Evaluation of Three Formulations of Essential Oils in Broiler Chickens under Cyclic Heat Stress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Essential Oil Products
2.3. Facilities and Experimental Design
2.4. Serum Levels of Fluorescein Isothiocyanate-Dextran
2.5. Superoxide Dismutase Activity
2.6. Serum Levels of Gamma Interferon
2.7. Serum Total Immunoglobulin A
2.8. Bone Strength
2.9. Processing Parameters
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cummings, J.H.; Antoine, J.-M.; Azpiroz, F.; Bourdet-Sicard, R.; Brandtzaeg, P.; Calder, P.C.; Gibson, G.R.; Guarner, F.; Isolauri, E.; Pannemans, D.; et al. PASSCLAIM-Gut health and immunity. Eur. J. Nutr. 2004, 43, II118–II173. [Google Scholar] [CrossRef] [PubMed]
- Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef] [Green Version]
- Moretó, M.; Pérez-Bosque, A. Dietary plasma proteins, the intestinal immune system, and the barrier functions of the intestinal mucosa. J. Anim. Sci. 2009, 87, E92–E100. [Google Scholar] [CrossRef]
- Andersen, K.; Kesper, M.S.; Marschner, J.A.; Konrad, L.; Ryu, M.; Kumar, S.V.; Kulkarni, O.P.; Mulay, S.R.; Romoli, S.; Demleitner, J.; et al. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation. J. Am. Soc. Nephrol. 2017, 28, 76–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilan, Y. Leaky gut and the liver: A role for bacterial translocation in nonalcoholic steatohepatitis. World J. Gastroenterol. WJG 2012, 18, 2609–2618. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Li, J.; Wang, D.; Li, G.; Wang, G.; Lu, L. Effects of heat stress on antioxidant defense system, inflammatory injury, and heat shock proteins of Muscovy and Pekin ducks: Evidence for differential thermal sensitivities. Cell Stress Chaperones 2014, 19, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Karl, T.R.; Trenberth, K.E. Modern global climate change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, M.S.; Deheyn, D.D. Effects of cold stress and heat stress on coral fluorescence in reef-building corals. Sci. Rep. 2013, 3, 1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Moore, B.; Vorosmarty, C.J.; Schloss, A.L. Global climate change and terrestrial net primary production. Nature 1993, 363, 234–240. [Google Scholar] [CrossRef]
- Polsky, L.; von Keyserlingk, M.A. Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, S. The role of hypothalamic temperature in the control of panting in the chicken exposed to heat. J. Physiol. 1970, 211, 341–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lara, L.J.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef]
- Abu-Dieyeh, Z. Effect of chronic heat stress and long-term feed restriction on broiler performance. Int. J. Poult. Sci. 2006, 5, 185–190. [Google Scholar] [CrossRef]
- Prieto, M.; Campo, J. Effect of heat and several additives related to stress levels on fluctuating asymmetry, heterophil: Lymphocyte ratio, and tonic immobility duration in White Leghorn chicks. Poult. Sci. 2010, 89, 2071–2077. [Google Scholar] [CrossRef]
- Altan, Ö.; Pabuçcuoğlu, A.; Altan, A.; Konyalioğlu, S.; Bayraktar, H. Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br. Poult. Sci. 2003, 44, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox. Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Tang, S.; Song, E.; Yin, B.; Bao, E. Inhibition of heat shock protein 70 intensifies heat-stressed damage and apoptosis of chicken primary myocardial cells in vitro. Mol. Med. Rep. 2017, 15, 2881–2889. [Google Scholar] [CrossRef] [Green Version]
- Turcu, R.P.; Tabuc, C.; Vlaicu, P.A.; Panaite, T.D.; Buleandra, M.; Saracila, M. Effect of the dietary oregano (Origanum vulgare L.) powder and oil on the balance of the intestinal microflora of broilers reared under heat stress (32 °C). Scient. Pap. Ser. D Anim. Sci. 2018, 61, 77–86. [Google Scholar]
