The Levels of Mineral Elements and Toxic Metals in the Longissimus lumborum Muscle, Hair and Selected Organs of Red Deer (Cervus elaphus L.) in Poland
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Material
2.2. Sample Preparation
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kudrnáčová, E.; Bartoň, L.; Bureš, D.; Hoffman, L.C. Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Sci. 2018, 141, 9–27. [Google Scholar] [CrossRef] [PubMed]
- Bąkowska, M.; Pilarczyk, B.; Tomza-Marciniak, A.; Udała, J.; Pilarczyk, R. The bioaccumulation of lead in the organs of roe deer (Capreolus capreolus L.), red deer (Cervus elaphus L.), and wild boar (Sus scrofa L.) from Poland. Environ. Sci. Pollut. Res. 2016, 23, 14373–14382. [Google Scholar] [CrossRef] [PubMed]
- Curi, N.H.A.; Brait, C.H.H.; Filho, N.R.A.; Talamoni, S.A. Heavy metals in hair of wild canids from the Brazilian Cerrado. Biol. Trace Elem. Res. 2012, 147, 97–102. [Google Scholar] [CrossRef]
- Danielsson, R.; Frank, A. Cadmium in moose kidney and liver—Age and gender dependency, and standardization for environmental monitoring. Environ. Monit. Assess. 2009, 157, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Cygan-Szczegielniak, D.; Stanek, M.; Stasiak, K.; Roślewska, A.; Janicki, B. The Content of Mineral Elements and Heavy Metals in the Hair of Red Deer (Cervus elaphus L.) from Selected Regions of Poland. Folia Biol-Krakow. 2018, 66, 133–142. [Google Scholar] [CrossRef]
- Skibniewski, M.; Skibniewska, E.M.; Kośla, T. The content of selected metals in muscles of the red deer (Cervus elaphus) from Poland. Environ. Sci. Pollut. Res. Int. 2015, 22, 8425–8431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demesko, J.; Markowski, J.; Słaba, M.; Hejduk, J.; Minias, P. Age-Related Patterns in Trace Element Content Vary between Bone and Teeth of the European Roe Deer (Capreolus capreolus). Arch. Environ. Contam. Toxicol. 2018, 74, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Demesko, J.; Markowski, J.; Demesko, E.; Słaba, M.; Hejduk, J.; Minias, P. Ecotype Variation in Trace Element Content of Hard Tissues in the European Roe Deer (Capreolus capreolus). Arch. Environ. Contam. Toxicol. 2019, 76, 76–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappelli, J.; Frasca, I.; Andrés García, A.; Landete-Castillejos, T.; Luccarini, S.; Gallego, L.; Morimando, F.; Varuzza, P.; Zaccaroni, M. Roe deer as a bioindicator: Preliminary data on the impact of the geothermal power plants on the mineral profile in internal and bone tissues in Tuscany (Italy). Environ. Sci. Pollut. Res. 2020, 27, 36121–36131. [Google Scholar] [CrossRef] [PubMed]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- French, A.S.; Shaw, D.; Gibb, S.W.; Taggart, M.A. Geochemical landscapes as drivers of trace and toxic element profiles in wild red deer (Cervus elaphus). Sci. Total Environ. 2017, 601–602, 1606–1618. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.U.; Nazir, S.; Irshad, R.; Tahir, K.; Rehman, K.U.; Islam, R.U.; Wahab, Z. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J. Mol. Liq. 2021, 321, 114–455. [Google Scholar] [CrossRef]
