Prostaglandin F2 Alpha Triggers the Disruption of Cell Adhesion with Cytokeratin and Vimentin in Bovine Luteal Theca Cells
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Animal Ethics and Tissue Collection
2.3. Histological Analysis
2.4. Isolation of LTCs
2.5. Flow Cytometric Analysis
2.6. PGF2α Treatment in LTCs
2.7. Quantitative PCR
2.8. Western Blotting
2.9. Immunofluorescence
2.10. Cell to Cell Adhesion Assay
2.11. Statistical Analysis
3. Results
3.1. Location of LGCs and LTCs in CL Tissue
3.2. Detection of the LTC Subpopulation by Flow Cytometry
3.3. TC Lineage, Steroidogenic and IF Marker Assays
3.4. The Distribution of Cytokeratin and Vimentin Proteins in PGF2α-Induced Bovine LTCs
3.5. Effect of PGF2α on Rho/ROCK and Desmoplakin Expression in Bovine LTCs
3.6. Influence of PGF2α on the Cell–Cell Adhesion Ability in Bovine LTCs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Skarzynski, D.; Piotrowska-Tomala, K.; Lukasik, K.; Galvao, A.; Farberov, S.; Zalman, Y.; Meidan, R. Growth and regression in bovine corpora lutea: Regulation by local survival and death pathways. Reprod. Domest. Anim. 2013, 48, 25–37. [Google Scholar] [CrossRef]
- O’shea, J.; Rodgers, R.; D’occhio, M. Cellular composition of the cyclic corpus luteum of the cow. Reproduction 1989, 85, 483–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groten, T.; Fraser, H.; Duncan, W.; Konrad, R.; Kreienberg, R.; Wulff, C. Cell junctional proteins in the human corpus luteum: Changes during the normal cycle and after HCG treatment. Hum. Reprod. 2006, 21, 3096–3102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berisha, B.; Bridger, P.; Toth, A.; Kliem, H.; Meyer, H.; Schams, D.; Pfarrer, C. Expression and localization of gap junctional connexins 26 and 43 in bovine periovulatory follicles and in corpus luteum during different functional stages of oestrous cycle and pregnancy. Reprod. Domest. Anim. 2009, 44, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Sundfeldt, K.; Piontkewitz, Y.; Billig, H.; Hedin, L. E-cadherin-catenin complex in the rat ovary: Cell-specific expression during folliculogenesis and luteal formation. J. Reprod. Fertil. 2000, 118, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Spanel-Borowski, K. Diversity of ultrastructure in different phenotypes of cultured microvessel endothelial cells isolated from bovine corpus luteum. Cell Tissue Res. 1991, 266, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Stocco, C.; Telleria, C.; Gibori, G. The molecular control of corpus luteum formation, function, and regression. Endocr. Rev. 2007, 28, 117–149. [Google Scholar] [CrossRef] [PubMed]
- Alila, H.; Corradino, R.; Hansel, W. A comparison of the effects of cyclooxygenase prostanoids on progresterone production by small and large bovine luteal cells. Prostaglandins 1988, 36, 259–270. [Google Scholar] [CrossRef]
- Alila, H.; Dowd, J.; Corradino, R.; Harris, W.; Hansel, W. Control of progesterone production in small and large bovine luteal cells separated by flow cytometry. Reproduction 1988, 82, 645–655. [Google Scholar] [CrossRef] [Green Version]
- Brannian, J.D.; Stouffer, R.L.; Shiigi, S.M.; Hoyer, P.B. Isolation of ovine luteal cell subpopulations by flow cytometry. Biol. Reprod. 1993, 48, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Milvae, R.A. Inter-relationships between endothelin and prostaglandin F2alpha in corpus luteum function. Rev. Reprod. 2000, 5, 1–5. [Google Scholar] [CrossRef]
