British Sheep Breeds as a Part of World Sheep Gene Pool Landscape: Looking into Genomic Applications
Abstract
:Simple Summary
Abstract
1. Introduction
2. Geographical Distribution
2.1. British Isles
2.2. Outside Britain
3. Phenotypic Diversity
4. Conservation Issues: To Breed or Not to Breed
5. Sheep Breed Diversity and Genomic Research
5.1. Genetic Diversity, QTL and Candidate Gene Characterization
5.2. Genomic Applications
5.2.1. SNPs
5.2.2. Whole Genome Sequencing
5.3. British Sheep Genome Studies
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Youatt, W. Sheep: Their Breeds, Management, and Diseases: To Which Is Added the Mountain Shepherd’s Manual; Baldwin and Cradock: London, UK, 1837. [Google Scholar]
- Ryder, M.L. The history of sheep breeds in Britain. Agric. Hist. Rev. 1964, 12, 1–12, 65–82. [Google Scholar]
- Ryder, M.L. A survey of European primitive breeds of sheep. Ann. Genet. Sel. Anim. 1981, 13, 381–418. [Google Scholar] [CrossRef]
- World Watch List for Domestic Animal Diversity, 3rd ed.; Scherf, B.D. (Ed.) FAO: Rome, Italy, 2000. [Google Scholar]
- Green, K. Shaggy sheep stories. Ctry. Life 2017, 121, 68–72. [Google Scholar]
- The Natural Fibre Company. Meet the Animals. Available online: https://www.thenaturalfibre.co.uk/meet-the-animals (accessed on 3 February 2021).
- National Sheep Association. Sheep Breeds. Available online: https://www.nationalsheep.org.uk/uk-sheep-industry/sheep-in-the-uk/sheep-breeds/ (accessed on 3 February 2021).
- Schoenian, S. Border Cheviot. Sheep Breeds C. Sheep101.info. Available online: http://www.sheep101.info/breedsB.html#Cheviot (accessed on 3 February 2021).
- Rare Breeds Survival Trust. Sheep Watchlist. Available online: https://www.rbst.org.uk/Pages/Category/sheep-watchlist (accessed on 3 February 2021).
- Beynon, S.E.; Slavov, G.T.; Farré, M.; Sunduimijid, B.; Waddams, K.; Davies, B.; Haresign, W.; Kijas, J.; MacLeod, I.M.; Newbold, C.J.; et al. Population structure and history of the Welsh sheep breeds determined by whole genome genotyping. BMC Genet. 2015, 16, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, E.L.; Bush, S.J.; McCulloch, M.E.B.; Farquhar, I.L.; Young, R.; Lefevre, L.; Pridans, C.; Tsang, H.G.; Wu, C.; Afrasiabi, C.; et al. A high resolution atlas of gene expression in the domestic sheep (Ovis aries). PLoS Genet. 2017, 13, e1006997. [Google Scholar] [CrossRef] [Green Version]
- Barbato, M.; Hailer, F.; Orozco-terWengel, P.; Kijas, J.; Mereu, P.; Cabras, P.; Mazza, R.; Pirastru, M.; Bruford, M.W. Genomic signatures of adaptive introgression from European mouflon into domestic sheep. Sci. Rep. 2017, 7, 7623. [Google Scholar] [CrossRef] [Green Version]
- Department for Environment, Food & Rural Affairs. National Statistics: Farming Statistics—Final Crop Areas, Yields, Livestock Populations and Agricultural Workforce at 1 June 2019—UK. Last Updated 14 February 2020. Available online: https://www.gov.uk/government/statistics/farming-statistics-final-crop-areas-yields-livestock-populations-and-agricultural-workforce-at-1-june-2019-uk (accessed on 3 February 2021).
- National Sheep Association. Sheep Breeders Round Table. Available online: https://www.nationalsheep.org.uk/sbrt/ (accessed on 3 February 2021).
- Kijas, J.W.; Townley, D.; Dalrymple, B.P.; Heaton, M.P.; Maddox, J.F.; McGrath, A.; Wilson, P.; Ingersoll, R.G.; McCulloch, R.; McWilliam, S.; et al. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS ONE 2009, 4, e4668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larkin, D.M.; Yudin, N.S. The genomes and history of domestic animals. Mol. Gen. Microbiol. Virol. 2016, 31, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Carson, A.; Elliott, M.; Groom, J.; Winter, A.; Bowles, D. Geographical isolation of native sheep breeds in the UK-Evidence of endemism as a risk factor to genetic resources. Livest. Sci. 2009, 123, 288–299. [Google Scholar] [CrossRef]
- FAO. Domestic Animal Diversity Information System (DAD-IS). Available online: http://www.fao.org/dad-is/en/ (accessed on 14 February 2021).