- Cygan-Szczegielniak, D.; Stanek, M.; Giernatowska, E.; Janicki, B. Impact of Breeding Region and Season on the Content of Some Trace Elements and Heavy Metals in the Hair of Cows. Folia Biol. Krakow. 2014, 62, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Khudzari, M.D.; Wagiran, H.; Hossain, I.; Ibrahim, N. Screening heavy metals levels in hair of sanitationworkers by X-ray fluorescence analysis. J. Environ. Radioact. 2013, 115, 1–5. [Google Scholar] [CrossRef]
- Kasprzyk, A.; Kilar, J.; Chwil, S.; Rudaś, M. Content of Selected Macro- and Microelements in the Liver of Free-Living Wild Boars (Sus scrofa L.) from Agricultural Areas and Health Risks Associated with Consumption of Liver. Animals 2020, 10, 1519. [Google Scholar] [CrossRef] [PubMed]
- Vengušt, G.; Vengušt, A. Some minerals as well as trace and toxic elements in livers of fallow deer (Dama dama) in Slovenia. Eur. J. Wild. Res. 2004, 50, 59–61. [Google Scholar] [CrossRef]
- Długaszek, M.; Kopczyński, K. Elemental Composition of Muscle Tissue of Wild Animals from Central Region of Poland. Int. J. Environ. Res. 2013, 7, 973–978. [Google Scholar]
- Neila, C.; Hernández-Moreno, D.; Fidalgo, L.E.; López-Beceiro, A.; Soler, F.; Pérez-López, M. Does gender influence the levels of heavy metals in liver of wild boar? Ecotox. Environ. Safe. 2017, 140, 24–29. [Google Scholar] [CrossRef]
- Pérez-López, M.; Rodríguez, F.; Hernández-Moreno, D.; Rigueira, L.; Fidalgo, L.E.; López-Beceiro, A. Bioaccumulation of cadmium, lead and zinc in liver and kidney of red fox (Vulpes vulpes) from NW Spain: Influence of gender and age. Toxicol. Environ. Chem. 2016, 98, 109–117. [Google Scholar] [CrossRef]
- Kim, J.J.; Kim, Y.S.; Kumar, V. Heavy metal toxicity: An update of chelating therapeutic strategies. J. Trace Elem. Med. Biol. 2019, 54, 226–231. [Google Scholar] [CrossRef] [PubMed]
- The Report on the State of the Environment Kuyavian-Pomeranian Province in the Year 2017; Voivodeship Inspectorate for Environ-mental Protection in Bydgoszcz, Library of Environmental Monitoring: Bydgoszcz, Poland, 2018; pp. 1–44. (In Polish)
- Pérez-Barbería, F.J.; Duff, E.I.; Brewer, M.J.; Guinness, F.E. Evaluation of methods to age Scottish red deer: The balance between accuracy and practicality. J. Zool. 2014, 294, 180–189. [Google Scholar] [CrossRef]
- Polish Standard. PN-EN 13805:2014. Foodstuffs. Determination of Trace Elements. Pressure Digestion; Polish Committee for Standardization: Warsaw, Poland, 2014. [Google Scholar]
- Chatt, A.; Katz, S. Hair Analysis: Application in the Biomedical and Environmental Science; VHC Publishers Inc.: New York, NY, USA, 1989; pp. 1–16. [Google Scholar]
- Polish Standard. PN-EN 14084:2004. Foodstuffs. Determination of Trace Elements. Determination of Lead, Cadmium, Zinc, Copper and Iron by Atomic Absorption Spectrometry (AAS) after Microwave Mineralization; Polish Committee for Standardization: Warsaw, Poland, 2004. [Google Scholar]