- Patra, A.K. Influence of plant bioactive compounds on intestinal epithelial barrier in poultry. Mini Rev. Md. Chem. 2020, 20, 566–577. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, S.; Wang, H.; Piao, X. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: A review. J. Anim. Sci. Biotechnol. 2015, 6, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopi, M.; Karthik, K.; Manjunathachar, H.V.; Tamilmahan, P.; Kesavan, M.; Dashprakash, M.; Balaraju, B.M.; Purushotaman, M.R. Essential oils as a feed additive in poultry nutrition. Adv. Anim. Vet. Sci. 2014, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Krishan, G.; Narang, A. Use of essential oils in poultry nutrition: A new approach. J. Adv. Vet. Anim. Res. 2014, 1, 156–162. [Google Scholar] [CrossRef]
- Eklund, M.; Bauer, E.; Wamatu, J.; Mosenthin, R. Potential nutritional and physiological functions of betaine in livestock. Nutr. Res. Rev. 2005, 18, 31–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, S.A. Betaine in human nutrition. Am. J. Clin. Nutr. 2004, 80, 539–549. [Google Scholar] [CrossRef] [Green Version]
- Snow Setzer, M.; Sharifi-Rad, J.; Setzer, W.N. The search for herbal antibiotics: An in-silico investigation of antibacterial phytochemicals. Antibiotics 2016, 5, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Le, H.H.; Suleria, H.A.; Warner, R.D.; Dunshea, F.R. Dietary betaine reduces the negative effects of cyclic heat exposure on growth performance, blood gas status and meat quality in broiler chickens. Agriculture 2020, 10, 176. [Google Scholar] [CrossRef]
- Al-Hijazeen, M.; Lee, E.J.; Mendonca, A.; Ahn, D.U. Effect of oregano essential oil (Origanum vulgare subsp. hirtum) on the storage stability and quality parameters of ground chicken breast meat. Antioxidants 2016, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Liu, H.; Wang, S.; Wu, J.; Kluenter, A.M. Potential of essential oils for poultry and pigs. Anim. Nutr. 2018, 4, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Saadat Shad, H.; Mazhari, M.; Esmaeilipour, O.; Khosravinia, H. Effects of thymol and carvacrol on productive performance, antioxidant enzyme activity and certain blood metabolites in heat stressed broilers. Iranian J. Appl. Anim. Sci. 2016, 6, 195–202. [Google Scholar]
- Hernandez, C.J.; Guss, J.D.; Luna, M.; Goldring, S.R. Links between the microbiome and bone. J. Bone Miner. Res. 2016, 31, 1638–1646. [Google Scholar] [CrossRef] [PubMed]
- Ueland, P.M. Choline and betaine in health and disease. J. Inherit. Metab. Dis. 2011, 34, 3–15. [Google Scholar] [CrossRef]
- Rao, S.; Raju, M.; Panda, A.; Saharia, P.; Sunder, G.S. Effect of supplementing betaine on performance, carcass traits and immune responses in broiler chicken fed diets containing different concentrations of methionine. Asian-Aust. J. Anim. Sci. 2011, 24, 662–669. [Google Scholar] [CrossRef]
- He, S.; Zhao, S.; Dai, S.; Liu, D.; Bokhari, S.G. Effects of dietary betaine on growth performance, fat deposition and serum lipids in broilers subjected to chronic heat stress. Anim. Sci. J. 2015, 86, 897–903. [Google Scholar] [CrossRef]
- Ratriyanto, A.; Mosenthin, R. Osmoregulatory function of betaine in alleviating heat stress in poultry. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1634–1650. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.; Oleszek, W.; Franz, C.; Hahn, I.; Baser, K.; Mathe, A.; Teichmann, K. Dietary plant bioactives for poultry health and productivity. Br. Poult. Sci. 2010, 51, 461–487. [Google Scholar] [CrossRef] [PubMed]
- Gheisar, M.M.; Hosseindoust, A.; Kim, I. Evaluating the effect of microencapsulated blends of organic acids and essential oils in broiler chickens diet. J. Appl. Poult. Res. 2015, 24, 511–519. [Google Scholar] [CrossRef]
- Cobb-Vantress Inc. Cobb 500 Broiler Performance and Nutrition Supplement. Available online: https://www.cobb-vantress.com/assets/Cobb-Files/product-guides/bdc20a5443/70dec630-0abf-11e9-9c88-c51e407c53ab.pdf (accessed on 20 March 2020).