- Deikhman, E.K. Organization of Work at a Sheep Farm; OGIZ–Selkhozgiz: Moscow, Russia, 1947; 120p. [Google Scholar]
- All-Union Agricultural Exhibition of 1954; Ministry of Agriculture of the USSR: Moscow, Russia, 1955; 118p.
- Ivanov, M.F. Sheep Farming. In Complete Works, in 7 Volumes; Greben, L.K., Ed.; Selkhozgiz: Moscow, Russia, 1964; Volume 4, 779p. [Google Scholar]
- Semyonov, S.I.; Selkin, I.I. Sheep. In Animal Genetic Resources of the USSR; Dmitriev, N.G., Ernst, L.K., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 1989; Volume 65, Chapter 4; pp. 154–271. [Google Scholar]
- Kaneva, L.A.; Zharikov, Y.A.; Matyukov, V.S. Zootechnical characteristics of Pechora meat-wool semi-fine-fleece wool sheep. Agrarnaya Nauka Evro Severo Vostoka 2014, 5, 58–63. [Google Scholar] [CrossRef]
- Yearbook on Breeding Work in Sheep and Goat Farming in the Farms of the Russian Federation (2019); All-Russian Research Institute of Animal Breeding: Moscow, Russia, 2020; 344p.
- Kuleshov, P.N. Value of Merino and English Meat Breeds in Improving Sheep Farming in the USSR; Moscow Higher Zootechnical Institute: Moscow, Russia, 1926; 16p. [Google Scholar]
- Kuleshov, P.N. Meat-and-Wool Sheep Breeding; Selkhozgiz: Moscow, Russia, 1933; 112p. [Google Scholar]
- Glembotsky, Y.L.; Deikhman, E.K.; Esaulov, P.A. Breeding in Sheep Farming: Achievements in Developing New Sheep Breeds and Improving Existing Ones; Selhozgiz: Moscow, Russia, 1946; 151p. [Google Scholar]
- Ostrovsky, A.V. Universal Reference Book on the History of Russia: With Tables, Diagrams and Dictionaries; Paritet: St. Petersburg, Russia, 2000; 384p. [Google Scholar]
- Luschihina, E.M. Sheep breed resources of Kyrgyzstan. In Collection of Scientific Papers Based on the International Coordination Congress of Scientists Sheep Breeders 2013; Collection of Proceedings of SNIIZHK; Stavropol Research Institute of Animal Husbandry and Food Production: Stavropol, Russia, 2013; pp. 67–80. [Google Scholar]
- Bowles, D. Recent advances in understanding the genetic resources of sheep breeds locally-adapted to the UK uplands: Opportunities they offer for sustainable productivity. Front. Genet. 2015, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Boettcher, P.; Haile, A.; Hall, K.; Miller, J.L.; Mirkena, T.; Scherf, B.; Wurzinger, M. Animal genetic resources and adaptation. In The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; Scherf, B.D., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2015; p. 87. [Google Scholar]
- Baylis, M.; Chihota, C.; Stevenson, E.; Goldmann, W.; Smith, A.; Sivam, K.; Tongue, S.; Gravenor, M.B. Risk of scrapie in British sheep of different prion protein genotype. J. Gen. Virol. 2004, 85, 2735–2740. [Google Scholar] [CrossRef]
- Goldmann, W.; Baylis, M.; Chihota, C.; Stevenson, E.; Hunter, N. Frequencies of PrP gene haplotypes in British sheep flocks and the implications for breeding programmes. J. Appl. Microbiol. 2005, 98, 1294–1302. [Google Scholar] [CrossRef]
- Roden, J.A.; Nieuwhof, G.J.; Bishop, S.C.; Jones, D.A.; Haresign, W.; Gubbins, S. Breeding programmes for TSE resistance in British sheep. I. Assessing the impact on prion protein (PrP) genotype frequencies. Prev. Vet. Med. 2006, 73, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Tongue, S.C.; Pfeiffer, D.U.; Shearn, P.D.; Wilesmith, J.W. PrP genotype: A flock-level risk factor for scrapie? Prev. Vet. Med. 2009, 92, 309–323. [Google Scholar] [CrossRef]
- Saunders, G.C.; Cawthraw, S.; Mountjoy, S.J.; Hope, J.; Windl, O. PrP genotypes of atypical scrapie cases in Great Britain. J. Gen. Virol. 2006, 87, 3141–3149. [Google Scholar] [CrossRef] [PubMed]
