Effects of Maternal and Progeny Dietary Vitamin E on Growth Performance and Antioxidant Status of Progeny Chicks before and after Egg Storage
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diets
2.2. Body Weight and Feed Consumption
2.3. Sample Collection and Analysis
2.4. Statistical Analyses
3. Results
3.1. Growth Performance and Antioxidant Status in Trial 1
3.2. Growth Performance and Antioxidant Status in Trial 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Surai, P.F.; Fisinin, V.I.; Karadas, F. Antioxidant systems in chick embryo development. Part 1. Vitamin E, carotenoids and selenium. Anim. Nutr. 2016, 2, 1–11. [Google Scholar] [CrossRef]
- Shirpoor, A.; Minassian, S.; Salami, S.; Khademansari, M.H.; Ghaderipakdel, F.; Yeghiazaryan, M. Vitamin E protects developing rat hippocampus and cerebellum against ethanol-induced oxidative stress and apoptosis. Food Chem. 2009, 113, 115–120. [Google Scholar] [CrossRef]
- Yonguc, G.N.; Dodurga, Y.; Adiguzel, E.; Gundogdu, G.; Kucukatay, V.; Ozbal, S.; Yilmaz, I.; Cankurt, U.; Yilmaz, Y.; Akdogan, I. Grape seed extract has superior beneficial effects than vitamin E on oxidative stress and apoptosis in the hippocampus of streptozotocin induced diabetic rats. Gene 2015, 555, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Urso, U.R.; Dahlke, F.; Maiorka, A.; Bueno, I.J.; Schneider, A.F.; Surek, D.; Rocha, C. Vitamin E and selenium in broiler breeder diets: Effect on live performance, hatching process, and chick quality. Poult. Sci. 2015, 94, 976–983. [Google Scholar] [CrossRef]
- Lin, X.; Jiang, S.; Li, L.; Chen, F.; Gou, Z.; Wu, Q.; Fan, Q.; Jiang, Z. Effects of Dietary Vitamin E and Selenoyeast on Laying Performance, Hatching Performance and Vitamin E and Selenium Deposition in Egg of Yellow-Feathered Broiler Breeders. Chin. J. Anim. Nutr. 2017, 29, 1515–1526. [Google Scholar]
- Yaripour, M.; Alireza, S.; Mohammad, D.; Vito, L.; Vincenzo, T. Impact of Dietary Supra-Nutritional Levels of Vitamins A and E on Fertility Traits of Broiler Breeder Hens in Late Production Phase. Agriculture 2018, 8, 149. [Google Scholar] [CrossRef] [Green Version]
- Hossain, S.M.; Barreto, S.L.; Bertechini, A.G.; Rios, A.M.; Silva, C.G. Influence of dietary Vitamin E level on egg production of broiler breeders, and on the growth and immune response of progeny in comparison with the progeny from eggs injected with Vitamin E. Anim. Feed Sci. Technol. 1998, 73, 307–317. [Google Scholar] [CrossRef]
- Bhosale, D.S.; Bhagwat, S.R.; Pawar, M.M.; Kulkarni, R.C. Comparative Efficacy of Dietary Addition of Tulsi (Ocimum sanctum) Leaf Powder and Vitamin E on Broiler Performance. Indian J. Anim. Nutr. 2015, 32, 348–350. [Google Scholar]
- Karadas, F.; Erdoğan, S.; Kor, D.; Oto, G.; Uluman, M. The Effects of Different Types of Antioxidants (Se, Vitamin E and Carotenoids) in Broiler Diets on the Growth Performance, Skin Pigmentation and Liver and Plasma Antioxidant Concentrations. Braz. J. Poult. Sci. 2016, 18, 101–116. [Google Scholar] [CrossRef]
- Hamidu, J.A.; Rieger, A.M.; Fasenko, G.M.; Barreda, D.R. Dissociation of chicken blastoderm for examination of apoptosis and necrosis byflowcytometry. Poult. Sci. 2010, 89, 901–909. [Google Scholar] [CrossRef]
- Hamidu, J.A.; Uddin, Z.; Li, M.; Fasenko, G.M.; Guan, L.; Barreda, D.R. Broiler egg storage induces cell death and influences embryo quality. Poult. Sci. 2011, 90, 1749–1757. [Google Scholar] [CrossRef] [PubMed]
- Bakst, M.R.; Welch, G.R.; Fetterer, R.; Miska, K. Impact of broiler egg storage on the relative expression of selected blastoderm genes associated with apoptosis, oxidative stress, and fatty acid metabolism. Poult. Sci. 2016, 95, 1411–1417. [Google Scholar] [CrossRef]
