Seasonal Effect on Feed Intake and Methane Emissions of Cow–Calf Systems on Native Grassland with Variable Herbage Allowance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Treatments and Design
2.2. Grazing Management and Herbage Measurements
2.3. Animal Measurements
2.4. Chemical Analysis
2.5. Statistical Analyses
3. Results
3.1. Weather Parameters
3.2. Herbage Mass, Height and Chemical Composition
3.3. Digestibility and Intake
3.4. Methane Emission
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Picasso, V.; Modernel, P.; Becoña, G.; Salvo, L.; Gutiérrez, L.; Astigarraga, L. Sustainability of meat production beyond carbon footprint: A synthesis of case studies from grazing systems in Uruguay. Meat Sci. 2014, 98, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Garnett, T.; Godde, C.; Muller, A.; Röös, E.; Smith, P.; de Boer, I.J.M.; zu Ermgassen, E.; Herrero, M.; van Middelaar, C.E.; Schader, C.; et al. Grazed and Confused? Ruminating on Cattle, Grazing Systems, Methane, Nitrous Oxide, the Soil Carbon Sequestration Question—And What It All Means for Greenhouse Gas Emissions. FCRN. 2017. Available online: https://edepot.wur.nl/427016 (accessed on 15 March 2018).
- Manzano, P.; White, S.R. Intensifying pastoralism may not reduce greenhouse gas emissions: Wildlife-dominated landscape scenarios as a baseline in life-cycle analysis. Clim. Res. 2019, 77, 91–97. [Google Scholar] [CrossRef]
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An international terminology for grazing lands and grazing animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Soriano, A. Natural Grasslands. Introduction and Western Hemisphere. In Río de la Plata Grasslands; Coupland, R.T., Ed.; Elsevier: Amsterdam, The Netherlands, 1991; pp. 367–407. [Google Scholar]
- Carvalho, P.; Nabinger, C.; Lemaire, G.; Genro, C.; Feldman, S.; Oliva, G.; Sacido, M. Challenges and opportunities for livestock production in natural pastures: The case of Brazilian Pampa Biome. In Diverse Rangelands for a Sustainable Society, IX International Rangeland Congress; Universidad de Rosario: Rosario, Argentina, 2011; pp. 9–15. [Google Scholar]
- Modernel, P.; Dogliotti, S.; Alvarez, S.; Corbeels, M.; Picasso, V.; Tittonell, P.; Rossing, W.A.H. Identification of beef production farms in the Pampas and Campos area that stand out in economic and environmental performance. Ecol. Indic. 2018, 89, 755–770. [Google Scholar] [CrossRef]
- MVOTMA (Ministerio de Vivienda Ordenamiento Territorial y Medio Ambiente, Dirección General de Medio Ambiente, Unidad de Cambio Climático). Available online: https://www.gub.uy/ministerio-ambiente/politicas-y-gestion/inventarios-nacionales-gases-efecto-invernadero-ingei (accessed on 15 August 2020).
- MGAP (Ministerio de Ganadería Agricultura y Pesca). Anuario Estadístico Agropecuario. 2014. Available online: http://www.mgap.gub.uy/unidad-ejecutora/oficina-de-programacion-ypoliticas-agropecuarias/publicaciones/anuarios-diea/anuario-2014 (accessed on 20 July 2020).