- Weigend, S.; Romanov, M.N. The World Watch List for Domestic Animal Diversity in the context of conservation and utilisation of poultry biodiversity. Worlds Poult. Sci. J. 2002, 58, 519–538. [Google Scholar] [CrossRef]
- Gaouar, S.B.; Da Silva, A.; Ciani, E.; Kdidi, S.; Aouissat, M.; Dhimi, L.; Lafri, M.; Maftah, A.; Mehtar, N. Admixture and local breed marginalization threaten Algerian sheep diversity. PLoS ONE 2015, 10, e0122667. [Google Scholar] [CrossRef] [Green Version]
- Yurchenko, A.; Yudin, N.; Aitnazarov, R.; Plyusnina, A.; Brukhin, V.; Soloshenko, V.; Lhasaranov, B.; Popov, R.; Paronyan, I.A.; Plemyashov, K.V.; et al. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity 2018, 120, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, A.A.; Daetwyler, H.D.; Yudin, N.; Schnabel, R.D.; Vander Jagt, C.J.; Soloshenko, V.; Lhasaranov, B.; Popov, R.; Taylor, J.F.; Larkin, D.M. Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation. Sci. Rep. 2018, 8, 12984. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, H.; Boettcher, P.; Oldenbroek, K. Conservation. In The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; Scherf, B.D., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2015; pp. 522–523. [Google Scholar]
- Romanov, M.N.; Wezyk, S.; Cywa-Benko, K.; Sakhatsky, N.I. Poultry genetic resources in the countries of Eastern Europe—History and current state. Poult. Avian Biol. Rev. 1996, 7, 1–29. [Google Scholar]
- Shahbazi, S.; Mirhosseini, S.Z.; Romanov, M.N. Genetic diversity in five Iranian native chicken populations estimated by microsatellite markers. Biochem. Genet. 2007, 45, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Freking, B.A.; Murphy, S.K.; Wylie, A.A.; Rhodes, S.J.; Keele, J.W.; Leymaster, K.A.; Jirtle, R.L.; Smith, T.P. Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Res. 2002, 12, 1496–1506. [Google Scholar] [CrossRef] [Green Version]
- Mucha, S.; Bunger, L.; Conington, J. Genome-wide association study of footrot in Texel sheep. Genet. Sel. Evol. 2015, 47, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamorano, M.J.; Ruiter, J.; Townsend, S.; Cruickshank, R.; Bruford, M.; Byrne, K.; Rodero, A.; Vega-Pla, J.L. Polimorfismos de DNA en las razas ovinas Merino y Churra lebrijana: DNA polymorphisms in Merino and Churra lebrijana Sheep breeds. Arch. Zoot. 1998, 47, 267–272. [Google Scholar]
- Peter, C.; Bruford, M.; Perez, T.; Dalamitra, S.; Hewitt, G.; Erhardt, G.; Econogene Consortium. Genetic diversity and subdivision of 57 European and Middle-Eastern sheep breeds. Anim. Genet. 2007, 38, 37–44. [Google Scholar] [CrossRef]
- Lawson Handley, L.J.; Byrne, K.; Santucci, F.; Townsend, S.; Taylor, M.; Bruford, M.W.; Hewitt, G.M. Genetic structure of European sheep breeds. Heredity 2007, 99, 620–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo-Almeida, P.A. Diversidade Genética e Diferenciação das Raças Portuguesas de Ovinos com Base em Marcadores de DNA–Microssatélites: Uma Perspectiva de Conservação. Tese de Doutorado em Ciência Animal, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal, 2007. [Google Scholar]
- Bowles, D.; Carson, A.; Isaac, P. Genetic distinctiveness of the Herdwick sheep breed and two other locally adapted hill breeds of the UK. PLoS ONE 2014, 9, e87823. [Google Scholar] [CrossRef]
- Bruford, M.; Townsend, S.J. Mitochondrial DNA diversity in modern sheep: Implications for domestication. In Documenting Domestication: New Genetic and Archaeological Paradigms; Zeder, M.A., Bradley, D.G., Emshwiller, E., Smith, B.D., Eds.; University of California Press: Berkeley, CA, USA, 2006; pp. 307–317. [Google Scholar] [CrossRef]