- Reijrink, A.M.; Berghmans, D.; Meijerhof, R.; Kemp, B.; Brand, H. Influence of egg storage time and preincubation warming profile on embryonic development, hatchability, and chick quality. Poult. Sci. 2010, 89, 1225–1238. [Google Scholar] [CrossRef] [PubMed]
- Bakst, M.R.; Welch, G.R.; Camp, M.J. Observations of turkey eggs stored up to 27 days and incubated for 8 days: Embryo developmental stage and weight differences and the differentiation of fertilized from unfertilized germinal discs. Poult. Sci. 2016, 95, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Dymond, J.; Vinyard, B.; Nicholson, A.D.; French, N.A.; Bakst, M.R. Short periods of incubation during egg storage increase hatchability and chick quality in long-stored broiler eggs. Poult. Sci. 2013, 92, 2977–2987. [Google Scholar] [CrossRef]
- Gharib, H.B. Effect of pre-storage heating of broiler breeder eggs, stored for long periods, on hatchability and chick quality. Egypt. J. Anim. Prod. 2013, 50, 174–184. [Google Scholar]
- Tona, K.; Bamelis, F.; De, K.B.; Bruggeman, V.; Moraes, V.M.; Buyse, J.; Onagbesan, O.; Decuypere, O. Effects of egg storage time on spread of hatch, chick quality, and chick juvenile growth. Poult. Sci. 2003, 82, 736–741. [Google Scholar] [CrossRef]
- Tona, K.; Onagbesan, O.; De Ketelaere, B.; Decuypere, E.; Bruggeman, V. Effects of Age of Broiler Breeders and Egg Storage on Egg Quality, Hatchability, Chick Quality, Chick Weight, and Chick Posthatch Growth to Forty-Two Days. J. Appl. Poult. Res. 2004, 13, 10–18. [Google Scholar] [CrossRef]
- Petek, M.; Dikmen, S. The effects of prestorage incubation and length of storage of broiler breeder eggs on hatchability and subsequent growth performance of progeny. Czech J. Anim. Sci. 2006, 51, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Ebeid, T.A.; Twfeek, F.A.; Assar, M.H.; Bealish, A.M.; Abd El-Karim, R.E.; Ragab, M. Influence of pre-storage incubation on hatchability traits, thyroid hormones, antioxidative status and immunity of newly hatched chicks at two chicken breeder flock ages. Animal 2017, 11, 1966–1974. [Google Scholar] [CrossRef] [Green Version]
- Damaziak, K.; Paweska, M.; Gozdowski, D.; Niemiec, J. Short periods of incubation, egg turning during storage and broiler breeder hens age for early development of embryos, hatching results, chicks quality and juvenile growth. Poult. Sci. 2018, 97, 3264–3276. [Google Scholar] [CrossRef]
- Pokhrel, N.; Cohen, B.T.; Genin, O.; Ruzal, M.; Sela-Donenfeld, D.; Cinnamon, Y. Effects of storage conditions on hatchability, embryonic survival and cytoarchitectural properties in broiler from young and old flocks. Poult. Sci. 2018, 97, 1429–1440. [Google Scholar] [CrossRef] [PubMed]
- Gucbilmez, M.; Ozlü, S.; Shiranjang, R.; Elibol, O.; Brake, J. Effects of preincubation heating of broiler hatching eggs during storage, flock age, and length of storage period on hatchability. Poult. Sci. 2013, 92, 3310–3313. [Google Scholar] [CrossRef]
- Elibol, O.; Peak, S.D.; Brake, J. Effect of flock age, length of eggstorage, and frequency of turning during storage on hatchability of broiler hatching eggs. Poult. Sci. 2002, 81, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Elibol, O.; Brake, J. Effect of egg position during three and fourteen days of storage and turning frequency during subsequent incubation on hatchability of broiler hatching eggs. Poult. Sci. 2008, 87, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ding, X.M.; Bai, S.P.; Wang, J.P.; Zeng, Q.F.; Peng, H.W.; Su, Z.W.; Xuan, Y.; Zhang, K.Y. Effects of maternal dietary vitamin E on the egg characteristics, hatchability and offspring quality of prolonged storage eggs of broiler breeder hens. J. Anim.Physiol. Anim. Nutr. 2020, 104, 1384–1391. [Google Scholar] [CrossRef]