- Spitschak, M.; Vanselow, J. Bovine large luteal cells show increasing de novo DNA methylation of the main ovarian CYP19A1 promoter P2. Gen. Comp. Endocrinol 2012, 178, 37–45. [Google Scholar] [CrossRef]
- Tajima, K.; Orisaka, M.; Mori, T.; Kotsuji, F. Ovarian theca cells in follicular function. Reprod. Biomed. Online 2007, 15, 591–609. [Google Scholar] [CrossRef]
- Herrmann, H.; Bär, H.; Kreplak, L.; Strelkov, S.V.; Aebi, U. Intermediate filaments: From cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol. 2007, 8, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Sheetz, M.P. Cell control by membrane–cytoskeleton adhesion. Nat. Rev. Mol. Cell Biol. 2001, 2, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Wendl, J.; Ebach, K.; Rodler, D.; Kenngott, R.M. Immunocytochemical localization of cytoplasmic and nuclear intermediate filaments in the bovine ovary during folliculogenesis. Anat. Histol. Embryol. 2012, 41, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.S.; Rueda, B.R.; Spanel-Borowski, K. Microvascular endothelial cells of the corpus luteum. Reprod. Biol. Endocrinol. 2003, 1, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townson, D.H.; Putnam, A.N.; Sullivan, B.T.; Guo, L.; Irving-Rodgers, H.F. Expression and distribution of cytokeratin 8/18 intermediate filaments in bovine antral follicles and corpus luteum: An intrinsic mechanism of resistance to apoptosis? Histol. Histopathol. 2010, 25, 889–900. [Google Scholar]
- Kiss, C.; Li, J.; Szeles, A.; Gizatullin, R. Assignment of the ARHA and GPX1 genes to human chromosome bands 3p21. 3 by in situ hybridization and with somatic cell hybrids. Cytogenet. Genome Res. 1997, 79, 228–230. [Google Scholar] [CrossRef]
- Heasman, S.J.; Ridley, A.J. Mammalian Rho GTPases: New insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 2008, 9, 690–701. [Google Scholar] [CrossRef]
- Hall, A. Rho Family Gtpases; Portland Press Limited: London, UK, 2012. [Google Scholar]
- Ai, S.; Kuzuya, M.; Koike, T.; Asai, T.; Kanda, S.; Maeda, K.; Shibata, T.; Iguchi, A. Rho–Rho kinase is involved in smooth muscle cell migration through myosin light chain phosphorylation-dependent and independent pathways. Atherosclerosis 2001, 155, 321–327. [Google Scholar] [CrossRef]
- Goto, H.; Kosako, H.; Tanabe, K.; Yanagida, M.; Sakurai, M.; Amano, M.; Kaibuchi, K.; Inagaki, M. Phosphorylation of vimentin by Rho-associated kinase at a unique amino-terminal site that is specifically phosphorylated during cytokinesis. J. Biol. Chem. 1998, 273, 11728–11736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, R.; Nakamura, Y.; Goto, H.; Wada, Y.; Sakoda, S.; Kaibuchi, K.; Inagaki, M.; Takeda, M. Domain-and site-specific phosphorylation of bovine NF-L by Rho-associated kinase. Biochem. Biophys. Res. Commun. 1998, 245, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Amano, M.; Nakayama, M.; Kaibuchi, K. Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity. Cytoskeleton 2010, 67, 545–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCracken, J.A.; Custer, E.E.; Lamsa, J.C. Luteolysis: A neuroendocrine-mediated event. Physiol. Rev. 1999, 79, 263–323. [Google Scholar] [CrossRef]
