Calf Birth Weight Predicted Remotely Using Automated in-Paddock Weighing Technology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cattle and Management
2.2. Walk-Over-Weighing Station
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Components of Cow Liveweight Loss at Calving
4.2. Use of Models in Conjunction with Walk-Over-Weighing Systems
4.3. Cow Traits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burns, B.M.; Fordyce, G.; Holroyd, R.G. A review of factors that impact on the capacity of beef cattle females to conceive, maintain a pregnancy and wean a calf. Implications for reproductive efficiency in northern Australia. Anim. Reprod. Sci. 2010, 122, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Aldridge, M.N.; Lee, S.J.; Taylor, J.D.; Popplewell, G.I.; Job, F.R.; Pitchford, W.S. The use of walk over weigh to predict calving date in extensively managed beef herds. Anim. Prod. Sci. 2017, 57, 583–591. [Google Scholar] [CrossRef]
- Ash, A.; Hunt, L.; McDonald, C.; Scanlan, J.; Bell, L.; Cowley, R.; Watson, I.; McIvor, J.; MacLeod, N. Boosting the productivity and profitability of northern Australian beef enterprises: Exploring innovation options using simulation modelling and systems analysis. Agric. Syst. 2015, 139, 50–65. [Google Scholar] [CrossRef] [Green Version]
- Imaz, J.A.; Garcia, S.; Gonzalez, L.A. Application of In-Paddock Technologies to Monitor Individual Self-Fed Supplement Intake and Liveweight in Beef Cattle. Animals 2020, 10, 93. [Google Scholar] [CrossRef] [Green Version]
- González-García, E.; Alhamada, M.; Pradel, J.; Douls, S.; Parisot, S.; Bocquier, F.; Menassol, J.B.; Llach, I.; González, L.A. A mobile and automated walk-over-weighing system for a close and remote monitoring of liveweight in sheep. Comput. Electron. Agric. 2018, 153, 226–238. [Google Scholar] [CrossRef]
- González, L.A.; Kyriazakis, I.; Tedeschi, L.O. Review: Precision nutrition of ruminants: Approaches, challenges and potential gains. Animal 2018, 12, 246–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, L.A.; Bishop-Hurley, G.; Henry, D.; Charmley, E. Wireless sensor networks to study, monitor and manage cattle in grazing systems. Anim. Prod. Sci. 2014, 54, 1687–1693. [Google Scholar] [CrossRef]
- Imaz, J.A.; Garcia, S.; González, L.A. Real-time monitoring of molasses-lick block intake, feeding behavior and growth rate as affected by forage quantity and quality of rotationally grazed beef cattle. Animals 2019, 9, 1129. [Google Scholar] [CrossRef] [Green Version]
- Menzies, D.; Patison, K.P.; Corbet, N.J.; Swain, D.L. Using Walk-over-Weighing technology for parturition date determination in beef cattle. Anim. Prod. Sci. 2018, 58, 1743. [Google Scholar] [CrossRef] [Green Version]
- Donovan, G.A.; Dohoo, I.R.; Montgomery, D.M.; Bennett, F.L. Calf and disease factors affecting growth in female Holstein calves in Florida, USA. Prev. Vet. Med. 1998, 33, 1–10. [Google Scholar] [CrossRef]
- Barrier, A.C.; Ruelle, E.; Haskell, M.J.; Dwyer, C.M. Effect of a difficult calving on the vigour of the calf, the onset of maternal behaviour, and some behavioural indicators of pain in the dam. Prev. Vet. Med. 2012, 103, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Sieber, M.; Freeman, A.E.; Kelley, D.H. Effects of Body Measurements and Weight on Calf Size and Calving Difficulty of Holsteins1. J. Dairy Sci. 1989, 72, 2402–2410. [Google Scholar] [CrossRef]