- Yang, J.; Ding, X.M.; Bai, S.P.; Wang, J.P.; Zeng, Q.F.; Peng, H.W.; Su, Z.W.; Xuan, Y.; Zhang, K.Y. The Effects of Broiler Breeder Dietary Vitamin E and Egg Storage Time on the Quality of Eggs and Newly Hatched Chicks. Animals 2010, 10, 1409. [Google Scholar] [CrossRef]
- Siegel, P.B.; Blair, M.; Gross, W.B.; Meldrum, B.; Larsen, C.; Boaamponsem, K.; Emmerson, D.A. Poult performance as influenced by age of dam, genetic line, and dietary vitamin E. Poult. Sci. 2006, 85, 939–942. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Tang, Q.; Yuan, J.; Jiang, Z. Effects of supplementation with vitamin E on the performance and the tissue peroxidation of broiler chicks and the stability of thigh meat against oxidative deterioration. Anim. Feed Sci. Technol. 2001, 89, 165–173. [Google Scholar] [CrossRef]
- Gao, J.; Lin, H.; Wang, X.J.; Song, Z.G.; Jiao, H.C. Vitamin E supplementation alleviates the oxidative stress induced by dexamethasone treatment and improves meat quality in broiler chickens. Poult. Sci. 2010, 89, 318–327. [Google Scholar] [CrossRef]
- Cheng, K.; Song, Z.H.; Zheng, X.C.; Zhang, H.; Zhang, J.F.; Zhang, H.H.; Zhou, Y.M.; Wang, T. Effects of dietary vitamin E type on the growth performance and antioxidant capacity in cyclophosphamide immunosuppressed broilers. Poult. Sci. 2017, 96, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Scocco, P.; Forte, C.; Franciosini, M.P.; Mercati, F.; Casagrande-Proietti, P.; Dall’Aglio, C.; Acuti, G.; Tardella, F.M.; Trabalza-Marinucci, M. Gut complex carbohydrates and intestinal microflora in broiler chickens fed with oregano (Origanumvulgare L.) aqueous extract and vitamin E. J. Anim. Physiol. Anim. Nutr. 2017, 101, 676–684. [Google Scholar] [CrossRef]
- Surai, P.; Fisinin, V.I. Feeding breeders to avoid oxidative stress in embryos. In Proceedings of the Word’s Poultry Congress, Salvador, Bahia, Brazil, 5–9 August 2012. [Google Scholar]
- Araújo, I.C.S.; BCafé, M.; ANoleto, R.; SMartins, J.M.; JUlhoa, C.; Guareshi, G.C.; MReis, M.; Mleandro, N.S. Effect of vitamin E in ovo feeding to broiler embryos on hatchability, chick quality, oxidative state, and performance. Poult. Sci. 2018, 98, 3652–3661. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.N.; Niu, Z.Y.; Sun, T.T.; Wang, Z.P.; Jiao, P.X.; Zi, B.B.; Chen, P.P.; Tian, D.L.; Liu, F.Z. Vitamin E and vitamin C supplementation improves antioxidant status and immune function in oxidative-stressed breeder roosters by up-regulating expression of GSH-Px gene. Poult. Sci. 2018, 97, 1238–1244. [Google Scholar] [CrossRef]
- Sahin, K.; Kucuk, O.; Sahin, N.; Gursu, M.F. Optimal dietary concentration of vitamin E for alleviating the effect of heat stress on performance, thyroid status, ACTH and some serum metabolite and mineral concentrations in broilers. Vet. Med. 2002, 47, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Attia, Y.A.; Al-Harthi, M.A.; El-Shafey, A.S.; Rehab, Y.A.; Kim, W.K. Enhancing Tolerance of Broiler Chickens to Heat Stress by Supplementation with Vitamin E, Vitamin C and/or Probiotics. Ann. Anim. Sci. 2017, 17, 1155–1169. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W. Effects of Canthaxanthin and β-apo-8’-Carotenoic Acid Ethylester on Performance and Health Status of ChineseThree-Yellow Broiler Breeder and Progeny. Ph.D. Thesis, Sichuan Agricultural University, Chengdu, China; p. 2012.
