Oryzias curvinotus in Sanya Does Not Contain the Male Sex-Determining Gene dmy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Collection of Fish and Samples
2.3. Morphological Traits and Molecular Species Identification
2.4. Genome Re-Sequencing
2.5. RNA Isolation, cDNA Library Preparation, and Sequencing
2.6. De Novo Assembly and Functional Annotation
2.7. Differential Gene Expression Analysis and Quantitative Real-Time PCR (qPCR) Validation
3. Results
3.1. Morphological and Molecular Analyses of SY-Medaka
3.2. Genetic Sex Identification of SY-Medaka
3.3. RNA-Seq Analysis, Unigene Annotation, and dmy Detection
3.4. Differentially Expressed Gene Identification and qPCR Validation
4. Discussion
4.1. SY-Medaka Belongs to O. curvinotus.
4.2. SY-Medaka Does Not Contain dmy
4.3. Genes Related to Sex Determination and Gonadal Development in SY-Medaka
4.4. Lack of dmy in the SY-Medaka Genome
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayakawa, H.; Le, Q.D.; Kinoshita, M.; Takehana, Y.; Sakuma, K.; Takeshima, H.; Kojima, S.; Naruse, K.; Inoue, K. Genetic similarity of the Hainan medaka populations collected from hyper- and hypo-osmotic environments in northern Vietnam. Ocean. Sci. J. 2015, 50, 231–235. [Google Scholar] [CrossRef]
- Wang, Z.D.; Long, S.S.; Liao, J.; Huang, C.Q.; Zhang, H.R.; Huang, S.K.; Zhang, Y.P.; Liu, L.; Guo, Y.S. Complete mitogenome of Hainan medaka Oryzias curvinotus (Teleostei: Beloniformes and transcriptional differences between male and female liver. Mitochondrial DNA B 2017, 2, 157–158. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, M.; Nagahama, Y.; Shinomiya, A.; Sato, T.; Matsuda, C.; Kobayashi, T.; Morrey, C.E.; Shibata, N.; Asakawa, S.; Shimizu, N.; et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature. 2002, 417, 559–563. [Google Scholar] [CrossRef]
- Matsuda, M.; Nagahama, Y.; Kobayashi, T.; Matsuda, C.; Hamaguchi, S.; Sakaizumi, M. The sex determining gene of medaka: A Y-specific DM domain gene (DMY is required for male development. Fish Physiol. Biochem. 2003, 28, 135–139. [Google Scholar] [CrossRef]
- Matsuda, M.; Sato, T.; Toyazaki, Y.; Nagahama, Y.; Hamaguchi, S.; Sakaizumi, M. Oryzias curvinotus has DMY, a gene that is required for male development in the medaka, O. latipes. Zool. Sci. 2003, 20, 159–161. [Google Scholar] [CrossRef] [Green Version]
- Kato, M.; Takehana, Y.; Sakaizumi, M.; Hamaguchi, S. A sex-determining region on the Y chromosome controls the sex-reversal ratio in interspecific hybrids between Oryzias curvinotus females and Oryzias latipes males. Heredity 2010, 104, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yano, A.; Guyomard, R.; Nicol, B.; Jouanno, E.; Quillet, E.; Klopp, C.; Bouchez, O.; Fostier, A.; Guiguen, Y. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr. Biol. 2012, 22, 1423–1428. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, T.; Kai, W.; Tasumi, S.; Oka, A.; Matsunaga, T.; Mizuno, N.; Fujita, M.; Suetake, H.; Suzuki, S.; Hosoya, S.; et al. A trans-species missense SNP in amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (Fugu). PLoS Genet. 2012, 8, e1002798. [Google Scholar] [CrossRef] [Green Version]