- Flees, J.; Rajaei-Sharifabadi, H.; Greene, E.; Beer, L.; Hargis, B.M.; Ellestad, L.; Porter, T.; Donoghue, A.; Bottje, W.G.; Dridi, S. Effect of Morinda citrifolia (Noni)-enriched diet on hepatic heat shock protein and lipid metabolism-related genes in heat stressed broiler chickens. Front. Physiol. 2017, 8, 919. [Google Scholar] [CrossRef] [Green Version]
- Baxter, M.F.; Merino-Guzman, R.; Latorre, J.D.; Mahaffey, B.D.; Yang, Y.; Teague, K.D.; Graham, L.; Wolfenden, A.D.; Hernandez-Velasco, X.; Bielke, L.R.; et al. Optimizing fluorescein isothiocyanate dextran measurement as a biomarker in a 24-h feed restriction model to induce gut permeability in broiler chickens. Front. Vet. Sci. 2017, 4, 56. [Google Scholar] [CrossRef] [PubMed]
- Merino-Guzmán, R.; Latorre, J.D.; Delgado, R.; Hernandez-Velasco, X.; Wolfenden, A.D.; Teague, K.D.; Graham, L.E.; Mahaffey, B.D.; Baxter, M.F.; Hargis, B.M.; et al. Comparison of total immunoglobulin A levels in different samples in Leghorn and broiler chickens. Asian Pac. J. Trop. Biomed. 2017, 7, 116–120. [Google Scholar] [CrossRef]
- Gautier, A.; Walk, C.; Dilger, R.N. Influence of dietary calcium concentrations and the calcium-to-non-phytate phosphorus ratio on growth performance, bone characteristics, and digestibility in broilers. Poult. Sci. 2017, 96, 2795–2803. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS User Guide; SAS Institute Inc.: Cary, NC, USA, 2004; p. 5136. [Google Scholar]
- Tekce, E.; Gül, M. Effects of Origanum syriacum essential oil added in different levels to the diet of broilers under heat stress on performance and intestinal histology. Europ. Poult. Sci. 2016, 80, 1–11. [Google Scholar] [CrossRef]
- Çiftçi, M.; Şimşek, Ü.G.; Azman, M.A.; Çerçi, I.H.; Tonbak, F. The effects of dietary rosemary (Rosmarinus officinalis L.) oil supplementation on performance, carcass traits and some blood parameters of Japanese quail under heat stressed condition. Kafkas Univ. Vet. Fak. Derg. 2013, 19, 595–599. [Google Scholar] [CrossRef] [Green Version]
- Akit, M.; Yalҫin, S.; Özkan, S.; Metin, K.; Özdemir, D. Effects of temperature during rearing and crating on stress parameters and meat quality of broilers. Poult. Sci. 2006, 85, 1867–1874. [Google Scholar] [CrossRef]
- Suarez-Bregua, P.; Guerreiro, P.M.; Rotllant, J. Stress, glucocorticoids and bone: A review from mammals and fish. Front. Endocrinol. 2018, 9, 526. [Google Scholar] [CrossRef]
- Rajaei-Sharifabadi, H.; Greene, E.; Piekarski, A.; Falcon, D.; Ellestad, L.; Donoghue, A.; Bottje, W.; Porter, T.; Liang, Y.; Dridi, S. Surface wetting strategy prevents acute heat exposure-induced alterations of hypothalamic stress-and metabolic-related genes in broiler chickens. J. Anim. Sci. 2017, 95, 1132–1143. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Jiao, H.; Song, Z.; Zhao, J.; Wang, X.; Lin, H. Heat stress impairs mitochondria functions and induces oxidative injury in broiler chickens. J. Anim. Sci. 2015, 93, 2144–2153. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Wang, L.; Wen, A.; Wang, L.; Jin, G. Dietary glutamine supplementation improves growth performance, meat quality and colour stability of broilers under heat stress. Br. Poult. Sci. 2009, 50, 333–340. [Google Scholar] [CrossRef]