- Surai, P.F. Effect of selenium and vitamin E content of the maternal diet on the antioxidant system of the yolk and the developing chick. Br. Poult. Sci. 2000, 41, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, S.K.; Navidshad, B.; Farhoomand, P.; Aghjehgheshlagh, F.M. Effects of grape pomace and vitamin E on performance, antioxidant status, immune response, gut morphology and histopathological responses in broiler chickens. S. Afr. J. Anim. Sci. 2018, 48, 324–336. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.Z.; Wu, J.M.; Jiao, H.C.; Wang, X.J.; Zhao, J.P.; Lin, H. The development of antioxidant system in the intestinal tract of broiler chickens. Poult. Sci. 2019, 98, 664–678. [Google Scholar] [CrossRef]
Items | Broiler Breeder | Offspring | |
---|---|---|---|
1 to 21 d | 22 to 42 d | ||
Ingredient | |||
Corn | 69.50 | 50.86 | 51.07 |
Soybean meal, 43% | 19.00 | 30.42 | 22.28 |
Soybean oil | 1.00 | 2.36 | 3.90 |
Wheat flour | - | 4.00 | 6.00 |
Gluten meal | - | 3.00 | 4.00 |
Rapeseed meal | - | 2.00 | 3.60 |
Corn distiller dried grains with solubles | - | 3.00 | 5.00 |
Calcium Hydrophosphate | 1.14 | 1.76 | 1.56 |
Limestone | 8.25 | 1.10 | 1.12 |
Sodium chloride | 0.30 | 0.32 | 0.31 |
Vitamin and mineral premix2 | 0.50 | 0.20 | 0.20 |
DL-Methionine, 99% | 0.11 | 0.27 | 0.21 |
L-Lysine hydrochloride, 98.5% | 0.08 | 0.45 | 0.51 |
Threonine, 98.5% | 0.02 | 0.14 | 0.14 |
Choline chloride, 50% | 0.10 | 0.12 | 0.10 |
Total | 100.00 | 100.00 | 100.00 |
Nutritional composition | |||
Metabolizable energy (kcal/kg) | 2780.00 | 2925.00 | 3050.00 |
Crude protein | 13.80 | 21.80 | 20.00 |
Available phosphorus | 0.30 | 0.45 | 0.42 |
Calcium | 3.40 | 0.95 | 0.90 |
Digestible methionine | 0.32 | 0.57 | 0.52 |
Digestible lysine | 0.66 | 1.25 | 1.15 |
Digestible methionine + cystine | 0.53 | 0.89 | 0.82 |
Digestible threonine | 0.46 | 0.81 | 0.75 |
Items | Progeny VE 0 mg/kg | Progeny VE 35 mg/kg | Progeny VE | Maternal VE | SEM | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maternal VE 100 mg/kg | Maternal VE 200 mg/kg | Maternal VE 400 mg/kg | Maternal VE 100 mg/kg | Maternal VE 200 mg/kg | Maternal VE 400 mg/kg | 0 mg/kg | 35 mg/kg | 100 mg/kg | 200 mg/kg | 400 mg/kg | Progeny VE | Maternal VE | Interaction | ||
BW (g/bird) | |||||||||||||||
1 d | 46.63 | 46.35 | 46.47 | 46.54 | 46.48 | 46.54 | 46.48 | 46.52 | 46.58 | 46.42 | 46.51 | 0.039 | 0.654 | 0.252 | 0.514 |
21 d | 913.2 | 899.4 | 928.3 | 914.8 | 916.1 | 916.0 | 913.6 | 915.6 | 914.0 | 907.7 | 922.1 | 4.208 | 0.812 | 0.385 | 0.385 |
42 d | 2733.8 | 2701.8 | 2784.9 | 2736.2 | 2728.4 | 2724.3 | 2740.2 | 2729.6 | 2735.0 | 2715.1 | 2754.6 | 17.708 | 0.768 | 0.665 | 0.590 |
BWG (g/bird/day) | |||||||||||||||