- Pariset, L.; Mariotti, M.; Gargani, M.; Joost, S.; Negrini, R.; Perez, T.; Bruford, M.; Ajmone Marsan, P.; Valentini, A. Genetic diversity of sheep breeds from Albania, Greece, and Italy assessed by mitochondrial DNA and nuclear polymorphisms (SNPs). Sci. World J. 2011, 11, 1641–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, F.H.; Peng, W.F.; Yang, J.; Zhao, Y.X.; Li, W.R.; Liu, M.J.; Ma, Y.H.; Zhao, Q.J.; Yang, G.L.; Wang, F.; et al. Mitogenomic meta-analysis identifies two phases of migration in the history of Eastern Eurasian sheep. Mol. Biol. Evol. 2015, 32, 2515–2533. [Google Scholar] [CrossRef] [Green Version]
- Chessa, B.; Pereira, F.; Arnaud, F.; Amorim, A.; Goyache, F.; Mainland, I.; Kao, R.R.; Pemberton, J.M.; Beraldi, D.; Stear, M.J.; et al. Revealing the history of sheep domestication using retrovirus integrations. Science 2009, 324, 532–536. [Google Scholar] [CrossRef] [Green Version]
- Matika, O.; Sechi, S.; Pong-Wong, R.; Houston, R.D.; Clop, A.; Woolliams, J.A.; Bishop, S.C. Characterization of OAR1 and OAR18 QTL associated with muscle depth in British commercial terminal sire sheep. Anim. Genet. 2011, 42, 172–180. [Google Scholar] [CrossRef]
- Mullen, M.P.; Hanrahan, J.P.; Howard, D.J.; Powell, R. Investigation of prolific sheep from UK and Ireland for evidence on origin of the mutations in BMP15 (FecXG, FecXB) and GDF9 (FecGH) in Belclare and Cambridge sheep. PLoS ONE 2013, 8, e53172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stear, A.; Ali, A.O.A.; Brujeni, G.N.; Buitkamp, J.; Donskow-Łysoniewska, K.; Fairlie-Clarke, K.; Groth, D.; Isa, N.M.M.; Stear, M.J. Identification of the amino acids in the Major Histocompatibility Complex class II region of Scottish Blackface sheep that are associated with resistance to nematode infection. Int. J. Parasitol. 2019, 49, 797–804. [Google Scholar] [CrossRef]
- Wilkie, H.; Riggio, V.; Matika, O.; Nicol, L.; Watt, K.A.; Sinclair, R.; Sparks, A.M.; Nussey, D.H.; Pemberton, J.M.; Houston, R.D.; et al. A candidate gene approach to study nematode resistance traits in naturally infected sheep. Vet. Parasitol. 2017, 243, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Cinar, M.U.; Mousel, M.R.; Herndon, M.K.; Taylor, J.B.; White, S.N. Association of TMEM8B and SPAG8 with mature weight in sheep. Animals 2020, 10, 2391. [Google Scholar] [CrossRef] [PubMed]
- International Sheep Genomics Consortium; Archibald, A.L.; Cockett, N.E.; Dalrymple, B.P.; Faraut, T.; Kijas, J.W.; Maddox, J.F.; McEwan, J.C.; Hutton Oddy, V.; Raadsma, H.W.; et al. The sheep genome reference sequence: A work in progress. Anim. Genet. 2010, 41, 449–453. [Google Scholar] [CrossRef]
- Jiang, Y.; Xie, M.; Chen, W.; Talbot, R.; Maddox, J.F.; Faraut, T.; Wu, C.; Muzny, D.M.; Li, Y.; Zhang, W.; et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 2014, 344, 1168–1173. [Google Scholar] [CrossRef] [Green Version]
- Worley, K.C.; English, A.C.; Richards, S.; Ross-Ibarra, J.; Han, Y.; Hughes, D.; Deiros, D.R.; Vee, V.; Wang, M.; Boerwinkle, E. Improving Genomes Using Long Reads and PBJelly 2, Proceedings of the International Plant and Animal Genome XXII Conference, San Diego, CA, USA, 10–15 January 2014; Scherago International: San Diego, CA, USA, 2014; Abstract P1033. [Google Scholar]
- National Center for Biotechnology Information, US National Library of Medicine. Genome Assembly: Oar_rambouillet_v1.0. Date: 2 November 2017. Available online: https://www.ncbi.nlm.nih.gov/assembly/GCA_002742125.1 (accessed on 3 February 2021).