- Gaines, J.D.; Peschel, D.; Kauffman, R.G.; Schaefer, D.M.; Badtram, G.; Kumi-Diaka, J.; Clayton, M.K.; Milliken, G. Pelvic growth, calf birth weight and dystocia in Holstein × Hereford heifers. Theriogenology 1993, 40, 33–41. [Google Scholar] [CrossRef]
- Lombard, J.E.; Garry, F.B.; Tomlinson, S.M.; Garber, L.P. Impacts of Dystocia on Health and Survival of Dairy Calves. J. Dairy Sci. 2007, 90, 1751–1760. [Google Scholar] [CrossRef] [PubMed]
- Johanson, J.M.; Berger, P.J. Birth Weight as a Predictor of Calving Ease and Perinatal Mortality in Holstein Cattle1. J. Dairy Sci. 2003, 86, 3745–3755. [Google Scholar] [CrossRef] [Green Version]
- Holland, M.D.; Odde, K.G. Factors affecting calf birth weight: A review. Theriogenology 1992, 38, 769–798. [Google Scholar] [CrossRef]
- Funston, R.N.; Summers, A.F.; Roberts, A.J. Apharma beef cattle nutrition symposium: Implications of nutritional management for beef cow-calf systems. J. Anim. Sci. 2012, 90, 2301–2307. [Google Scholar] [CrossRef]
- Long, N.M.; Vonnahme, K.A.; Hess, B.W.; Nathanielsz, P.W.; Ford, S.P. Effects of early gestational undernutrition on fetal growth, organ development, and placentomal composition in the bovine. J. Anim. Sci. 2009, 87, 1950–1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, D.L.; Cafe, L.M.; Greenwood, P.L. Meat Science and Muscle Biology Symposium: Developmental programming in cattle: Consequences for growth, efficiency, carcass, muscle, and beef quality characteristics1,2. J. Anim. Sci. 2013, 91, 1428–1442. [Google Scholar] [CrossRef]
- Sullivan, T.M.; Micke, G.C.; Magalhaes, R.S.; Phillips, N.J.; Perry, V.E.A. Dietary protein during gestation affects placental development in heifers. Theriogenology 2009, 72, 427–438. [Google Scholar] [CrossRef]
- Peter, A.T. Bovine placenta: A review on morphology, components, and defects from terminology and clinical perspectives. Theriogenology 2013, 80, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Lidfors, L.M.; Moran, D.; Jung, J.; Jensen, P.; Castren, H. Behaviour at calving and choice of calving place in cattle kept in different environments. Appl. Anim. Behav. Sci. 1994, 42, 11–28. [Google Scholar] [CrossRef]
- Linden, T.C.; Bicalho, R.C.; Nydam, D.V. Calf birth weight and its association with calf and cow survivability, disease incidence, reproductive performance, and milk production. J. Dairy Sci. 2009, 92, 2580–2588. [Google Scholar] [CrossRef]
- Mee, J.F. Prevalence and risk factors for dystocia in dairy cattle: A review. Vet. J. 2008, 176, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Echternkamp, S.E. Relationship between placental development and calf birth weight in beef cattle. Anim. Reprod. Sci. 1993, 32, 1–13. [Google Scholar] [CrossRef]
- Lykins, L.E., Jr.; Bertrand, J.K.; Baker, J.F.; Kiser, T.E. Maternal birth weight breeding value as an additional factor to predict calf birth weight in beef cattle. J. Anim. Sci. 2000, 78, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Tozer, P.R.; Scollard, D.L.; Marsh, T.L.; Marsh, T.J. Recursive systems model of fetal birth weight and calving difficulty in beef heifers. Can. J. Anim. Sci. 2002, 82, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Wintour, E.; Laurence, B.; Lingwood, B. Anatomy, physiology and pathology of the amniotic and allantoic compartments in the sheep and cow. Aust. Vet. J. 1986, 63, 216–221. [Google Scholar] [CrossRef]