1 to 21 d | 41.3 | 40.6 | 42.0 | 41.3 | 41.4 | 41.4 | 41.3 | 41.4 | 41.3 | 41.0 | 41.7 | 4.210 | 0.812 | 0.392 | 0.383 |
22 to 42 d | 86.7 | 85.8 | 88.4 | 86.8 | 86.3 | 86.2 | 87.0 | 86.4 | 86.7 | 86.1 | 87.3 | 15.973 | 0.705 | 0.807 | 0.735 |
1 to 42 d | 128.0 | 126.4 | 130.4 | 128.1 | 127.7 | 127.6 | 128.3 | 127.8 | 128.0 | 127.1 | 129.0 | 17.714 | 0.775 | 0.659 | 0.595 |
FI (g/bird) | |||||||||||||||
1 to 21 d | 1226.7 | 1213.6 | 1244.1 | 1222.3 | 1223.5 | 1224.1 | 1228.1 | 1223.3 | 1224.5 | 1218.6 | 1234.1 | 5.635 | 0.672 | 0.530 | 0.562 |
22 to 42 d | 3370.4 | 3337.2 | 3398.6 | 3302.5 | 3302.9 | 3301.5 | 3368.7 | 3302.3 | 3336.4 | 3320.1 | 3350.1 | 21.603 | 0.135 | 0.852 | 0.839 |
1 to 42 d | 4583.6 | 4530.6 | 4624.8 | 4506.6 | 4509.1 | 4509.1 | 4579.7 | 4508.3 | 4545.1 | 4519.8 | 4566.9 | 24.256 | 0.151 | 0.733 | 0.731 |
FCR (g:g) | |||||||||||||||
1 to 21 d | 1.417 | 1.423 | 1.410 | 1.408 | 1.408 | 1.410 | 1.417 | 1.409 | 1.413 | 1.416 | 1.410 | 0.004 | 0.318 | 0.824 | 0.728 |
22 to 42 d | 1.853 | 1.853 | 1.832 | 1.813 | 1.823 | 1.827 | 1.846 | 1.821 | 1.833 | 1.838 | 1.829 | 0.009 | 0.163 | 0.912 | 0.705 |
1 to 42 d | 1.707 | 1.708 | 1.690 | 1.677 | 1.680 | 1.685 | 1.702 | 1.681 | 1.692 | 1.694 | 1.688 | 0.006 | 0.074 | 0.891 | 0.611 |
Mortality (%) | |||||||||||||||
1 to 21 d | 1.67 | 0.83 | 1.67 | 2.50 | 0.83 | 0.83 | 1.39 | 1.39 | 2.08 | 0.83 | 1.25 | 0.393 | 0.999 | 0.427 | 0.690 |
22 to 42 d | 0.88 | 5.26 | 0.88 | 3.66 | 2.68 | 2.68 | 2.34 | 3.01 | 2.27 | 3.97 | 1.78 | 0.565 | 0.560 | 0.266 | 0.137 |
1 to 42 d | 2.50 | 5.83 | 2.50 | 5.83 | 3.33 | 3.33 | 3.61 | 4.17 | 4.17 | 4.58 | 2.92 | 0.669 | 0.681 | 0.577 | 0.220 |
Items | Progeny VE 0 mg/kg | Progeny VE 35 mg/kg | Progeny VE | Maternal VE | SEM | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maternal VE 100 mg/kg | Maternal VE 200 mg/kg | Maternal VE 400 mg/kg | Maternal VE 100 mg/kg | Maternal VE 200 mg/kg | Maternal VE 400 mg/kg | 0 mg/kg | 35 mg/kg | 100 mg/kg | 200 mg/kg | 400 mg/kg | Progeny VE | Maternal VE | Interaction | ||
21 d serum | |||||||||||||||
T-SOD (U/mL) | 210.82 | 211.02 | 203.79 | 232.61 | 240.02 | 238.59 | 208.54 | 237.07 | 221.71 | 225.52 | 221.19 | 10.215 | 0.174 | 0.982 | 0.968 |
MDA (nmol/mL) | 4.25 | 3.99 | 4.53 | 4.04 | 4.36 | 4.48 | 4.26 | 4.29 | 4.14 | 4.17 | 4.51 | 0.108 | 0.869 | 0.327 | 0.544 |
T-AOC (μmol/mL) | 1.12 | 1.37 | 1.00 | 1.24 | 1.26 | 1.23 | 1.17 | 1.24 | 1.18 | 1.32 | 1.11 | 0.043 | 0.377 | 0.163 | 0.279 |
42 d serum | |||||||||||||||
T-SOD (U/mL) | 199.27 | 205.86 | 224.87 | 261.43 | 257.70 | 293.77 | 210.00 | 270.97 | 230.35 | 231.78 | 259.32 | 17.909 | 0.099 | 0.760 | 0.981 |