- Yamagishi-Kimura, R.; Honjo, M.; Aihara, M. Contribution of prostanoid FP receptor and prostaglandins in transient inflammatory ocular hypertension. Sci. Rep. 2018, 8, 11098. [Google Scholar] [CrossRef] [PubMed]
- Abera, A.; Sales, K.; Catalano, R.; Katz, A.; Jabbour, H. EP2 receptor mediated cAMP release is augmented by PGF2α activation of the FP receptor via the calcium-calmodulin pathway. Cell. Signal. 2010, 22, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, V.K.; Sudhagar, R.R.; Medhamurthy, R. Apoptosis During Spontaneous and Prostaglandin F2α-Induced Luteal Regression in the Buffalo Cow (Bubalus bubalis): Involvementof Mitogen-Activated Protein Kinases. Biol. Reprod. 2002, 67, 752–759. [Google Scholar] [CrossRef] [Green Version]
- Yadav, V.K.; Lakshmi, G.; Medhamurthy, R. Prostaglandin F2α-mediated Activation of Apoptotic Signaling Cascades in the Corpus Luteum during Apoptosis involvement of caspase-activated DNase. J. Biol. Chem. 2005, 280, 10357–10367. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, H.; Yokomizo, Y.; Okuda, K. Fas-Fas ligand system mediates luteal cell death in bovine corpus luteum. Biol. Reprod. 2002, 66, 754–759. [Google Scholar] [CrossRef]
- Benyo, D.F.; Pate, J.L. Tumor necrosis factor-alpha alters bovine luteal cell synthetic capacity and viability. Endocrinology 1992, 130, 854–860. [Google Scholar]
- Okuda, K.; Sakumoto, R. Multiple roles of TNF super family members in corpus luteum function. Reprod. Biol. Endocrinol. 2003, 1, 95. [Google Scholar] [CrossRef] [Green Version]
- Desouza, M.; Gunning, P.W.; Stehn, J.R. The actin cytoskeleton as a sensor and mediator of apoptosis. Bioarchitecture 2012, 2, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Oshima, R. Apoptosis and keratin intermediate filaments. Cell Death Differ. 2002, 9, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Byun, Y.; Chen, F.; Chang, R.; Trivedi, M.; Green, K.J.; Cryns, V. Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis. Cell Death Differ. 2001, 8, 443–450. [Google Scholar] [CrossRef]
- Xavier, P.; Leão, R.; Oliveira e Silva, P.; Marques Júnior, A. Histological characteristics of the corpus luteum of Nelore cows in the first, second and third trimester of pregnancy. Arq. Bras. Med. Vet. Zootec. 2012, 64, 505–509. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, Y.; Skarzynski, D.J.; Okuda, K. Is tumor necrosis factor α a trigger for the initiation of endometrial prostaglandin F2α release at luteolysis in cattle? Biol. Reprod. 2000, 62, 1109–1115. [Google Scholar] [CrossRef]
- Yoshioka, S.; Abe, H.; Sakumoto, R.; Okuda, K. Proliferation of luteal steroidogenic cells in cattle. PLoS ONE 2013, 8, e84186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.-H.; Acosta, T.J.; Yoshioka, S.; Okuda, K. Prostaglandin F2α regulates the nitric oxide generating system in bovine luteal endothelial cells. J. Reprod. Dev. 2009, 55, 418–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korzekwa, A.; Jaroszewski, J.J.; Bogacki, M.; Deptula, K.M.; Maslanka, T.S.; Acosta, T.J.; Okuda, K.; Skarzynski, D.J. Effects of prostaglandin F2α and nitric oxide on the secretory function of bovine luteal cells. J. Reprod. Dev. 2004, 50, 411–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korzekwa, A.; Lukasik, K.; Pilawski, W.; Piotrowska-Tomala, K.; Jaroszewski, J.; Yoshioka, S.; Okuda, K.; Skarzynski, D. Influence of prostaglandin F2α analogues on the secretory function of bovine luteal cells and ovarian arterial contractility in vitro. Vet. J. 2014, 199, 131–137. [Google Scholar] [CrossRef]