- Montossi, F.; Soares de Lima, J.M. Después de 20 años de crecimiento de la ganadería del Uruguay: Desarrollo de propuestas tecnológicas desde la cría para el próximo salto productivo. Rev. INIA 2011, 26, 31–38. [Google Scholar]
- Quintans, G.; Vazquez, A.I.; Weigel, K.A. Effect of suckling restriction with nose plates and premature weaning on postpartum anestrous interval in primiparous cows under range conditions. Anim. Reprod. Sci. 2009, 116, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Soca, P.; Carriquiry, M.; Claramunt, M.; Gestido, V.; Meikle, A. Metabolic and endocrine profiles of primiparous beef cows grazing native grassland. 1. Relationships between body condition score at calving and metabolic profiles during the transition period. Anim. Prod. Sci. 2014, 54, 856–861. [Google Scholar] [CrossRef]
- Thornton, P.K.; Herrero, M. Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proc. Natl. Acad. Sci. USA 2010, 46, 19667–19672. [Google Scholar] [CrossRef] [Green Version]
- Becoña, G.; Astigarraga, L.; Picasso, V. Greenhouse gas emissions of beef cow-calf grazing systems in Uruguay. Sustain. Agric. Res. 2014, 3, 89–105. [Google Scholar] [CrossRef] [Green Version]
- Savian, J.V.; Tres Schons, R.M.; Marchi, D.E.; Silva de Freitas, T.; da Silva Neto, G.F.; Mezzalira, J.C.; Berndt, A.; Bayer, C.; de Faccio Carvalho, P.C. Rotatinuous stocking: A grazing management innovation that has high potential to mitigate methane emissions by sheep. J. Clean. Prod. 2018, 186, 602–608. [Google Scholar] [CrossRef]
- de Souza Filho, W.; de Albuquerque Nunes, P.A.; Santiago Barro, R.; Robinson Kunrath, T.; Menezes de Almeida, G.; Moraes Genro, T.C.; Bayer, C.; de Faccio Carvalho, P.C. Mitigation of enteric methane emissions through pasture management in integrated crop-livestock systems: Trade-offs between animal performance and environmental impacts. J. Clean. Prod. 2019, 213, 968–975. [Google Scholar] [CrossRef]
- Sollenberger, L.; Moore, J.; Allen, V.; Pedreira, C. Reporting herbage allowance in grazing experiments. Crop Sci. 2005, 45, 896–900. [Google Scholar] [CrossRef]
- Soca, P.; Carriquiry, M.; Do Carmo, M.; Scarlato, S.; Astessiano, A.L.; Genro, C.; Claramunt, M.; Espasandín, A.C. Oferta de Forraje del Campo Natural y Resultado Productivo de los Sistemas de Cría Vacuna del Uruguay: I Producción, Uso y Conversión del Forraje Aportado por Campo Natural; Quintans, G., Scarsi, A., Eds.; Seminario de Actualización Técnica: Cría Vacuna; Revista INIA: Montevideo, Uruguay, 2013; pp. 97–118. [Google Scholar]
- Do Carmo, M.; Sollenberger, L.E.; Carriquiry, M.; Soca, P. Controlling herbage allowance and selection of cow genotype improve cow-calf productivity in Campos grasslands. Prof. Anim. Sci. 2018, 34, 32–41. [Google Scholar] [CrossRef]
- Wales, W.J.; Doyle, P.T.; Stockdale, C.R.; Dellow, D.W. Effects of variations in herbage mass, allowance, and level of supplement on nutrient intake and milk production of dairy cows in spring and summer. Aust. J. Exp. Agric. 1999, 39, 119–130. [Google Scholar] [CrossRef]
- Do Carmo, M. Efecto de la Oferta de Forraje y Genotipo Vacuno Sobre la Productividad de la Cría Vacuna en Campos de Uruguay. Master’s Thesis, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay, 2013; p. 74. [Google Scholar]
- Claramunt, M.; Fernández-Foren, A.; Soca, P. Effect of herbage allowance on productive and reproductive responses of primiparous beef cows grazing on Campos grassland. Anim. Prod. Sci. 2017. [Google Scholar] [CrossRef]
- Casal, A.; Astessiano, A.L.; Espasandin, A.C.; Trujillo, A.I.; Soca, P.; Carriquiry, M. Changes in body composition during the winter gestation period in mature beef cows grazing different herbage allowances of native grasslands. Anim. Prod. Sci. 2017, 57, 520–529. [Google Scholar] [CrossRef]
- INUMET (Instituto Nacional de Meteorología). Available online: https://www.inumet.gub.uy/index.php/institucional/transparencia/solicitud-informacion-meteorologica (accessed on 15 March 2016).
- INIA GRAS (Instituto Nacional de Investigación Agropecuaria). Available online: http://www.inia.uy/gras/ (accessed on 25 March 2020).