MDA (nmol/mL) | 4.57 | 4.54 | 4.46 | 4.61 | 4.63 | 4.28 | 4.52 | 4.51 | 4.59 | 4.58 | 4.37 | 0.119 | 0.952 | 0.690 | 0.876 |
T-AOC (μmol/mL) | 0.86 | 0.72 | 0.78 | 0.78 | 0.73 | 0.77 | 0.79 | 0.76 | 0.82 | 0.72 | 0.77 | 0.019 | 0.436 | 0.125 | 0.601 |
21 d liver | |||||||||||||||
T-SOD (U/mgprot) | 523.48 | 553.79 | 554.43 | 546.49 | 517.66 | 524.27 | 543.90 | 529.47 | 534.98 | 535.72 | 539.35 | 10.000 | 0.476 | 0.982 | 0.424 |
MDA (nmol/mgprot) | 1.04 | 0.80 | 0.90 | 0.94 | 1.06 | 0.82 | 0.91 | 0.94 | 0.99 | 0.93 | 0.86 | 0.043 | 0.752 | 0.485 | 0.208 |
T-AOC (μmol/10 mgprot) | 1.59 | 1.66 | 1.62 | 1.64 | 1.57 | 1.73 | 1.62 | 1.65 | 1.61 | 1.61 | 1.68 | 0.021 | 0.593 | 0.370 | 0.173 |
42 d liver | |||||||||||||||
T-SOD (U/mgprot) | 398.60 | 397.80 | 428.76 | 402.22 | 400.52 | 435.43 | 408.39 | 412.72 | 400.41 | 399.16 | 432.09 | 9.724 | 0.825 | 0.307 | 0.996 |
MDA (nmol/mgprot) | 0.74 | 0.69 | 0.79 | 0.80 | 0.76 | 0.71 | 0.74 | 0.76 | 0.77 | 0.72 | 0.75 | 0.024 | 0.721 | 0.713 | 0.375 |
T-AOC (μmol/10 mgprot) | 1.21 b,c | 1.21 b,c | 1.28 b | 1.13 c | 1.16 b,c | 1.45 a | 1.24 | 1.25 | 1.17 b | 1.19 b | 1.37 a | 0.017 | 0.717 | <0.001 | 0.014 |
Items | Maternal VE (mg/kg) | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
100 | 200 | 400 | Maternal VE | Linear 3 | Quadratic 4 | ||
BW (g/bird) | |||||||
1 d | 49.24 | 49.19 | 49.13 | 0.097 | 0.915 | 0.670 | 0.915 |
21 d | 895.6 b | 947.2 a | 949.9 a | 8.385 | 0.002 | 0.013 | 0.002 |
42 d | 2875.5 b | 2930.0 a,b | 2958.2 a | 13.850 | 0.031 | 0.014 | 0.031 |
BWG (g/bird/day) | |||||||
1 to 21 d | 40.4 b | 42.8 a | 42.9 a | 8.327 | 0.002 | 0.013 | 0.002 |
22 to 42 d | 94.4 | 94.6 | 95.7 | 11.207 | 0.567 | 0.286 | 0.567 |
1 to 42 d | 134.7 b | 137.4 a,b | 138.7 a | 13.617 | 0.027 | 0.013 | 0.027 |
FI (g/bird) | |||||||
1 to 21 d | 1180.9 | 1188.1 | 1170.3 | 4.657 | 0.314 | 0.265 | 0.314 |
22 to 42 d | 3683.0 | 3703.0 | 3763.8 | 21.024 | 0.281 | 0.105 | 0.281 |
1 to 42 d | 4832.9 | 4860.8 | 4896.2 | 22.336 | 0.546 | 0.265 | 0.546 |
FCR (g:g) | |||||||
1 to 21 d | 1.393 a | 1.321 b | 1.298 b | 0.012 | <0.001 | 0.001 | <0.001 |
22 to 42 d | 1.859 | 1.865 | 1.873 | 0.006 | 0.655 | 0.351 | 0.655 |
1 to 42 d | 1.708 | 1.684 | 1.682 | 0.005 | 0.087 | 0.074 | 0.087 |
Mortality (%) | |||||||
1 to 21 d | 1.54 | 2.31 | 3.08 | 0.628 | 0.641 | 0.345 | 0.641 |
22 to 42 d | 2.65 | 0.00 | 2.73 | 0.588 | 0.088 | 0.660 | 0.088 |
1 to 42 d | 3.85 | 2.31 | 5.39 | 0.839 | 0.352 | 0.346 | 0.352 |
Items | Progeny Age 21 d | Progeny Age 42 d | Progeny Age | Maternal VE | SEM | p-Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maternal VE 100 mg/kg | Maternal VE 200 mg/kg | Maternal VE 400 mg/kg | Maternal VE 100 mg/kg | Maternal VE 200 mg/kg | Maternal VE 400 mg/kg | 21 d | 42 d | 100 mg/kg | 200 mg/kg | 400 mg/kg | Progeny Age | Maternal VE | Interaction | Linear 3 | Quadratic 4 | ||