- National Center for Biotechnology Information, US National Library of Medicine. Genome Assembly: ASM1117029v1. Date: 11 March 2020. Available online: https://www.ncbi.nlm.nih.gov/assembly/GCA_011170295.1/ (accessed on 3 February 2021).
- McEwan, J.; Dodds, K.; Rowe, S.; Brauning, R.; Clarke, S. Genomic Selection in Sheep: Where to Now? In Proceedings of the Book of Abstracts of the 67th Annual Meeting of the European Federation of Animal Science, Belfast, UK, 29 August–1 September 2016; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; Volume 22, p. 161. [Google Scholar]
- Daetwyler, H.D.; Brauning, R.; Chamberlain, A.J.; McWilliam, S.; McCulloch, A.; Vander Jagt, C.J.; Sunduimijid, B.; Hayes, B.J.; Kijas, J.W. 1000 Bull genomes and SheepGenomesDB projects: Enabling cost-effective sequence level analyses globally. In Proceedings of the 22nd Conference of the Association for the Advancement of Animal Breeding and Genetics (AAABG), Townsville, Australia, 2–5 July 2017; Association for the Advancement of Animal Breeding and Genetics: Armidale, Australia, 2017; Volume 22, pp. 201–204. [Google Scholar]
- Dalrymple, B.P.; Oddy, V.H.; McEwan, J.C.; Kijas, J.W.; Xiang, R.; Bond, J.; Cockett, N.; Worley, K.; Smith, T.; Vercoe, P.E. From sheep SNP chips, genome sequences and transcriptomes via mechanisms to improved sheep breeding and management. In Proceedings of the 21st Conference of the Association for the Advancement of Animal Breeding and Genetics (AAABG), Lorne, Australia, 28–30 September 2015; Association for the Advancement of Animal Breeding and Genetics: Armidale, Australia, 2015; Volume 21, pp. 45–48. [Google Scholar] [CrossRef]
- Murdoch, B.M.; White, S.N.; Mousel, M.R.; Massa, A.T.; Worley, K.C.; Archibald, A.L.; Clark, E.L.; Dalrymple, B.; Kijas, J.W.; Clarke, S.; et al. The Ovine FAANG Project. In Proceedings of the International Plant and Animal Genome XXVI Conference, San Diego, CA, USA, 13–17 January 2018; Scherago International: San Diego, CA, USA, 2018. Abstract W618. [Google Scholar]
- Andersson, L.; Archibald, A.L.; Bottema, C.D.; Brauning, R.; Burgess, S.C.; Burt, D.W.; Casas, E.; Cheng, H.H.; Clarke, L.; Couldrey, C.; et al. Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project. Genome Biol. 2015, 16, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naval-Sanchez, M.; Nguyen, Q.; McWilliam, S.; Porto-Neto, L.R.; Tellam, R.; Vuocolo, T.; Reverter, A.; Perez-Enciso, M.; Brauning, R.; Clarke, S.; et al. Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds. Nat. Commun. 2018, 9, 859. [Google Scholar] [CrossRef]
- Pariset, L.; Cappuccio, I.; Ajmone-Marsan, P.; Bruford, M.; Dunner, S.; Cortes, O.; Erhardt, G.; Prinzenberg, E.M.; Gutscher, K.; Joost, S.; et al. Characterization of 37 breed-specific single-nucleotide polymorphisms in sheep. J. Hered. 2006, 97, 531–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberto, F.J.; Boyer, F.; Orozco-terWengel, P.; Streeter, I.; Servin, B.; de Villemereuil, P.; Benjelloun, B.; Librado, P.; Biscarini, F.; Colli, L.; et al. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 2018, 9, 813. [Google Scholar] [CrossRef]
- Deniskova, T.E.; Dotsev, A.V.; Selionova, M.I.; Kunz, E.; Medugorac, I.; Reyer, H.; Wimmers, K.; Barbato, M.; Traspov, A.A.; Brem, G.; et al. Population structure and genetic diversity of twenty-five Russian sheep breeds based on whole-genome genotyping. Genet. Sel. Evol. 2018, 50, 29. [Google Scholar] [CrossRef] [Green Version]
- Deniskova, T.; Dotsev, A.; Lushihina, E.; Shakhin, A.; Kunz, E.; Medugorac, I.; Reyer, H.; Wimmers, K.; Khayatzadeh, N.; Sölkner, J.; et al. Population structure and genetic diversity of sheep breeds in the Kyrgyzstan. Front. Genet. 2019, 10, 1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kijas, J.W.; Lenstra, J.A.; Hayes, B.; Boitard, S.; Porto Neto, L.R.; San Cristobal, M.; Servin, B.; McCulloch, R.; Whan, V.; Gietzen, K.; et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012, 10, e1001258. [Google Scholar] [CrossRef] [Green Version]
- Kijas, J. ISGC SNP50 HapMap and Sheep Breed Diversity Genotypes. v1. CSIRO. Data Collection. Published 6 May 2013. Available online: https://data.csiro.au/collections/collection/CIcsiro:6494v1 (accessed on 3 February 2021). [CrossRef]