- Cortelazzo, A.; De Felice, C.; Pecorelli, A.; Belmonte, G.; Signorini, C.; Leoncini, S.; Zollo, G.; Capone, A.; Della Giovampaola, C.; Sticozzi, C. Beta-actin deficiency with oxidative posttranslational modifications in Rett syndrome erythrocytes: Insights into an altered cytoskeletal organization. PLoS ONE 2014, 9, e93181. [Google Scholar] [CrossRef] [PubMed]
- Mamluk, R.; Chen, D.-b.; Greber, Y.; Davis, J.S.; Meidan, R. Characterization of messenger ribonucleic acid expression for prostaglandin F2α and luteinizing hormone receptors in various bovine luteal cell types. Biol. Reprod. 1998, 58, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Buratini, J., Jr.; Pinto, M.G.L.; Castilho, A.; Amorim, R.L.; Giometti, I.C.; Portela, V.; Nicola, E.S.; Price, C.A. Expression and function of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2B, in bovine follicles. Biol. Reprod. 2007, 77, 743–750. [Google Scholar] [CrossRef] [Green Version]
- Romereim, S.M.; Summers, A.F.; Pohlmeier, W.E.; Zhang, P.; Hou, X.; Talbott, H.A.; Cushman, R.A.; Wood, J.R.; Davis, J.S.; Cupp, A.S. Gene expression profiling of bovine ovarian follicular and luteal cells provides insight into cellular identities and functions. Mol. Cell. Endocrinol. 2017, 439, 379–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, J.S.; Ren, Y.A.; Candelaria, N.; Adams, J.E.; Rajkovic, A. Ovarian Follicular Theca Cell Recruitment, Differentiation, and Impact on Fertility: 2017 Update. Endocr. Rev. 2017, 39, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Duncan, A.; Forcina, J.; Birt, A.; Townson, D. Estrous cycle-dependent changes of Fas expression in the bovine corpus luteum: Influence of keratin 8/18 intermediate filaments and cytokines. Reprod. Biol. Endocrinol. 2012, 10, 90. [Google Scholar] [CrossRef] [Green Version]
- Korzekwa, A.; Lukasik, K.; Skarzynski, D. Leukotrienes are auto-/paracrine factors in the bovine corpus luteum: An in vitro study. Reprod. Domest. Anim. 2010, 45, 1089–1097. [Google Scholar] [CrossRef]
- Skarzynski, D.J.; Jaroszewski, J.J.; Okuda, K. Role of tumor necrosis factor-α and nitric oxide in luteolysis in cattle. Domest. Anim. Endocrinol. 2005, 29, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.S.; Weakland, L.L.; Weiland, D.A.; Farese, R.V.; West, L.A. Prostaglandin F2 alpha stimulates phosphatidylinositol 4, 5-bisphosphate hydrolysis and mobilizes intracellular Ca2+ in bovine luteal cells. Proc. Natl. Acad. Sci. USA 1987, 84, 3728–3732. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Fong, H.W.; Davis, J.S. Induction of c-fos and c-jun messenger ribonucleic acid expression by prostaglandin F2α is mediated by a protein kinase C-dependent extracellular signal-regulated kinase mitogen-activated protein kinase pathway in bovine luteal cells. Endocrinology 2001, 142, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Bowolaksono, A.; Nishimura, R.; Hojo, T.; Sakumoto, R.; Acosta, T.J.; Okuda, K. Anti-apoptotic roles of prostaglandin E2 and F2alpha in bovine luteal steroidogenic cells. Biol. Reprod. 2008, 79, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Korzekwa, A.; Jaroszewski, J.; Woclawek-Potocka, I.; Bah, M.; Skarzynski, D. Luteolytic effect of prostaglandin F2α on bovine corpus luteum depends on cell composition and contact. Reprod. Domest. Anim. 2008, 43, 464–472. [Google Scholar] [CrossRef]
