.; Saithongdam, T. Effects of human?carnivore conflict on tiger (Panthera tigris) and prey populations in Lao PDR. Anim. Conserv. 2006, 9, 421–430. [Google Scholar] [CrossRef]
- Ngoprasert, D.; Reed, D.H.; Steinmetz, R.; Gale, G.A. Density estimation of Asian bears using photographic capture–recapture sampling based on chest marks. Ursus 2012, 23, 117–133. [Google Scholar] [CrossRef]
- E Ross, J.; Hearn, A.J.; Johnson, P.J.; Macdonald, D.W. Activity patterns and temporal avoidance by prey in response to Sunda clouded leopard predation risk. J. Zool. 2013, 290, 96–106. [Google Scholar] [CrossRef]
- Bersacola, E.; Sastramidjaja, W.; Rayadin, Y.; Macdonald, D.; Cheyne, S.M. Occupancy Patterns of Ungulates and Pig-Tailed Macaques across Regenerating and Anthropogenic Forests on Borneo. Hystrix 2019, 30, 126–133. [Google Scholar]
- Bogoni, J.A.; Cherem, J.J.; Giehl, E.L.H.; Oliveira-Santos, L.G.; De Castilho, P.V.; Filho, V.P.; Fantacini, F.M.; Tortato, M.A.; Luiz, M.R.; Rizzaro, R.; et al. Landscape features lead to shifts in communities of medium- to large-bodied mammals in subtropical Atlantic Forest. J. Mammal. 2016, 97, 713–725. [Google Scholar] [CrossRef] [Green Version]
- Rovero, F.; Owen, N.; Jones, T.; Canteri, E.; Iemma, A.; Tattoni, C. Camera trapping surveys of forest mammal communities in the Eastern Arc Mountains reveal generalized habitat and human disturbance responses. Biodivers. Conserv. 2016, 26, 1103–1119. [Google Scholar] [CrossRef]
- Osuri, A.M.; Mendiratta, U.; Naniwadekar, R.; Varma, V.; Naeem, S. Hunting and Forest Modification Have Distinct Defaunation Impacts on Tropical Mammals and Birds. Front. For. Glob. Chang. 2020, 2, 2. [Google Scholar] [CrossRef]
- Laurance, W.F.; Croes, B.M.; Tchignoumba, L.; Lahm, S.A.; Alonso, A.; Lee, M.E.; Campbell, P.; Ondzeano, C. Impacts of Roads and Hunting on Central African Rainforest Mammals. Conserv. Biol. 2006, 20, 1251–1261. [Google Scholar] [CrossRef]
- Arroyo-Rodrãguez, V.; Dias, P.A.D. Effects of habitat fragmentation and disturbance on howler monkeys: A review. Am. J. Primatol. 2009, 72, 1–16. [Google Scholar] [CrossRef]
- Rovero, F.; Mtui, A.S.; Kitegile, A.S.; Nielsen, M.R. Hunting or habitat degradation? Decline of primate populations in Udzungwa Mountains, Tanzania: An analysis of threats. Biol. Conserv. 2012, 146, 89–96. [Google Scholar] [CrossRef]
Areas | Colonization (1) | Persistence (1) | Colonization (2) | Persistence (2) | ώ |
---|---|---|---|---|---|
RYER | 0.09 (0.03–0.24) | 0.55 (0.36–0.72) * | 0.08 (0.02–0.21) | 0.54 (0.35–0.72) * | 0.21 (0.15–0.29) |
HWS | 0.13 (0.04–0.30) | 0.62 (0.42–0.80) * | 0.15 (0.04–0.35) | 0.69 (0.49–0.85) * | 0.24 (0.17–0.32) |
Trophic Niches | HWS y1 | HWS y2 | HWS y3 | RYER y1 | RYER y2 | RYER y3 | HWS tot | RYER tot |
---|---|---|---|---|---|---|---|---|