- Caram, N. Patrón de Defoliación de Comunidades de Campo Natural Bajo dos Ofertas de Forraje. Master’s Thesis, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay, 2019; p. 97. [Google Scholar]
- Durán, A.; Califra, A.; Molfino, J.H.; Lynn, W. Keys to Soil Taxonomy for Uruguay; U.S. Department of Agriculture, National Resources Conservation Service: Montevideo, Uruguay, 2005. [Google Scholar]
- Mott, G.O. Grazing pressure and the measurement of pasture production. In Proceedings of the Eighth International Grassland Congress, Reading, UK, 11–21 July 1960. [Google Scholar]
- Haydock, K.P.; Shaw, N.H. The comparative yield method for estimating dry matter yield of pasture. Aust. J. Exp. Agric. Anim. Husb. 1975, 15, 663–670. [Google Scholar]
- Hodgson, J. Grazing Management: Science into Practice. In Longman Handbooks in Agriculture; Longman Scientific & Technical: Essex, UK, 1990; p. 203. ISBN 0 582 45010 1. [Google Scholar]
- Vizcarra, J.A.; Ibañez, W.; Orcasberro, R. Repetibilidad y reproductibilidad de dos escalas para estimar la condición corporal de vacas Hereford. Investig. Agronómicas 1986, 7, 45–47. [Google Scholar]
- Coates, D.B.; Penning, P. Measuring animal performance. In Field and Laboratory Methods for Grassland and Animal Production Research; Mannetje, L.T., Jones, R.M., Eds.; CAB International: Wallingford, UK, 2000; pp. 353–402. [Google Scholar]
- Ferrell, C.L.; Garrett, W.N.; Hinman, N. Growth, development and composition of the udder and gravid uterus of beef heifers during pregnancy. J. Anim. Sci. 1976, 42, 1477–1489. [Google Scholar] [CrossRef] [Green Version]
- Comeron, E.; Peyraud, J. Prediction of herbage digestibility ingested by dairy cows. Rev. Arg. Prod. Anim. 1993, 13, 23–30. [Google Scholar]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Gere, J.; Gratton, R. Simple, low-cost flow controllers for time averaged atmospheric sampling and other applications. Lat. Am. Appl. Res. 2010, 40, 377–382. [Google Scholar]
- Dini, Y.; Gere, J.; Briano, C.; Manetti, M.; Juliarena, P.; Picasso, V.; Astigarraga, L. Methane emission and milk production of dairy cows grazing pastures rich in legumes or rich in grasses in Uruguay. Animals 2012, 2, 288–300. [Google Scholar] [CrossRef] [Green Version]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 15th ed.; AOAC: Arlington, VA, USA, 1990; pp. 770–771. [Google Scholar]
- Van Soest, P.J.; Roberston, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- William, C.; David, D.; Lismoa, O. The determination of chromic oxide in fecal samples by atomic absorption spectrophotometry. J. Agric. Sci. 1962, 59, 381–385. [Google Scholar] [CrossRef]
- SAS Institute, Inc. The SAS System for Windows; Version 8.2; SAS Institute, Inc.: Cary, NC, USA, 2001. [Google Scholar]
- Rosengurtt, B. Tabla de Comportamiento de las Especies de Plantas de Campos Naturales en el Uruguay; Universidad de la República: Montevideo, Uruguay, 1979. [Google Scholar]
- NRC (National Research Council). Nutrient Requirements of Beef Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2000; 248p. [Google Scholar]
- Santos, D.T. Manipulação da Oferta de Forragem em Pastagem Natural: Efeito Sobre o Ambiente de Pastejo e o Desenvolvimento de Novilhas de Corte. Tese de Doutorado. Programa de Pós-Graduação em Zootecnia. Ph.D. Thesis, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2007; p. 259. [Google Scholar]
- Gonçalves, E.N.; Carvalho, P.C.F.; Gonçalves, C.E.; Teixeira, D.; Queirolo, J.A.; Baggio, C.; Nabinger, C. Relações planta-animal em ambiente pastoril heterogêneoetpadrões de desfolhação e seleção de dietas. Rev. Bras. Zootec. 2009, 38, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, P.C.F. Can grazing behaviour support innovations in grassland management? In Proceedings of the 22nd International Grassland Congress, Sydney, Australia, 15–19 September 2013; pp. 1134–1148. [Google Scholar]