- Hattori, R.S.; Strüssmann, C.A. A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. P. Natl. Acad. Sci. 2012, 109, 2955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myosho, T.; Otake, H.; Masuyama, H.; Matsuda, M.; Kuroki, Y.; Fujiyama, A.; Naruse, K.; Hamaguchi, S.; Sakaizumi, M. Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 2012, 191, 163–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Z.K.; Liu, Y.; Wang, W.W.; Wang, Q.; Zhang, N.; Lin, F.; Wang, N.; Shao, C.W.; Dong, Z.D.; Li, Y.Z.; et al. Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis). Sci. Rep. 2017, 7, 42213. [Google Scholar] [CrossRef]
- Chen, S.L.; Zhang, G.J.; Shao, C.W.; Huang, Q.F.; Liu, G.; Zhang, P.; Song, W.T.; An, N.; Chalopin, D.; Volff, J.N.; et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat. Genet. 2014, 46, 253–260. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Tao, W.J.; Chen, J.L.; Tan, D.J.; Yang, J.; Sun, L.N.; Wei, J.; Conte, M.A.; Kocher, T.D.; Wang, D.S. Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis. BMC Genom. 2018, 19, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, F.X.; Jiang, D.N.; Huang, Y.Q.; Mustapha, U.F.; Yang, W.; Cui, X.F.; Tian, C.X.; Chen, H.P.; Shi, H.J.; Deng, S.P.; et al. Comparative transcriptome analysis of male and female gonads reveals sex-biased genes in spotted scat (Scatophagus argus). Fish Physiol. Biochem. 2019, 45, 1963–1980. [Google Scholar] [CrossRef]
- Tian, C.X.; Liu, Z.Y.; Dong, Z.D.; Huang, Y.; Du, T.; Chen, H.P.; Jiang, D.N.; Deng, S.P.; Zhang, Y.L.; Wanida, S.; et al. Transcriptome analysis of male and female mature gonads of silver sillago (Sillago sihama). Genes 2019, 10, 129. [Google Scholar] [CrossRef] [Green Version]
- Cadrin, S.X. Advances in morphometric identification of fishery stocks. Rev. Fish Biol. Fisher. 2000, 10, 91–112. [Google Scholar] [CrossRef]
- Frederich, B.; Liu, S.Y.V.; Dai, C.F. Morphological and genetic divergences in a coral reef damselfish, Pomacentrus coelestis. Evol biol. 2012, 39, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.H.; Song, N.; Liu, H.Y.; Li, Q.H.; Chen, Z.Y.; Yin, L.N.; Wang, Y.P.; Gao, T.X. Preliminary analysis on morphological characteristics of 5 Collichthys lucidus geographical populations. Trans. Oceanol. Limnol. 2015, 2, 59–67. [Google Scholar] [CrossRef]
- Wang, W.; Ma, C.Y.; Chen, W.; Jin, Z.W.; Zhao, M.; Zhang, F.Y.; Liu, Z.Q.; Ma, L.B. Population genetic diversity of mud crab (Scylla paramamosain from southeast coastal regions of China based on mitochondrial COI gene sequence. Gene 2020, 751, 144763. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.P.; Jamsari, A.F.J.; Muchlisin, Z.A.; Azizah, M.N.S. Mitochondrial genetic variation and population structure of the striped snakehead, Channa striata in Malaysia and Sumatra, Indonesia. Biochem. Syst. Ecol. 2015, 60, 99–105. [Google Scholar] [CrossRef]
- Zhu, S.R.; Fu, J.J.; Wang, Q.; Li, J.L. Identification of Channa species using the partial cytochrome c oxidase subunit I (COI gene as a DNA barcoding marker. Biochem. Syst. Ecol. 2013, 51, 117–122. [Google Scholar] [CrossRef]
- Zhang, F.F.; Jiang, H.C.; Jin, J.J.; Qiu, Y.P.; Chen, G.Z. Characteristic re-description of ricefish Oryzias curvinotus from Guangdong, China. Sichuan J. Zool. 2017, 36, 564–571. [Google Scholar] [CrossRef]