- Hoffman, L.C.; Kroucamp, M.; Manley, M. Meat quality characteristics of springbok (Antidorcas marsupialis). 2: Chemical composition of springbok meat as influenced by age, gender and production region. Meat Sci. 2007, 76, 762–767. [Google Scholar] [CrossRef] [PubMed]
- Falandysz, J.; Szymczyk-Kobrzyńska, K.; Brzostowski, A.; Zalewski, K.; Zasadowski, A. Concentrations of heavy metals in the tissues of red deer (Cervus elaphus) from the region of Warmia and Mazury, Poland. Food Addit. Contam. 2005, 22, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Jarzyńska, G.; Falandysz, J. Selenium and 17 other largely essential and toxic metals in muscle and organ meats of red deer (Cervus elaphus)—Consequences to human health. Environ. Int. 2011, 37, 882–888. [Google Scholar] [CrossRef]
- Čelechovská, O.; Malota, L.; Zima, S. Entry of heavy metals into food chains: A 20-year comparison study in Northern Moravia (Czech Republic). Acta Vet. Brno 2008, 77, 645–652. [Google Scholar] [CrossRef]
- Martin, A.; Müller-Graf, C.; Selhorst, T.; Gerofke, A.; Ulbig, E.; Gremse, C.; Greiner, M.; Lahrssen-Wiederholt, M.; Hensel, A. Comparison of lead levels in edible parts of red deer hunted with lead or non-lead ammunition. Sci. Total Environ. 2019, 653, 315–326. [Google Scholar] [CrossRef]
- Dobrowolska, A.; Melosik, M. Bullet-derived lead in tissues of the wild boar (Sus scrofa) and red deer (Cervus elaphus). Eur. J. Wildl. Res. 2008, 54, 231–235. [Google Scholar] [CrossRef]
- Carpen, E.; Andreani, G.; Isani, G. Trace elements in unconventional animals: A 40-year experience. J. Trace Elem. Med. Biol. 2017, 43, 169–179. [Google Scholar] [CrossRef]
- Cupertino, M.C.; Novaes, R.D.; Santos, E.C.; Bastos, D.S.S.; Marques dos Santos, D.C.; do Carmo Queiroz Fialho, M.; Matta, S.L.P.D. Cadmium-induced testicular damage is associated with mineral imbalance, increased antioxidant enzymes activity and protein oxidation in rats. Life Sci. 2017, 175, 23–30. [Google Scholar] [CrossRef]
- L’opez Alonso, M.; Montaña, F.P.; Miranda, M.; Castillo, C.; Hern´andez, J.; Benedito, J.L. Interactions between toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements in the tissues of cattle from NW Spain. BioMetals 2004, 17, 389–397. [Google Scholar] [CrossRef]
- Linšak, D.T.; Linšak, Z.; Špirić, Z.; Srebočan, E.; Glad, M.; Cenov, A.; Jakovac, H.; Milin, C. Influence of cadmium on metallothione in expression and products of lipid peroxidation in the organs of hares (Lepus europaeus Pallas). J. Appl. Toxicol. 2014, 34, 289–295. [Google Scholar] [CrossRef] [PubMed]
Mineral Elements | Research Matrices | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Testicles | Liver | Kidneys | Muscle | Hair | ||||||||||||||||
Me | SE | CV | Me | SE | CV | Me | SE | CV | Me | SE | CV | Me | SE | CV | ||||||
Fe g·kg−1 | 0.393 A | 0.383 | ±0.022 | 17.40 | 0.762 B | 0.751 | ±0.008 | 3.24 | 0.351 A | 0.356 | ±0.008 | 7.63 | 0.297 A | 0.292 | ±0.014 | 14.64 | 0.259 A | 0.247 | ±0.019 | 22.97 |
Mn mg·kg−1 | 6.57 A | 6.51 | ±0.213 | 10.24 | 9.69 B | 9.46 | ±0.184 | 5.99 | 10.42 B | 10.37 | ±0.173 | 5.27 | 7.71 A | 7.65 | ±0.132 | 5.41 | 19.32 C | 19.30 | ±0.162 | 2.66 |