T-SOD (U/mL) | 134.54 | 130.97 | 221.27 | 163.64 | 196.02 | 276.22 | 162.26 b | 211.96 a | 149.09 b | 163.50 b | 248.74 a | 11.957 | 0.049 | 0.005 | 0.820 | 0.001 | 0.005 |
MDA (nmol/mL) | 3.95 | 3.43 | 3.56 | 3.65 | 3.80 | 3.29 | 3.65 | 3.58 | 3.80 | 3.61 | 3.42 | 0.114 | 0.768 | 0.412 | 0.404 | 0.177 | 0.397 |
T-AOC (μmol/mL) | 1.42 | 1.30 | 1.21 | 1.35 | 1.19 | 1.36 | 1.31 | 1.30 | 1.38 | 1.25 | 1.28 | 0.058 | 0.928 | 0.613 | 0.635 | 0.559 | 0.589 |
Items | Progeny Age 21 d | Progeny Age 42 d | Progeny Age | Maternal VE | SEM | p-Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maternal VE 100 mg/kg | Maternal VE 200 mg/kg | Maternal VE 400 mg/kg | Maternal VE 100 mg/kg | Maternal VE 200 mg/kg | Maternal VE 400 mg/kg | 21 d | 42 d | 100 mg/kg | 200 mg/kg | 400 mg/kg | Progeny Age | Maternal VE | Interaction | Linear 3 | Quadratic 4 | ||
T-SOD (U/mgprot) | 619.43 | 587.61 | 637.94 | 497.42 | 538.95 | 603.12 | 614.99 a | 546.50 b | 558.43 b | 563.28 b | 620.53 a | 9.743 | 0.002 | 0.028 | 0.167 | 0.028 | 0.078 |
MDA (nmol/mgprot) | 0.84 | 0.72 | 0.60 | 0.76 | 0.82 | 0.52 | 0.72 | 0.70 | 0.80 a | 0.77 a | 0.56 b | 0.027 | 0.710 | 0.002 | 0.299 | <0.001 | 0.002 |
T-AOC (μmol/10 mgprot) | 1.80 | 1.71 | 1.72 | 1.39 | 1.30 | 1.26 | 1.75 a | 1.31 b | 1.59 | 1.51 | 1.49 | 0.032 | <0.001 | 0.380 | 0.945 | 0.455 | 0.678 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Zhang, K.; Bai, S.; Zeng, Q.; Wang, J.; Peng, H.; Xuan, Y.; Su, Z.; Ding, X. Effects of Maternal and Progeny Dietary Vitamin E on Growth Performance and Antioxidant Status of Progeny Chicks before and after Egg Storage. Animals 2021, 11, 998. https://doi.org/10.3390/ani11040998
Yang J, Zhang K, Bai S, Zeng Q, Wang J, Peng H, Xuan Y, Su Z, Ding X. Effects of Maternal and Progeny Dietary Vitamin E on Growth Performance and Antioxidant Status of Progeny Chicks before and after Egg Storage. Animals. 2021; 11(4):998. https://doi.org/10.3390/ani11040998
Chicago/Turabian StyleYang, Jun, Keying Zhang, Shiping Bai, Qiufeng Zeng, Jianping Wang, Huanwei Peng, Yue Xuan, Zhuowei Su, and Xuemei Ding. 2021. "Effects of Maternal and Progeny Dietary Vitamin E on Growth Performance and Antioxidant Status of Progeny Chicks before and after Egg Storage" Animals 11, no. 4: 998. https://doi.org/10.3390/ani11040998
APA StyleYang, J., Zhang, K., Bai, S., Zeng, Q., Wang, J., Peng, H., Xuan, Y., Su, Z., & Ding, X. (2021). Effects of Maternal and Progeny Dietary Vitamin E on Growth Performance and Antioxidant Status of Progeny Chicks before and after Egg Storage. Animals, 11(4), 998. https://doi.org/10.3390/ani11040998