- Dong, Z.D.; Long, S.S.; Huang, C.Q.; Huang, S.K.; Zhang, N.; Ying, Z.Y.; Guo, Y.S.; Wang, Z.D. A method for rapid identification of genetic sex of Oryzias curvinotus. J. Guangdong Ocean Univ. 2018, 38, 25–29. [Google Scholar] [CrossRef]
- Lin, Y.S.; Wang, B.; Wang, N.H.; Ouyang, G.; Cao, H. Transcriptome analysis of rare minnow (Gobiocypris rarus infected by the grass carp reovirus. Fish Shellfish Immunol. 2019, 89, 337–344. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Conesa, A.; Gotz, S.; Garcia-Gomez, J.M.; Terol, J.; Talon, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Tarazona, S.; Garcia-Alcalde, F.; Dopazo, J.; Ferrer, A.; Conesa, A. Differential expression in RNA-seq: A matter of depth. Genome Res. 2011, 21, 2213–2223. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.D.; Chen, P.S.; Zhang, N.; Huang, S.K.; Zhang, H.R.; Wang, S.R.; Li, X.Y.; Guo, Y.S.; Wang, Z.D. Evaluation of reference genes for quantitative real-time PCR analysis of gene expression in Hainan medaka (Oryzias curvinotus). Gene Rep. 2019, 14, 94–99. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)). Method 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Mayr, E.; Linsley, E.G.; Usinger, R. Methods and Principles of Systematic Zoology; McGraw Hill: New York, NY, USA, 1953; pp. 22–39. [Google Scholar]
- Takehana, Y.; Naruse, K.; Sakaizumi, M. Molecular phylogeny of the medaka fishes genus Oryzias (Beloniformes: Adrianichthyidae) based on nuclear and mitochondrial DNA sequences. Mol. Phylogenet Evol. 2005, 36, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Mokodongan, D.F.; Yamahira, K. Origin and intra-island diversification of Sulawesi endemic Adrianichthyidae. Mol. Phylogenet Evol. 2015, 93, 150–160. [Google Scholar] [CrossRef]
- Hellberg, R.S.; Kawalek, M.D.; Van, K.T.; Shen, Y.L.; Williams-Hill, D.M. Comparison of DNA Extraction and PCR Setup Methods for Use in High-Throughput DNA Barcoding of Fish Species. Food Anal. Methods 2014, 7, 1950–1959. [Google Scholar] [CrossRef]
- Leon, H.; Julia, S. The natural history of model organisms: The untapped potential of medaka and its wild relatives. eLife 2019, 8, e46994. [Google Scholar] [CrossRef]
- Liu, H.R.; Zhang, H.; Pan, X.L.; Xu, M.; Huang, J.; He, M.X. A high density genetic map by whole-genome resequencing for QTL fine-mapping and dissecting candidate genes for growth or sex traits in the pearl oyster (Pinctada fucata martensii). Aquaculture 2020, 519, 734839. [Google Scholar] [CrossRef]
- Lin, Q.H.; Mei, J.; Li, Z.; Zhang, X.M.; Zhou, L.; Gui, J.F. Distinct and cooperative roles of amh and dmrt1 in self-renewal and differentiation of male germ cells in zebrafish. Genetics. 2017, 207, 1007–1022. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Watakabe, I.; Nishimura, T.; Picard, J.Y.; Toyoda, A.; Taniguchi, Y.; di Clemente, N.; Tanaka, M. Hyperproliferation of mitotically active germ cells due to defective anti-Mullerian hormone signaling mediates sex reversal in medaka. Development 2012, 139, 2283–2287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, D.N.; Yang, H.H.; Li, M.H.; Shi, H.J.; Zhang, X.B.; Wang, D.S. gsdf is a downstream gene of dmrt1 that functions in the male sex determination pathway of the nile tilapia. Mol. Reprod. Dev. 2016, 83, 497–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Guan, G.J.; Li, M.Y.; Zhu, F.; Hong, Y.H. Autosomal gsdf acts as a male sex initiator in the fish medaka. Sci. Rep. 2016, 6, 19738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, S.; Watakabe, I.; Nishimura, T.; Toyoda, A.; Taniguchi, Y.; Tanaka, M. Analysis of medaka sox9 orthologue reveals a conserved role in germ cell maintenance. PLoS ONE 2012, 7, 12. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Li, Y.; Zhou, Z.L.; Gui, J.F. Sequential, divergent, and cooperative requirements of foxl2a and foxl2b in ovary development and maintenance of zebrafish. Genetics 2017, 205, 1551–1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.Y.; Wang, Y.J.; Wang, M.Y.; Liu, Y.X.; Cheng, J.; Zhang, Q.Q. Growth differentiation factor 9 (gdf9) and bone morphogenetic protein 15 (bmp15) are potential intraovarian regulators of steroidogenesis in Japanese flounder (Paralichthys olivaceus). Gen. Comp. Endocrinol. 2020, 297, 113547. [Google Scholar] [CrossRef] [PubMed]
- Dranow, D.B.; Hu, K.; Bird, A.M.; Lawry, S.T.; Adams, M.T.; Sanchez, A.; Amatruda, J.F.; Draper, B.W. Bmp15 is an oocyte-produced signal required for maintenance of the adult female sexual phenotype in zebrafish. PLoS Genet. 2016, 12, 24. [Google Scholar] [CrossRef]
- Wu, T.L.; Cheng, Y.Y.; Liu, Z.L.; Tao, W.J.; Zheng, S.Q.; Wang, D.S. Bioinformatic analyses of zona pellucida genes in vertebrates and their expression in Nile tilapia. Fish Physiol. Biochem. 2018, 44, 435–449. [Google Scholar] [CrossRef]
- Dong, Z.D.; Zhang, N.; Liu, Y.; Xu, W.T.; Cui, Z.K.; Shao, C.W.; Chen, S.L. Expression analysis and characterization of zglp1 in the Chinese tongue sole (Cynoglossus semilaevis). Gene 2019, 683, 72–79. [Google Scholar] [CrossRef]
- Miao, L.Y.; Yuan, Y.; Cheng, F.; Fang, J.S.; Zhou, F.; Ma, W.R.; Jiang, Y.; Huang, X.H.; Wang, Y.C.; Shan, L.J.; et al. Translation repression by maternal RNA binding protein Zar1 is essential for early oogenesis in zebrafish. Development 2017, 144, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Corina, H.; Walter, S.; Astrid, B. Genetics of sexual development: An evolutionary playground for fish. Genetics 2014, 196, 579–591. [Google Scholar] [CrossRef] [Green Version]
- Stelkens, R.B.; Wedekind, C. Environmental sex reversal, Trojan sex genes, and sex ratio adjustment: Conditions and population consequences. Mol. Ecol. 2010, 19, 627–646. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Zhang, Y.; Sarida, M. Coexistence of genotypic and temperature-dependent sex determination in pejerrey Odontesthes bonariensis. PLoS ONE 2014, 9, e102574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, T.; Endo, T.; Yamahira, K.; Hamaguchi, S.; Sakaizumi, M. Induction of female-to-male sex reversal by high temperature treatment in medaka, Oryzias latipes. Zool. Sci. 2005, 22, 985–988. [Google Scholar] [CrossRef]
- Shao, C.W.; Li, Q.Y.; Chen, S.L.; Zhang, P.; Lian, J.M.; Hu, Q.M.; Sun, B.; Jin, L.J.; Liu, S.S.; Wang, Z.J.; et al. Epigenetic modification and inheritance in sexual reversal of fish. Genome Res. 2014, 24, 604–615. [Google Scholar] [CrossRef] [Green Version]