- Da Trindade, J.K.; Neves, F.P.; Pinto, C.E.; Bremm, C.; Mezzalira, J.C.; Nadin, L.B.; Genro, T.C.M.; Gonda, H.L.; Carvalho, P.C.F. Daily Forage Intake by Cattle on Natural Grassland: Response to Forage Allowance and Sward Structure. Rangel. Ecol. Manag. 2016, 69, 59–67. [Google Scholar] [CrossRef]
- Jonker, A.; Molano, G.; Koolaard, J.; Muetzel, S. Methane emissions from lactating and non-lactating dairy cows and growing cattle fed fresh pasture. Anim. Prod. Sci. 2017, 57, 643–648. [Google Scholar] [CrossRef]
- Dall-Orsoletta, A.; Leurent-Colette, S.; Launay, F.; Ribeiro-Filho, H.; Delaby, L. A quantitative description of the effect of breed, first calving age and feeding strategy on dairy systems enteric methane emission. Livest. Sci. 2019, 224, 87–95. [Google Scholar] [CrossRef]
- Alvarado-Bolovich, V.; Medrano, J.; Haro, J.; Castro-Montoya, J.; Dickhoefer, U.; Gómez, C. Enteric methane emissions from lactating dairy cows grazing cultivated and native pastures in the high Andes of Peru. Livest. Sci. 2021, 243, 104385. [Google Scholar] [CrossRef]
- McCaughey, W.P.; Wittenberg, K.; Corrigan, D. Methane production by steers on pasture. Can. J. Anim. Sci. 1997, 77, 519–524. [Google Scholar] [CrossRef]
- McCaughey, W.P.; Wittenberg, K.; Corrigan, D. Impact of pasture type on methane production by lactating beef cows. Can. J. Anim. Sci. 1999, 79, 221–226. [Google Scholar] [CrossRef]
- DeRamus, H.A.; Clement, T.C.; Giampola, D.D.; Dickison, P.C. Methane emissions of beef cattle on forages. J. Environ. Qual. 2003, 32, 269–277. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.S.; Baumont, R.; Martin, C. Methane emissions by Charolais cows grazing a monospecific pasture of timothy at four stages of maturity. Can. J. Anim. Sci. 2003, 83, 769–777. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.S.; D’Hour, P.; Jouany, J.-P.; Martin, C. Effects of stocking rate on methane and carbon dioxide emissions from grazing cattle. Agric. Ecosyst. Environ. 2007, 121, 30–46. [Google Scholar] [CrossRef]
- Richmond, A.S.; Wylie, A.R.G.; Laidlaw, A.S.; Lively, F.O. Methane emissions from beef cattle grazing on semi-natural upland and improved lowland grasslands. Animal 2015, 9, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Zubieta, A.S.; Savian, J.V.; de Souza Filho, W.; OsorioWallau, M.; Marín Gómez, A.; Bindelle, J.; Bonnet, O.J.F.; de Faccio Carvalho, P.C. Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems? Sci. Total Environ. 2021, 754, 142029. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Chapter 10: Emissions from Livestock and Manure Management. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2019; Available online: www.ipcc.ch/report/2019-refinement-to-the-2006-IPCC-guidelines-for-national-greenhouse-gas-inventories (accessed on 16 February 2020).
- Molano, G.; Clark, H.; Knight, T.W.; Cavanagh, A. Methane emissions from growing beef cattle grazing hill country pasture. Proc. N. Zealand Soc. Anim. Prod. 2006, 66, 172–175. [Google Scholar]
- Ricci, P.; Rooke, J.A.; Nevison, I.; Waterhouse, A. Methane emissions from beef and dairy cattle: Quantifying the effect of physiological stage and diet characteristics. J. Anim. Sci. 2013, 91, 5379–5389. [Google Scholar] [CrossRef]
- Cottle, D.J.; Eckard, R.J. Global beef cattle methane emissions: Yield prediction by cluster and meta-analyses. Anim. Prod. Sci. 2018, 58, 2167–2177. [Google Scholar] [CrossRef]
- Loza, C. Consumo, Gasto Energético y Emisiones de Metano de Vacas Lecheras Pastoreando a Diferentes Biomasas. Master’s Thesis, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay, 2017; p. 83. [Google Scholar]