- Chen, Z.H.; Zhang, M.; Lv, F.H.; Ren, X.; Li, W.R.; Liu, M.J.; Nam, K.; Bruford, M.W.; Li, M.H. Contrasting patterns of genomic diversity reveal accelerated genetic drift but reduced directional selection on X-chromosome in wild and domestic sheep species. Genome Biol. Evol. 2018, 10, 1282–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davenport, K.M.; Hiemke, C.; McKay, S.D.; Thorne, J.W.; Lewis, R.M.; Taylor, T.; Murdoch, B.M. Genetic structure and admixture in sheep from terminal breeds in the United States. Anim. Genet. 2020, 51, 284–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Mousel, M.R.; Wu, X.; Michal, J.J.; Zhou, X.; Ding, B.; Dodson, M.V.; El-Halawany, N.K.; Lewis, G.S.; Jiang, Z. Genome-wide genetic diversity and differentially selected regions among Suffolk, Rambouillet, Columbia, Polypay, and Targhee sheep. PLoS ONE 2013, 8, e65942. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Gil, B.; Arranz, J.J.; Pong-Wong, R.; García-Gámez, E.; Kijas, J.; Wiener, P. Application of selection mapping to identify genomic regions associated with dairy production in sheep. PLoS ONE 2014, 9, e94623. [Google Scholar] [CrossRef]
- Gutiérrez-Gil, B.; Esteban-Blanco, C.; Suarez-Vega, A.; Arranz, J.J. Detection of quantitative trait loci and putative causal variants affecting somatic cell score in dairy sheep by using a 50K SNP-Chip and whole genome sequencing. J. Dairy Sci. 2018, 101, 9072–9088. [Google Scholar] [CrossRef] [Green Version]
- Atlija, M.; Arranz, J.J.; Martinez-Valladares, M.; Gutiérrez-Gil, B. Detection and replication of QTL underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50K SNP array. Genet. Sel. Evol. 2016, 48, 4. [Google Scholar] [CrossRef] [Green Version]
- Banos, G.; Bramis, G.; Bush, S.J.; Clark, E.L.; McCulloch, M.E.B.; Smith, J.; Schulze, G.; Arsenos, G.; Hume, D.A.; Psifidi, A. The genomic architecture of mastitis resistance in dairy sheep. BMC Genom. 2017, 18, 624. [Google Scholar] [CrossRef]
- Sheep QTLdb. Animal QTLdb, NAGRP—Bioinformatics Coordination Program. Available online: https://www.animalgenome.org/cgi-bin/QTLdb/OA/index (accessed on 3 February 2021).
- Riggio, V.; Matika, O.; Pong-Wong, R.; Stear, M.J.; Bishop, S.C. Genome-wide association and regional heritability mapping to identify loci underlying variation in nematode resistance and body weight in Scottish Blackface lambs. Heredity 2013, 110, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Riggio, V.; Pong-Wong, R.; Sallé, G.; Usai, M.G.; Casu, S.; Moreno, C.R.; Matika, O.; Bishop, S.C. A joint analysis to identify loci underlying variation in nematode resistance in three European sheep populations. J. Anim. Breed. Genet. 2014, 131, 426–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riggio, V.; Abdel-Aziz, M.; Matika, O.; Moreno, C.R.; Carta, A.; Bishop, S.C. Accuracy of genomic prediction within and across populations for nematode resistance and body weight traits in sheep. Animal 2014, 8, 520–528. [Google Scholar] [CrossRef] [Green Version]
- Keane, O.M.; Hanrahan, J.P.; McRae, K.M.; Good, B. An independent validation study of loci associated with nematode resistance in sheep. Anim. Genet. 2018, 49, 265–268. [Google Scholar] [CrossRef]
- Purfield, D.C.; McParland, S.; Wall, E.; Berry, D.P. The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PLoS ONE 2017, 12, e0176780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Li, W.R.; Lv, F.H.; He, S.G.; Tian, S.L.; Peng, W.F.; Sun, Y.W.; Zhao, Y.X.; Tu, X.L.; Zhang, M.; et al. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Mol. Biol. Evol. 2016, 33, 2576–2592. [Google Scholar] [CrossRef] [Green Version]
- Nosrati, M.; Asadollahpour Nanaei, H.; Amiri Ghanatsaman, Z.; Esmailizadeh, A. Whole genome sequence analysis to detect signatures of positive selection for high fecundity in sheep. Reprod. Domest. Anim. 2019, 54, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xue, X.; Liu, Y.; Abied, A.; Ding, Y.; Zhao, S.; Wang, W.; Ma, L.; Guo, J.; Guan, W.; et al. Genome-wide comparative analyses reveal selection signatures underlying adaptation and production in Tibetan and Poll Dorset sheep. Sci. Rep. 2021, 11, 2466. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information, US National Library of Medicine. BioProject: Search Results. Available online: https://www.ncbi.nlm.nih.gov/bioproject?term=10709[top+bioproject]+NOT+160933[uid] (accessed on 3 February 2021).