- Desprez, D.; Melard, C. Effect of ambient water temperature on sex determinism in the blue tilapia Oreochromis Aureus. Aquaculture 1998, 162, 79–84. [Google Scholar] [CrossRef]
- Myosho, T.; Takehana, Y.; Hamaguchi, S.; Sakaizumi, M. Turnover of sex chromosomes in celebensis group medaka fishes. G3-Genes Genom. Genet. 2015, 5, 2685–2691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takehana, Y.; Matsuda, M.; Myosho, T.; Suster, M.L.; Kawakami, K.; Shin-I, T.; Kohara, Y.; Kuroki, Y.; Toyoda, A.; Fujiyama, A.; et al. Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat. Commun. 2014, 5, 4157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herpin, A.; Braasch, I.; Kraeussling, M.; Schmidt, C.; Thoma, E.C.; Nakamura, S.; Tanaka, M.; Schartl, M. Transcriptional rewiring of the sex determining dmrt1 gene duplicate by transposable elements. PLoS Genet. 2010, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, M.; Sakaizumi, M. Evolution of the sex-determining gene in the teleostean genus Oryzias. Gen. Comp. Endocrinol. 2016, 239, 80–88. [Google Scholar] [CrossRef] [PubMed]
Countable Traits | GQ-Medaka | SY-Medaka | Variable Coefficient |
---|---|---|---|
dorsal fin ray counts | 6.02 ± 0.15 | 6.04 ± 0.19 | 0.05 |
anal fin ray counts | 19.49 ± 0.87 | 19.71 ± 0.80 | 0.13 |
pectoral fin ray counts | 8.09 ± 0.29 | 8.12 ± 0.32 | 0.05 |
caudal fin ray counts | 18.51 ± 0.69 b | 19.31 ± 1.02 a | 0.47 |
ventral fin ray counts | 6.00 ± 0.00 | 6.00 ± 0.00 | |
measurable traits | |||
Body weight/g | 0.203 ± 0.06 | 0.204 ± 0.04 | 0.01 |
Total length/mm | 27.71 ± 2.25 a | 27.59 ± 1.83 b | 0.03 |
Head length/mm | 5.20 ± 0.62 b | 5.44 ± 0.50 a | 0.2 |
Snount length/mm | 1.21 ± 0.25 | 1.29 ± 0.22 | 0.17 |
Eye orbit diameter/mm | 2.06 ± 0.27 | 2.00 ± 0.22 | 0.12 |
Maximum depth of body/mm | 5.01 ± 0.72 | 5.12 ± 0.44 | 0.09 |
Length of caudal fin/mm | 4.32 ± 0.35 | 4.21 ± 0.31 | 0.17 |
Tips of snout to anus/mm | 12.22 ± 0.94 | 12.04 ± 0.80 | 0.1 |
Tip of snout to dorsal fin/mm | 13.14 ± 0.98 a | 12.63 ± 0.92 b | 0.27 |
Caudal peduncle length/mm | 4.19 ± 0.33 | 4.17 ± 0.23 | 0.04 |
Caudal peduncle depth/mm | 2.09 ± 0.25 b | 2.24 ± 0.18 a | 0.35 |
Length of dorsal fin/mm | 3.30 ± 0.67 b | 3.68 ± 0.67 a | 0.28 |
Length of base of anal fin/mm | 2.78 ± 0.35 b | 2.96 ± 0.41 a | 0.23 |
Length of pectoral fin/mm | 3.90 ± 0.41 b | 4.36 ± 0.37 a | 0.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Li, X.; Yao, Z.; Wang, C.; Guo, Y.; Wang, Q.; Shao, C.; Wang, Z. Oryzias curvinotus in Sanya Does Not Contain the Male Sex-Determining Gene dmy. Animals 2021, 11, 1327. https://doi.org/10.3390/ani11051327
Dong Z, Li X, Yao Z, Wang C, Guo Y, Wang Q, Shao C, Wang Z. Oryzias curvinotus in Sanya Does Not Contain the Male Sex-Determining Gene dmy. Animals. 2021; 11(5):1327. https://doi.org/10.3390/ani11051327
Chicago/Turabian StyleDong, Zhongdian, Xueyou Li, Zebin Yao, Chun Wang, Yusong Guo, Qian Wang, Changwei Shao, and Zhongduo Wang. 2021. "Oryzias curvinotus in Sanya Does Not Contain the Male Sex-Determining Gene dmy" Animals 11, no. 5: 1327. https://doi.org/10.3390/ani11051327
APA StyleDong, Z., Li, X., Yao, Z., Wang, C., Guo, Y., Wang, Q., Shao, C., & Wang, Z. (2021). Oryzias curvinotus in Sanya Does Not Contain the Male Sex-Determining Gene dmy. Animals, 11(5), 1327. https://doi.org/10.3390/ani11051327