- Kamra, N.D.; Agarwal, N.; Chaudhary, L.C. Effect of tropical feeds and plants containing secondary metabolites on methane emission by ruminants. Trop. Anim. Health Prod. 2010, 1701, 1–23. [Google Scholar]
- McAllister, T.A.; Okine, E.K.; Mathison, G.W.; Cheng, K.J. Aspects 1li1-enJlires, Environnementaux et microbiologiques de la production de methane chez les ruminiantts. Can. J. Anim. Sci. 1996, 76, 231–243. [Google Scholar] [CrossRef]
- Archimède, H.; Eugène, M.; Marie Magdeleine, C.; Boval, M.; Martin, C.; Morgavi, D.P.; Lecomte, P.; Doreau, M. Comparison of methane production between C3 and C4 grasses and legumes. Anim. Feed Sci. Technol. 2011, 166, 59–64. [Google Scholar] [CrossRef]
- Raymond, A.F. Investigating the Carbon Footprint of Cattle Grazing the lac du Bois Grasslands: The Effects Changes in Management May Have on Reducing and Removing GHG Emissions, and Opportunities for BC Ranchers to Explore Carbon Offset Opportunities. Master’s Thesis, Thompson Rivers University, Kamloops, BC, Canada, 2013; p. 127. [Google Scholar]
- | Autumn | Winter | Spring | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
HHA | LHA | HHA | LHA | HHA | LHA | SEM | HA | S | HA*S | |
Herbage mass (kg DM/ha) | 1948 bc | 1515 cd | 1134 cd | 910 d | 4147 a | 2910 b | 355.6 | <0.001 | <0.001 | 0.003 |
Sward height (cm) | 6.5 b | 5.1 bc | 4.1 c | 3.4 c | 11.6 a | 6.8 b | 0.77 | <0.001 | <0.001 | <0.001 |
DM (%) 1 | 91 | 90 | 90 | 90 | 89 | 90 | 1.2 | ns | ns | ns |
OM (%) 2 | 85 | 86 | 86 | 89 | 89 | 90 | 4.4 | ns | ns | ns |
CP (%) 3 | 7 b | 7 b | 7 b | 6 b | 10 a | 10 a | 0.3 | ns | <0.05 | ns |
NDF (%) 4 | 78 | 64 | 72 | 74 | 69 | 71 | 4.6 | ns | ns | ns |
ADF (%) 5 | 43 | 34 | 37 | 36 | 35 | 35 | 2.7 | ns | ns | ns |
GE (MJ/kg DM) 6 | 17 | 16 | 16 | 18 | 18 | 18 | 0.2 | ns | ns | ns |
- | Autumn | Winter | Spring | - | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
HHA | LHA | HHA | LHA | HHA | LHA | SEM | HA | S | HA*S | |
Fecal output (kg OM/d) | 2.3 b | 2.0 b | 1.9 b | 2.1 b | 3.6 a | 3.3 a | 0.13 | 0.370 | <0.001 | 0.200 |
OMD 1 (g/kg OM) | 670 c | 672 bc | 673 bc | 675 ab | 680 a | 673 bc | 1.9 | 0.390 | 0.003 | 0.001 |
OMI 2 (kg/d) | 6.7 b | 6.1 b | 5.7 b | 6.4 b | 11.4 a | 10.1 a | 0.42 | 0.300 | <0.001 | 0.130 |
DMI 3 (kg/d) | 8.9 c | 7.3 d | 6.6 d | 7.2 d | 12.9 a | 11.1 b | 0.46 | 0.050 | <0.001 | 0.060 |
LW4 (kg) | 353 b | 345 b | 281 c | 295 c | 380 a | 386 a | 8.2 | 0.687 | <0.001 | 0.449 |
BCS | 4.0 a | 4.0 a | 3.2 b | 3.3 b | 3.7 a | 3.8 a | 0.11 | 0.744 | <0.001 | 0.909 |
- | Autumn | Winter | Spring | - | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
HHA | LHA | HHA | LHA | HHA | LHA | SEM | HA | S | HA*S | |
Methane emission (g CH4/a/d) | 170 b | 148 b | 140 b | 160 b | 294 a | 329 a | 13.3 | 0.350 | <0.001 | 0.080 |
Methane yield | ||||||||||
as Gross Energy intake (Ym) | 6.3 b | 7.2 ab | 7.6 ab | 7.5 ab | 7.2 ab | 8.6 a | 0.57 | 0.120 | 0.140 | 0.410 |
as g CH4/kg DMI (MY) | 21.7 b | 21.7 b | 21.6 b | 23.7 ab | 23.9 ab | 29.1 a | 2.00 | 0.150 | 0.040 | 0.400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orcasberro, M.S.; Loza, C.; Gere, J.; Soca, P.; Picasso, V.; Astigarraga, L. Seasonal Effect on Feed Intake and Methane Emissions of Cow–Calf Systems on Native Grassland with Variable Herbage Allowance. Animals 2021, 11, 882. https://doi.org/10.3390/ani11030882
Orcasberro MS, Loza C, Gere J, Soca P, Picasso V, Astigarraga L. Seasonal Effect on Feed Intake and Methane Emissions of Cow–Calf Systems on Native Grassland with Variable Herbage Allowance. Animals. 2021; 11(3):882. https://doi.org/10.3390/ani11030882
Chicago/Turabian StyleOrcasberro, M. Soledad, Cecilia Loza, José Gere, Pablo Soca, Valentín Picasso, and Laura Astigarraga. 2021. "Seasonal Effect on Feed Intake and Methane Emissions of Cow–Calf Systems on Native Grassland with Variable Herbage Allowance" Animals 11, no. 3: 882. https://doi.org/10.3390/ani11030882