- Alirezaei, M.; Gheisari, H.R.; Ranjbar, V.R.; Hajibemani, A. Betaine: A promising antioxidant agent for enhancement of broiler meat quality. Brit. Poult. Sci. 2012, 53, 699–707. [Google Scholar] [CrossRef] [PubMed]
- McDevitt, R.; Mack, S.; Wallis, I. Can betaine partially replace or enhance the effect of methionine by improving broiler growth and carcase characteristics? Br. Poult. Sci. 2000, 41, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Aditya, S.; Ohh, S.-J.; Ahammed, M.; Lohakare, J. Supplementation of grape pomace (Vitis vinifera) in broiler diets and its effect on growth performance, apparent total tract digestibility of nutrients, blood profile, and meat quality. Anim. Nutr. 2018, 4, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Ruff, J.; Barros, T.L.; Tellez, G., Jr.; Blankenship, J.; Lester, H.; Graham, B.D.; Selby, C.A.M.; Vuong, C.N.; Dridi, S.; Greene, E.S.; et al. Research Note: Evaluation of a heat stress model to induce gastrointestinal leakage in broiler chickens. Poult. Sci. 2020, 99, 1687–1692. [Google Scholar] [CrossRef]
- Mehmood, F.; Aurangzeb, M.; Manzoor, F.; Fazal, S. A comparative study of in vitro total antioxidant capacity, in vivo antidiabetic and antimicrobial activity of essential oils from leaves and seeds of Zanthoxylum armatum DC. Asian J. Chem. 2013, 25, 10221. [Google Scholar] [CrossRef]
- Proestos, C.; Lytoudi, K.; Mavromelanidou, O.K.; Zoumpoulakis, P.; Sinanoglou, V.J. Antioxidant capacity of selected plant extracts and their essential oils. Antioxidants 2013, 2, 11–22. [Google Scholar] [CrossRef]
- Alavi, L.; Barzegar, M.; Jabbari, A.; Naghdi, B.H. The effect of heat treatment on chemical composition and antioxidant property of Lippia citriodora essential oil. J. Med. Plants 2011, 10, 65–75. [Google Scholar]
- Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Jovin, E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem. 2007, 55, 7879–7885. [Google Scholar] [CrossRef] [PubMed]
- Mueller, K.; Blum, N.M.; Kluge, H.; Mueller, A.S. Influence of broccoli extract and various essential oils on performance and expression of xenobiotic-and antioxidant enzymes in broiler chickens. Br. J. Nutr. 2012, 108, 588–602. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, A.P.; Silva, N.d.F.; Andrade, E.H.A.; Gratieri, T.; Setzer, W.N.; Maia, J.G.S.; Da Silva, J.K.R. Tyrosinase inhibitory activity, molecular docking studies and antioxidant potential of chemotypes of Lippia origanoides (Verbenaceae) essential oils. PLoS ONE 2017, 12, e0175598. [Google Scholar] [CrossRef]
- Erkan, N.; Ayranci, G.; Ayranci, E. Antioxidant activities of rosemary (Rosmarinus Officinalis, L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem. 2008, 110, 76–82. [Google Scholar] [CrossRef]
- Gachkar, L.; Yadegari, D.; Rezaei, M.B.; Taghizadeh, M.; Astaneh, S.A.; Rasooli, I. Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chem. 2007, 102, 898–904. [Google Scholar] [CrossRef]