- Garrod, D.; Chidgey, M. Desmosome structure, composition and function. Biochim. Biophys. Acta Biomembr. 2008, 1778, 572–587. [Google Scholar] [CrossRef] [PubMed]
- Broussard, J.A.; Yang, R.; Huang, C.; Nathamgari, S.S.P.; Beese, A.M.; Godsel, L.M.; Hegazy, M.H.; Lee, S.; Zhou, F.; Sniadecki, N.J. The desmoplakin–intermediate filament linkage regulates cell mechanics. Mol. Biol. Cell. 2017, 28, 3156–3164. [Google Scholar] [CrossRef] [PubMed]
- Kazerounian, S.; Uitto, J.; Aho, S. Unique role for the periplakin tail in intermediate filament association: Specific binding to keratin 8 and vimentin. Exp. Dermatol. 2002, 11, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Al-Jassar, C.; Bikker, H.; Overduin, M.; Chidgey, M. Mechanistic basis of desmosome-targeted diseases. J. Mol. Biol. 2013, 425, 4006–4022. [Google Scholar] [CrossRef] [Green Version]
Gene | Primer (5′–3′) | Product Size (bp) | Annealing Temp. (°C) | Cycles | Accession No. |
---|---|---|---|---|---|
LHR | F: CTCAAGCTTTCAGAGGACTT | 224 | 60 | 30 | U87230 |
R: TCTGGAAGCTTGTGGATGCCTG | |||||
FGF7 | F: CTGCCAAGTTTGCTCTACAG | 294 | 55 | 24 | S72475 |
R: TCCAACTGCCAGGGTCCTGAT | |||||
FGF10 | F: CTTCTTGGTGTCTTCCGTCC | 491 | 65 | 30 | AF213396 |
R: CTCCTTTTCCATTCAATGCC | |||||
LOX | F: CGTCCGCTGTGAAATTCGCT | 81 | 60 | 21 | NM_173932.4 |
R: TGGCTTGCTTTCTAATACGGTGA | |||||
PDGFRA | F: GAGTGAAGTGAGCTGGCAGT | 187 | 60 | 21 | XM_010806122.2 |
R: CTGCCCTCGATCTCGTTCTC | |||||
StAR | F: CATGGTGCTCCGCCCCTTGGCT | 590 | 60 | 24 | BC110213 |
R: CATTGCCCACAGACCTCTTGA | |||||
P450scc | F: AACGTCCCTCCAGAACTGTACC | 362 | 60 | 24 | BC133389 |
R: CTTGCTTATGTCTCCCTCTGCC | |||||
3β-HSD | F: TCCACACCAGCACCATAGAA | 704 | 60 | 21 | BC111203 |
R: CTCCTTGGTTTTCTGCTTGG | |||||
Cytokeratin | F: GAGGAGCTGAACAGGGAGGT | 219 | 60 | 24 | NM_001015600 |
R: CTGGGCTTCGATACCACTGA | |||||
Vimentin | F: AAGCCGAGAGCACTCTGCAGTCT | 150 | 60 | 21 | NM_173969.3 |
R: GGGCCTGAAGCTCCTGGATTTCCT | |||||
PGF2αR | F: TTAGAAGTCAGCAGCACAG | 519 | 60 | 30 | D17395 |
R: ACTATCTGGGTGAGGGCTGATT | |||||
β-actin | F: GAAGATCTGGCACCACAC | 187 | 60 | 24 | AY141970 |
R: AGAGGCATACAGGGACAGC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-H.; Lee, S. Prostaglandin F2 Alpha Triggers the Disruption of Cell Adhesion with Cytokeratin and Vimentin in Bovine Luteal Theca Cells. Animals 2021, 11, 1073. https://doi.org/10.3390/ani11041073
Lee S-H, Lee S. Prostaglandin F2 Alpha Triggers the Disruption of Cell Adhesion with Cytokeratin and Vimentin in Bovine Luteal Theca Cells. Animals. 2021; 11(4):1073. https://doi.org/10.3390/ani11041073
Chicago/Turabian StyleLee, Sang-Hee, and Seunghyung Lee. 2021. "Prostaglandin F2 Alpha Triggers the Disruption of Cell Adhesion with Cytokeratin and Vimentin in Bovine Luteal Theca Cells" Animals 11, no. 4: 1073. https://doi.org/10.3390/ani11041073
APA StyleLee, S.-H., & Lee, S. (2021). Prostaglandin F2 Alpha Triggers the Disruption of Cell Adhesion with Cytokeratin and Vimentin in Bovine Luteal Theca Cells. Animals, 11(4), 1073. https://doi.org/10.3390/ani11041073