- EMBL-EBI. The European Nucleotide Archive (ENA) Browser. Project: PRJEB14685. Available online: https://www.ebi.ac.uk/ena/data/view/PRJEB14685 (accessed on 3 February 2021).
- Li, X.; Yang, J.; Shen, M.; Xie, X.L.; Liu, G.J.; Xu, Y.X.; Lv, F.H.; Yang, H.; Yang, Y.L.; Liu, C.B.; et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 2020, 11, 2815. [Google Scholar] [CrossRef] [PubMed]
Name/Subtype | Alternative Name | Region/Country | Purpose | References |
---|---|---|---|---|
Northern European short-tailed sheep (group of breeds) | — | British Isles, Scandinavia, Germany, Russia | meat, milk, wool | [2,3] |
Bluefaced Leicester | — | England | meat | [4,5,6,7] |
Border Cheviot/Cheviot subtype | South Country Cheviot | England | meat | [8] |
Border Leicester | — | England | meat | [2,4,5,6,7,9] |
British Milksheep | — | England | milk | [7] |
Cambridge | — | England | meat, milk | [1,7] |
Clun Forest | — | England | meat, milk, wool | [1,4,7,10] |
Cotswold | — | England | meat, wool | [1,2,4,5,6,7,9] |
Dalesbred | — | England | meat, wool | [2,7] |
Derbyshire Gritstone | — | England | meat | [1,2,7,9] |
Devon Closewool | — | England | meat | [2,7,9] |
Devon Longwoolled | Devon Longwool, Devon and Cornwall Longwool | England | meat, wool | [1,2,5,6,7,9] |
Dorset | Dorset Horn, Dorset Horned | England | meat | [1,4,9]; Figure S1d,e |
Dorset Down | — | England | meat | [1,2,7,9] |
Easy Care | — | England | meat | [7] |
English Leicester | Bakewell Leicester, Dishley Leicester, Improved Leicester, Leicester, Leicester Longwool, New Leicester | England | meat | [1,2,4,6,9]; Figure S1h,i |
Exlana | — | England | meat | [7] |
Exmoor Horn | — | England | meat | [1,5,7] |
Greyface Dartmoor | — | England | meat | [1,5,9] |
Hampshire | Hampshire Down | England | meat | [1,4,7] |
Herdwick | — | England | meat | [1,5,6,7] |
Lincoln | Lincoln Longwool | England | wool | [1,4,9] |
Lonk | Improved Haslingden | England | meat, wool | [5,7,9] |
Masham | — | England | meat, wool | [5,7] |
Meatlinc | — | England | meat | [7] |
Norfolk Horn | Blackface Norfolk Horned, Norfolk Horned, Old Norfolk, Old Norfolk Horned | England | meat | [1,2,4,6,7,9]; Figure S1k |
North of England Mule | — | England | meat, milk | [7] |
Oxford | Oxford Down | England | meat | [2,4,5,7,9] |
Portland | — | England | meat | [1,4,5,6,9] |
Romney | Romney Marsh, Kent | England | meat, wool | [1,2,4,6,7]; Figure S1g |
Rough Fell | — | England | meat | [2,4,7] |
Ryeland | — | England | meat | [1,2,6,7]; Figure S1n |
Shropshire | — | England | meat | [1,2,6,7] |
Southdown | — | England | meat | [1,2,4,5,6,7]; Figure S1l,m |
Suffolk | — | England | meat | [1,2,4,5,6,7] |
Swaledale | — | England | meat, wool | [2,7] |
Teeswater | — | England | meat | [1,2,4,6,7,9]; Figure S1o |
Wensleydale | — | England | meat | [5,6,7,9] |
Whiteface Dartmoor | — | England | meat | [5,7,9] |
Whitefaced Woodland | Penistone | England | meat | [4,6,7,9] |
Wiltshire Horn | — | England | meat | [1,2,4,7] |