- Stashenko, E.; Ruiz, C.; Muñoz, A.; Castañeda, M.; Martínez, J. Composition and antioxidant activity of essential oils of Lippia origanoides HBK grown in Colombia. Nat. Prod. Commun. 2008, 3. [Google Scholar] [CrossRef] [Green Version]
- Guldiken, B.; Toydemir, G.; Nur Memis, K.; Okur, S.; Boyacioglu, D.; Capanoglu, E. Home-processed red beetroot (Beta vulgaris L.) products: Changes in antioxidant properties and bioaccessibility. Int. J. Mol. Sci. 2016, 17, 858. [Google Scholar] [CrossRef] [PubMed]
- Raish, M.; Ahmad, A.; Ansari, M.A.; Alkharfy, K.M.; Ahad, A.; Khan, A.; Ali, N.; Ganaie, M.A.; Hamidaddin, M.A.A. Beetroot juice alleviates isoproterenol-induced myocardial damage by reducing oxidative stress, inflammation, and apoptosis in rats. 3 Biotech. 2019, 9, 147. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Shi, J.; Xie, S.-Y.; Zhang, T.-Y.; Soladoye, O.P.; Aluko, R.E. Red beetroot betalains: Perspectives on extraction, processing, and potential health benefits. J. Agric. Food Chem. 2020, 68, 11595–11611. [Google Scholar] [CrossRef]
- Lancaster, J.R., Jr. Historical origins of the discovery of mammalian nitric oxide (nitrogen monoxide) production/physiology/pathophysiology. Biochem. Pharmacol. 2020, 176, 113793. [Google Scholar] [CrossRef] [PubMed]
- Lidder, S.; Webb, A.J. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate-nitrite-nitric oxide pathway. Br. J. Clin. Pharmacol. 2013, 75, 677–696. [Google Scholar] [CrossRef] [Green Version]
- Solis-Cruz, B.; Hernandez-Patlan, D.; Petrone, V.M.; Pontin, K.P.; Latorre, J.D.; Beyssac, E.; Hernandez-Velasco, X.; Merino-Guzman, R.; Owens, C.; Hargis, B.M.; et al. Evaluation of cellulosic polymers and curcumin to reduce aflatoxin B1 toxic effects on performance, biochemical, and immunological parameters of broiler chickens. Toxins 2019, 11, 121. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Patlan, D.; Solís-Cruz, B.; Pontin, K.P.; Latorre, J.D.; Baxter, M.F.A.; Hernandez-Velasco, X.; Merino-Guzman, R.; Méndez-Albores, A.; Hargis, B.M.; Lopez-Arellano, R.; et al. Evaluation of the dietary supplementation of a formulation containing ascorbic acid and a solid dispersion of curcumin with boric acid against Salmonella Enteritidis and necrotic enteritis in broiler chickens. Animals 2019, 9, 184. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Patlan, D.; Solis-Cruz, B.; Pontin, K.P.; Hernandez-Velasco, X.; Merino-Guzman, R.; Adhikari, B.; Lopez-Arellano, R.; Kwon, Y.M.; Hargis, B.M.; Arreguin-Nava, M.A.; et al. Impact of a Bacillus direct-fed microbial on growth performance, intestinal barrier integrity, necrotic enteritis lesions and ileal microbiota in broiler chickens using a laboratory challenge model. Front. Vet. Sci. 2019, 6, 108. [Google Scholar] [CrossRef] [PubMed]
- Attia, Y.; Hassan, R.; Qota, E. Recovery from adverse effects of heat stress on slow-growing chicks in the tropics 1: Effect of ascorbic acid and different levels of betaine. Trop. Anim. Health Prod. 2009, 41, 807–818. [Google Scholar] [CrossRef]