Zn mg·kg−1 | 130.8 A | 127.1 | ±0.591 | 11.10 | 43.18 B | 42.41 | ±0.810 | 5.93 | 125.7 A | 125.8 | ±1.693 | 4.26 | 71.11 C | 71.05 | ±2.911 | 12.94 | 144.3 A | 145.4 | ±1.709 | 3.75 |
Cu mg·kg−1 | 17.79 A | 17.93 | ±0.471 | 8.37 | 38.42 B | 38.52 | ±0.194 | 1.60 | 16.70 A | 16.71 | ±0.190 | 3.60 | 43.41 B | 43.45 | ±0.418 | 3.05 | 17.66 A | 17.88 | ±0.192 | 3.44 |
Mineral Elements | Research Matrices | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Testicles | Liver | Kidneys | Muscle | Hair | ||||||||||||||||
Me | SE | CV | Me | SE | CV | Me | SE | CV | Me | SE | CV | Me | SE | CV | ||||||
Na g·kg−1 | 3.61 ac | 3.57 | ±0.149 | 13.04 | 0.939 b | 0.958 | ±0.015 | 5.21 | 2.50 b | 2.46 | ±0.052 | 6.62 | 2.58 b | 2.57 | ±0.126 | 15.51 | 3.43 c | 3.46 | ±0.089 | 8.27 |
K g·kg−1 | 6.45 A | 6.67 | ±0.245 | 12.03 | 1.54 B | 1.55 | ±0.021 | 4.37 | 5.51 A | 5.48 | ±0.078 | 4.52 | 14.06 C | 13.96 | ±0.279 | 6.29 | 1.15 B | 1.11 | ±0.048 | 13.12 |
Ca g·kg−1 | 0.145 a | 0.146 | ±0.007 | 14.36 | 0.121 a | 0.102 | ±0.016 | 43.19 | 0.115 a | 0.094 | ±0.026 | 63.40 | 0.187 a | 0.151 | ±0.035 | 59.72 | 1.80 b | 1.99 | ±0.181 | 31.78 |
Mg g·kg−1 | 0.454 a | 0.441 | ±0.04 | 27.94 | 0.154 b | 0.151 | ±0.004 | 8.92 | 0.564 a | 0.561 | ±0.021 | 12.09 | 1.43 c | 1.45 | ±0.029 | 6.41 | 0.661 a | 0.665 | ±0.033 | 15.84 |
Toxic Metals | Research Matrices | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Testicles | Liver | Kidneys | Muscle | Hair | ||||||||||||||||
Me | SE | CV | Me | SE | CV | Me | SE | CV | Me | SE | CV | Me | SE | CV | ||||||
Pb mg·kg−1 | 2.84 A | 2.61 | ±0.203 | 22.63 | 2.59 A | 2.46 | ±0.109 | 13.29 | 2.65 A | 2.61 | ±0.085 | 10.13 | 5.37 B | 5.11 | ±0.815 | 48.00 | 7.57 C | 7.28 | ±0.32 | 13.37 |
Cd mg·kg−1 | 0.454 A | 0.471 | ±0.011 | 7.57 | 0.565 B | 0.561 | ±0.015 | 8.23 | 0.544 B | 0.531 | ±0.021 | 12.36 | 0.491 A | 0.517 | ±0.041 | 26.19 | 0.129 C | 0.123 | ±0.004 | 9.46 |
Mineral Elements/ Research Matrices | Na (Liver) | Fe (Hair) | Ca (Muscle) | Mg (Hair) | Mn (Hair) | Cu (Hair) | Pb (Hair) | Cd (Hair) |
---|---|---|---|---|---|---|---|---|
Na (kidneys) | −0.708 ** | |||||||
Fe (kidneys) | 0.889 ** | |||||||
Ca (kidneys) | −0.757 ** | |||||||
Mg (kidneys) | −0.734 ** | |||||||
Mn (kidneys) | 0.656 ** | |||||||
Cu (kidneys) | 0.845 ** | |||||||
Pb (liver) | −0.745 ** | |||||||
Cd (liver) | −0.768 ** |
Mineral Elements | K | Fe | Ca | Mg | Mn | Zn | Cu | Pb | Cd |
---|---|---|---|---|---|---|---|---|---|
Na | 0.760 ** | −0.134 | 0.061 | 0.253 | −0.535 | 0.547 | −0.311 | 0.158 | −0.274 |
K | 0.273 | −0.091 | 0.122 | −0.285 | 0.224 | 0.073 | 0.285 | 0.097 | |
Fe | 0.079 | −0.553 | 0.576 | −0.115 | 0.687 * | 0.697 * | 0.292 | ||
Ca | −0.091 | 0.091 | 0.709 ** | −0.201 | 0.127 | −0.085 | |||
Mg | −0.571 | 0.322 | −0.439 | −0.067 | 0.207 | ||||
Mn | −0.2 | 0.693 * | 0.20 | 0.201 | |||||
Zn | −0.682 * | 0.152 | −0.103 | ||||||
Cu | 0.213 | 0.274 | |||||||
Pb | −0.043 |
Mineral Elements | K | Fe | Ca | Mg | Mn | Zn | Cu | Pb | Cd |
---|---|---|---|---|---|---|---|---|---|
Na | 0.222 | 0.440 | 0.258 | −0.211 | 0.061 | 0.470 | 0.421 | −0.251 | −0.396 |