Galway | — | Ireland | meat | [1,4,6,10] |
Manx Loaghtan | Loaghtyn, Loghtan | Isle of Man | wool | [5,6,7,9] |
Boreray | Boreray Blackface, Hebridean Blackface | Scotland | meat | [4,5,6,7,9] |
Bowmont | — | Scotland | meat, wool | [4,6] |
Castlemilk Moorit | Castlemilk Shetland, Moorit Shetland | Scotland | hobby | [5,6,7,9] |
Cheviot | — | Scotland | meat, wool | [1,7]; Figure S1b,c |
Hebridean | St Kilda | Scotland | vegetation management | [1,3,5,6,7] |
North Country Cheviot/Cheviot subtype | — | Scotland | meat | [7] |
North Ronaldsay | Orkney | Scotland | wool | [1,3,5,6,9] |
Scotch Mule | — | Scotland | meat | [7] |
Scottish Blackface | Blackfaced Highland, Kerry, Linton, Scotch Blackface, Scotch Horn, Scottish Highland, Scottish Mountain | Scotland | meat | [1,2,7,11]; Figure S1a |
Scottish Dunface | Scottish Tanface, Old Scottish Short-wool | Scotland (extinct) | meat, wool | [1,3] |
Soay | — | Scotland | meat | [2,3,4,5,6,7,9,12] |
Shetland | — | Shetland Islands | meat, wool | [1,6,7] |
Badger Face Welsh Mountain/Welsh Mountain subtype | Defaid Idloes, Badger Faced Welsh Mountain, Welsh Badger-faced | Wales | meat | [5,7,10] |
Balwen Welsh Mountain/Welsh Mountain subtype | — | Wales | meat | [5,6,7,9,10] |
Beulah Speckled Face | — | Wales | meat | [5,10] |
Black Welsh Mountain/Welsh Mountain subtype | Defaid Mynydd Duon | Wales | meat | [4,6,7,10] |
Brecknock Hill Cheviot/Cheviot subtype | Brecon Cheviot, Sennybridge Cheviot | Wales | meat | [1,7,10] |
Epynt Hardy Speckled Face | — | Wales | meat | [7] |
Hill Radnor | — | Wales | meat | [1,2,7,9,10] |
Kerry Hill | — | Wales | meat | [2,7,10] |
Llanwenog | — | Wales | meat | [4,5,6,7,9,10] |
Lleyn | Dafad Llŷn | Wales | meat | [5,6,7,10] |
Nelson South Wales Mountain | — | Wales | meat | [7] |
South Wales Mountain/Welsh Mountain subtype | — | Wales | — | [10] |
Welsh Halfbred | — | Wales | meat, milk | [7] |
Welsh Hill Speckled Face | — | Wales | meat | [7] |
Welsh Mountain | Defaid Mynydd Cymreig, Welsh Mountain-Pedigree | Wales | meat | [7,9] |
Welsh Mule | — | Wales | meat, milk | [6,7] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanov, M.N.; Zinovieva, N.A.; Griffin, D.K. British Sheep Breeds as a Part of World Sheep Gene Pool Landscape: Looking into Genomic Applications. Animals 2021, 11, 994. https://doi.org/10.3390/ani11040994
Romanov MN, Zinovieva NA, Griffin DK. British Sheep Breeds as a Part of World Sheep Gene Pool Landscape: Looking into Genomic Applications. Animals. 2021; 11(4):994. https://doi.org/10.3390/ani11040994
Chicago/Turabian StyleRomanov, Michael N., Natalia A. Zinovieva, and Darren K. Griffin. 2021. "British Sheep Breeds as a Part of World Sheep Gene Pool Landscape: Looking into Genomic Applications" Animals 11, no. 4: 994. https://doi.org/10.3390/ani11040994
APA StyleRomanov, M. N., Zinovieva, N. A., & Griffin, D. K. (2021). British Sheep Breeds as a Part of World Sheep Gene Pool Landscape: Looking into Genomic Applications. Animals, 11(4), 994. https://doi.org/10.3390/ani11040994