Herbivore | 9 (8–12) | 12 (11–13) | 12 (11–13) | 9 (8–9) | 8 (8–9) | 6 (5–9) | 12 (12–13) | 9 (9–10) |
Carnivore | 12 (10–13) | 12 (11–14) | 13 (12–14) | 9 (7–10) | 10 (8–11) | 10 (9–11) | 13 (13–15) | 10 (10–11) |
Omnivore | 5 (5–8) | 6 (4–8) | 6 (4–8) | 6 (5–25) | 6 (6–25) | 6 (6–25) | 6 (6–9) | 6 (6–25) |
Trophic Niches/ Body Mass | M | M-L | L | M | M-L | L |
---|---|---|---|---|---|---|
Carnivore | Herpestes urva Pardofelis marmorata Prionailurus bengalensis Prionodon pardicolor Viverra zibetha | Canis aureus Catopuma temminckii Cuon alpinus Neofelis nebulosa | / | Herpestes urva Martes flavigula Mustela strigidorsa Pardofelis marmorata Prionailurus bengalensis Prionodon pardicolor Viverra zibetha | Catopuma temminckii Cuon alpinus Neofelis nebulosa | Panthera tigris |
Herbivore | Atherurus macrourus Hystrix brachyura Macaca leonina Trachypithecus phayrei | Muntiacus vaginalis | Bos gaurus Capricornis rubidus Elephas maximus Rusa unicolor | Atherurus macrourus Hystrix brachyura Macaca leonina Macaca arctoides Macaca mulatta Trachypithecus shortridgei | Muntiacus vaginalis | Bos gaurus Capricornis rubidus Capricornis milneedwardsii Elephas maximus Rusa unicolor |
Omnivore | Arctictis binturong Paradoxurus hermaphroditus Viverricula indica | Sus scrofa Helarctos malayanus | Ursus thibetanus | Arctictis binturong Melogale personata Paradoxurus hermaphroditus | Sus scrofa Helarctos malayanus | Ursus thibetanus |
Insectivore | Manis javanica | / | / | Arctonyx collaris Manis pentadactyla Manis javanica | / | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cremonesi, G.; Bisi, F.; Gaffi, L.; Zaw, T.; Naing, H.; Moe, K.; Aung, Z.; Mazzamuto, M.V.; Gagliardi, A.; Wauters, L.A.; et al. Camera Trapping to Assess Status and Composition of Mammal Communities in a Biodiversity Hotspot in Myanmar. Animals 2021, 11, 880. https://doi.org/10.3390/ani11030880
Cremonesi G, Bisi F, Gaffi L, Zaw T, Naing H, Moe K, Aung Z, Mazzamuto MV, Gagliardi A, Wauters LA, et al. Camera Trapping to Assess Status and Composition of Mammal Communities in a Biodiversity Hotspot in Myanmar. Animals. 2021; 11(3):880. https://doi.org/10.3390/ani11030880
Chicago/Turabian StyleCremonesi, Giacomo, Francesco Bisi, Lorenzo Gaffi, Thet Zaw, Hla Naing, Kyaw Moe, Zarni Aung, Maria V. Mazzamuto, Alessandra Gagliardi, Lucas A. Wauters, and et al. 2021. "Camera Trapping to Assess Status and Composition of Mammal Communities in a Biodiversity Hotspot in Myanmar" Animals 11, no. 3: 880. https://doi.org/10.3390/ani11030880
APA StyleCremonesi, G., Bisi, F., Gaffi, L., Zaw, T., Naing, H., Moe, K., Aung, Z., Mazzamuto, M. V., Gagliardi, A., Wauters, L. A., Preatoni, D. G., & Martinoli, A. (2021). Camera Trapping to Assess Status and Composition of Mammal Communities in a Biodiversity Hotspot in Myanmar. Animals, 11(3), 880. https://doi.org/10.3390/ani11030880