- Droke, E.A.; Hager, K.A.; Lerner, M.R.; Lightfoot, A.S.; Stoecker, B.J.; Brackett, D.J.; Smith, B.J. Soy isoflavones avert chronic inflammation-induced bone loss and vascular disease. J. Inflamm. 2007, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, M.; Puleo, D. Infection, inflammation, and bone regeneration: A paradoxical relationship. J. Dent. Res. 2011, 90, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.-L.; Yeh, J.; Samathanam, C.; Cao, J.; Stoecker, B.; Dagda, R.; Chyu, M.-C.; Dunn, D.M.; Wang, J.-S. Green tea polyphenols attenuate deterioration of bone microarchitecture in female rats with systemic chronic inflammation. Osteoporosis Int. 2011, 22, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, C.; Sjögren, K. Effects of the gut microbiota on bone mass. Trends Endocrinol. Metab. 2015, 26, 69–74. [Google Scholar] [CrossRef]
- Zaiss, M.M.; Jones, R.M.; Schett, G.; Pacifici, R. The gut-bone axis: How bacterial metabolites bridge the distance. J. Clin. Invest. 2019, 129, 3018–3028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Feed Ingredients | Stater Phase (d 1 to 7) | Grower Phase (d 8 to 14) | Finisher Phase (d 15 to 25) |
---|---|---|---|
Ingredients (%) | |||
Corn | 51.80 | 57.81 | 59.64 |
Soybean meal | 37.66 | 31.62 | 27.23 |
DDGS 8.1% EE | 4.00 | 4.00 | 6.00 |
Poultry fat | 3.24 | 3.44 | 4.38 |
Limestone | 1.01 | 1.06 | 1.03 |
Dicalcium phosphate | 1.00 | 0.88 | 0.64 |
Salt | 0.35 | 0.35 | 0.31 |
DL-methionine | 0.29 | 0.31 | 0.28 |
L-lysine HCl | 0.12 | 0.13 | 0.12 |
Mineral premix b | 0.10 | 0.10 | 0.10 |
Vitamin premix a | 0.10 | 0.10 | 0.10 |
L-threonine | 0.08 | 0.09 | 0.09 |
Choline chloride | 0.06 | 0.06 | 0.05 |
Sodium bicarbonate | 0.04 | 0.05 | 0.03 |
Antioxidant c | 0.15 | 0.15 | 0.15 |
Total | 100 | 100 | 100 |
Calculated analysis | |||
ME (kcal/kg) | 3015.00 | 3090.00 | 3175.00 |
Ether extract (%) | 5.88 | 6.20 | 7.28 |
Crude protein (%) | 22.30 | 20.00 | 18.70 |
Lysine (%) | 1.18 | 1.05 | 0.95 |
Methionine (%) | 0.59 | 0.53 | 0.48 |
Threonine (%) | 0.77 | 0.69 | 0.65 |
Tryptophan (%) | 0.25 | 0.22 | 0.20 |
Total calcium (%) | 0.90 | 0.84 | 0.76 |
Total phosphorus (%) | 0.63 | 0.58 | 0.53 |
Available phosphorus (%) | 0.45 | 0.42 | 0.38 |
Sodium (%) | 0.20 | 0.20 | 0.18 |
Potassium (%) | 1.06 | 0.94 | 0.87 |
Chloride (%) | 0.27 | 0.28 | 0.25 |
Magnesium (%) | 0.19 | 0.18 | 0.17 |
Copper (%) | 19.20 | 18.46 | 18.85 |
Selenium (%) | 0.28 | 0.27 | 0.26 |
Linoleic acid (%) | 1.01 | 1.13 | 1.16 |
Performance Parameter | Heat Stress Control | Lippia origanoides (37 ppm) | L. origanoides *, R. officinalis, Beetroot | L. origanoides *, R. officinalis, Natural Betaine | Pooled SEM | p-Value |
---|---|---|---|---|---|---|
BW, g/broiler | ||||||
d 0 | 43.62 | 43.20 | 43.71 | 43.82 | 0.98 | 0.1457 |
d 21 | 612.30 b | 689.41 a | 680.24 a | 695.20 a | 28.90 | 0.0002 |
d 42 | 2119.20 c | 2329.90 ab | 2242.11 ab | 2380.75 a | 125.42 | 0.0001 |
Accumulated BWG, g/broiler | ||||||
d 0 to 21 | 569.30 b | 646.41 a | 637.24 a | 652.20 a | 26.78 | 0.0001 |
d 0 to 42 | 2016.20 c | 2286.90 ab | 2199.11 ab | 2337.75 a | 119.87 | 0.0002 |
FI, g/broiler | ||||||
d 0 to 21 | 790.30 b | 910.41 a | 891.24 a | 930.20 a | 32.40 | 0.0001 |
d 0 to 42 | 4110.20 c | 4355.90 ab | 4125.11 bc | 4284.75 a | 230.56 | 0.0002 |
Accumulated FCR | ||||||
d 0 to 21 | 1.30 | 1.32 | 1.31 | 1.33 | 0.87 | 0.1689 |