K | 0.554 | 0.160 | 0.400 | 0.191 | −0.104 | 0.252 | −0.357 | 0.249 | |
Fe | −0.156 | 0.180 | 0.223 | 0.535 | 0.650 * | −0.488 | 0.420 | ||
Ca | −0.183 | −0.318 | 0.232 | −0.329 | 0.281 | −0.743 ** | |||
Mg | −0.027 | −0.061 | 0.413 | −0.463 | 0.123 | ||||
Mn | −0.377 | 0.043 | −0.247 | 0.235 | |||||
Zn | 0.309 | 0.097 | −0.098 | ||||||
Cu | −0.863 ** | 0.271 | |||||||
Pb | −0.457 |
Mineral Elements | K | Fe | Ca | Mg | Mn | Zn | Cu | Pb | Cd |
---|---|---|---|---|---|---|---|---|---|
Na | −0.465 | 0.347 | 0.183 | 0.001 | 0.263 | −0.263 | 0.251 | 0.177 | 0.405 |
K | −0.238 | −0.654 * | −0.036 | 0.006 | 0.248 | 0.455 | −0.424 | −0.207 | |
Fe | 0.069 | 0.063 | 0.138 | −0.532 | −0.344 | 0.594 | −0.651 * | ||
Ca | 0.085 | −0.091 | 0.006 | −0.612 | 0.418 | −0.085 | |||
Mg | 0.225 | 0.073 | −0.462 | −0.043 | 0.512 | ||||
Mn | 0.091 | −0.139 | 0.030 | 0.140 | |||||
Zn | 0.164 | 0.042 | 0.195 | ||||||
Cu | −0.627 * | 0.155 | |||||||
Pb | −0.176 |
Mineral Elements | K | Fe | Ca | Mg | Mn | Zn | Cu | Pb | Cd |
---|---|---|---|---|---|---|---|---|---|
Na | −0.780 ** | −0.043 | −0.579 | −0.227 | 0.196 | 0.024 | −0.043 | 0.488 | 0.267 |
K | −0.308 | 0.353 | 0.095 | −0.232 | 0.152 | −0.340 | −0.243 | −0.315 | |
Fe | −0.117 | 0.549 | 0.135 | 0.153 | 0.595 | 0.166 | 0.562 | ||
Ca | 0.061 | 0.395 | −0.212 | 0.491 | −0.127 | −0.695 * | |||
Mg | 0.517 | 0.476 | 0.409 | 0.354 | 0.503 | ||||
Mn | 0.255 | 0.693 * | 0.498 | −0.098 | |||||
Zn | 0.200 | 0.176 | 0.189 | ||||||
Cu | 0.184 | −0.085 | |||||||
Pb | 0.421 |
Mineral Elements | K | Fe | Ca | Mg | Mn | Zn | Cu | Pb | Cd |
---|---|---|---|---|---|---|---|---|---|
Na | 0.073 | −0.370 | −0.479 | −0.006 | −0.055 | 0.139 | 0.067 | −0.479 | −0.406 |
K | 0.176 | −0.164 | −0.037 | −0.395 | −0.310 | 0.274 | −0.213 | −0.517 | |
Fe | 0.139 | −0.584 | −0.382 | −0.358 | 0.588 | 0.018 | −0.321 | ||
Ca | 0.091 | −0.479 | −0.164 | −0.176 | 0.200 | 0.224 | |||
Mg | 0.024 | 0.450 | −0.049 | 0.389 | 0.091 | ||||
Mn | −0.006 | −0.345 | −0.261 | 0.648 * | |||||
Zn | 0.067 | 0.418 | 0.139 | ||||||
Cu | 0.030 | −0.564 | |||||||
Pb | −0.103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cygan-Szczegielniak, D. The Levels of Mineral Elements and Toxic Metals in the Longissimus lumborum Muscle, Hair and Selected Organs of Red Deer (Cervus elaphus L.) in Poland. Animals 2021, 11, 1231. https://doi.org/10.3390/ani11051231
Cygan-Szczegielniak D. The Levels of Mineral Elements and Toxic Metals in the Longissimus lumborum Muscle, Hair and Selected Organs of Red Deer (Cervus elaphus L.) in Poland. Animals. 2021; 11(5):1231. https://doi.org/10.3390/ani11051231
Chicago/Turabian StyleCygan-Szczegielniak, Dorota. 2021. "The Levels of Mineral Elements and Toxic Metals in the Longissimus lumborum Muscle, Hair and Selected Organs of Red Deer (Cervus elaphus L.) in Poland" Animals 11, no. 5: 1231. https://doi.org/10.3390/ani11051231
APA StyleCygan-Szczegielniak, D. (2021). The Levels of Mineral Elements and Toxic Metals in the Longissimus lumborum Muscle, Hair and Selected Organs of Red Deer (Cervus elaphus L.) in Poland. Animals, 11(5), 1231. https://doi.org/10.3390/ani11051231