- Redmer, D.A.; Wallace, J.M.; Reynolds, L.P. Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development. Domest. Anim. Endocrinol. 2004, 27, 199–217. [Google Scholar] [CrossRef] [PubMed]
- Osborne, V.R.; Leslie, K.E.; McBride, B.W. Effect of supplementing glucose in drinking water on the energy and nitrogen status of the transition dairy cow. Can. J. Anim. Sci. 2002, 82, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Huzzey, J.M.; von Keyserlingk, M.A.G.; Weary, D.M. Changes in Feeding, Drinking, and Standing Behavior of Dairy Cows During the Transition Period. J. Dairy Sci. 2005, 88, 2454–2461. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.B. Behaviour around the time of calving in dairy cows. Appl. Anim. Behav. Sci. 2012, 139, 195–202. [Google Scholar] [CrossRef]
- De Passillé, A.M.B.; Rushen, J. Calves’ behaviour during nursing is affected by feeding motivation and milk availability. Appl. Anim. Behav. Sci. 2006, 101, 264–275. [Google Scholar] [CrossRef]
Statistic | ∆LWC (kg) | CBW (kg) | NFW (kg) | Pre-LW (kg) | Post-LW (kg) | BCS |
---|---|---|---|---|---|---|
Mean | 80.50 | 50.90 | 29.60 | 719.20 | 639.10 | 2.5 |
Minimum | 48.10 | 38.80 | 4.10 | 630.60 | 534.30 | 2.0 |
Maximum | 134.00 | 66.00 | 68.50 | 829.70 | 742.00 | 3.5 |
s.d. | 21.03 | 7.53 | 16.08 | 49.98 | 52.28 | 0.35 |
s.e. | 3.97 | 1.42 | 3.04 | 9.45 | 9.88 | 0.07 |
c.v. (%) | 26.12 | 14.79 | 54.38 | 6.99 | 8.18 | 13.90 |
Variable | ∆LWC | CBW | NFW | Pre-LW | Post-LW | BCS |
---|---|---|---|---|---|---|
∆LWC | 1 | 0.76 | 0.95 | 0.12 | −0.28 | −0.32 |
CBW | <0.001 | 1 | 0.52 | 0.28 | −0.12 | −0.37 |
NFW | <0.001 | 0.004 | 1 | 0.02 | −0.32 | −0.25 |
Pre-LW | 0.56 | 0.14 | 0.93 | 1 | 0.84 | −0.01 |
Post-LW | 0.14 | 0.56 | 0.10 | <0.001 | 1 | 0.07 |
BCS | 0.10 | 0.05 | 0.21 | 0.98 | 0.73 | 1 |
Items | Intercept | Regression Coefficient | Model | |||
---|---|---|---|---|---|---|
α ± s.e. | p-Value | β ± s.e. | p-Value | R2 | p-Value | |
∆LWC | ||||||
CBW | −27.38 ± 18.35 | 0.15 | 2.12 ± 0.36 | <0.001 | 0.56 | <0.001 |
NFW | 43.66 ± 2.63 | <0.001 | 1.25 ± 0.08 | <0.001 | 0.90 | <0.001 |
Pre-LW | 45.94 ± 58.75 | 0.44 | 0.05 ± 0.082 | 0.56 | −0.02 | 0.56 |
Post-LW | 153.30 ± 48.50 | 0.004 | −0.11 ± 0.08 | 0.14 | 0.04 | 0.14 |
BCS | 130.01 ± 28.85 | <0.001 | −19.46 ± 11.23 | 0.10 | 0.07 | 0.10 |
CBW | ||||||
∆LWC | 29.04 ± 3.81 | <0.001 | 0.27 ± 0.05 | <0.001 | 0.56 | <0.001 |
NFW | 43.66 ± 2.63 | <0.001 | 0.25 ± 0.08 | 0.004 | 0.25 | 0.004 |
Pre-LW | 29.94 ± 20.32 | 0.324 | 0.04 ± 0.03 | 0.14 | 0.04 | 0.14 |
Post-LW | 61.62 ± 17.99 | 0.002 | −0.02 ± 0.03 | 0.56 | −0.02 | 0.56 |
BCS | 71.56 ± 10.12 | <0.001 | −8.12 ± 3.94 | 0.05 | 0.11 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, A.Z.; Imaz, J.A.; González, L.A. Calf Birth Weight Predicted Remotely Using Automated in-Paddock Weighing Technology. Animals 2021, 11, 1254. https://doi.org/10.3390/ani11051254
Chang AZ, Imaz JA, González LA. Calf Birth Weight Predicted Remotely Using Automated in-Paddock Weighing Technology. Animals. 2021; 11(5):1254. https://doi.org/10.3390/ani11051254
Chicago/Turabian StyleChang, Anita Z., José A. Imaz, and Luciano A. González. 2021. "Calf Birth Weight Predicted Remotely Using Automated in-Paddock Weighing Technology" Animals 11, no. 5: 1254. https://doi.org/10.3390/ani11051254
APA StyleChang, A. Z., Imaz, J. A., & González, L. A. (2021). Calf Birth Weight Predicted Remotely Using Automated in-Paddock Weighing Technology. Animals, 11(5), 1254. https://doi.org/10.3390/ani11051254