d 0 to 42 | 1.94 a | 1.87 b | 1.84 b | 1.80 b | 0.92 | 0.0001 |
Carcass component weights (g) at day 42 | ||||||
Live weight | 2156.25 c | 2240.91 bc | 2361.15 ab | 2423.30 a | 201.36 | 0.0001 |
Hot carcass | 1640.88 c | 1688.86 bc | 1788.49 ab | 1836.98 a | 187.32 | 0.0002 |
Chilled carcass | 1687.38 b | 1731.16 b | 1847.51 a | 1885.35 a | 198.86 | 0.0001 |
Wing | 180.85 c | 183.57 bc | 189.55 ab | 196.83 a | 20.13 | 0.0001 |
Breast | 330.02 b | 336.30 b | 371.98 a | 380.65 a | 31.10 | 0.0001 |
Leg and quarter | 534.40 c | 548.98 bc | 579.13 ab | 588.65 a | 42.02 | 0.0002 |
Variable | Heat Stress Control | Lippia origanoides (37 ppm) | * L. origanoides, R. officinalis, Beetroot | * L. origanoides, R. officinalis, Natural Betaine | Pooled SEM | p-Value |
---|---|---|---|---|---|---|
Body core temperature (°C) | 42.36 a | 42.35 a | 41.98 b | 41.98 b | 0.83 | 0.0001 |
Serum FITC-d (ng/mL) | ||||||
d 21 | 264 a | 288 a | 152 b | 251 b | 95 | 0.0001 |
d 42 | 245 a | 165 b | 137 bc | 129 c | 82 | 0.0002 |
SOD (U/mL) | ||||||
d 21 | 7.35 b | 8.66 a | 8.55 a | 9.01 a | 0.45 | 0.0001 |
d 42 | 8.45 b | 9.73 a | 10.05 a | 10.85 a | 0.61 | 0.0002 |
IFN-γ (pg/ml) | ||||||
d 21 | 134 a | 118 b | 112 b | 116 b | 17 | 0.0001 |
d 42 | 251 a | 131 b | 122 b | 133 b | 22 | 0.0002 |
IgA (ng/mL) | ||||||
d 21 | 14 a | 8 b | 9 b | 8 b | 0.38 | 0.0001 |
d 42 | 16 a | 9 b | 10 b | 9 b | 0.53 | 0.0001 |
Tibia break strength (kg) | ||||||
d 21 | 13.79 b | 15.69 a | 16.09 a | 15.99 a | 1.12 | 0.0001 |
d 42 | 22.37 b | 29.17 a | 30.37 a | 31.37 a | 2.05 | 0.0002 |
Total ash from tibia (%) | ||||||
d 21 | 50.57 b | 51.67 b | 52.67 a | 53.77 a | 0.49 | 0.0001 |
d 42 | 52.33 b | 53.34 ab | 54.34 a | 55.04 a | 0.31 | 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruff, J.; Tellez, G., Jr.; Forga, A.J.; Señas-Cuesta, R.; Vuong, C.N.; Greene, E.S.; Hernandez-Velasco, X.; Uribe, Á.J.; Martínez, B.C.; Angel-Isaza, J.A.; et al. Evaluation of Three Formulations of Essential Oils in Broiler Chickens under Cyclic Heat Stress. Animals 2021, 11, 1084. https://doi.org/10.3390/ani11041084
Ruff J, Tellez G Jr., Forga AJ, Señas-Cuesta R, Vuong CN, Greene ES, Hernandez-Velasco X, Uribe ÁJ, Martínez BC, Angel-Isaza JA, et al. Evaluation of Three Formulations of Essential Oils in Broiler Chickens under Cyclic Heat Stress. Animals. 2021; 11(4):1084. https://doi.org/10.3390/ani11041084
Chicago/Turabian StyleRuff, Jared, Guillermo Tellez, Jr., Aaron J. Forga, Roberto Señas-Cuesta, Christine N. Vuong, Elizabeth S. Greene, Xochitl Hernandez-Velasco, Álvaro J. Uribe, Blanca C. Martínez, Jaime A. Angel-Isaza, and et al. 2021. "Evaluation of Three Formulations of Essential Oils in Broiler Chickens under Cyclic Heat Stress" Animals 11, no. 4: 1084. https://doi.org/10.3390/ani11041084
APA StyleRuff, J., Tellez, G., Jr., Forga, A. J., Señas-Cuesta, R., Vuong, C. N., Greene, E. S., Hernandez-Velasco, X., Uribe, Á. J., Martínez, B. C., Angel-Isaza, J. A., Dridi, S., Maynard, C. J., Owens, C. M., Hargis, B. M., & Tellez-Isaias, G. (2021). Evaluation of Three Formulations of Essential Oils in Broiler Chickens under Cyclic Heat Stress. Animals, 11(4), 1084. https://doi.org/10.3390/ani11041084