Temporal Variations in Chemical Composition, In Vitro Digestibility, and Metabolizable Energy of Plant Species Browsed by Goats in Southern Mediterranean Forest Rangeland
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Sampling Area
2.2. Source of Forage Samples
2.3. Laboratory Analysis
2.3.1. Chemical Analysis
2.3.2. In Vitro Digestibility and Metabolizable Energy
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butchart, S.H.M.; Walpole, M.; Collen, B.; Van Strien, A.; Scharlemann, J.P.W.; Almond, R.E.A.; Baillie, J.E.M.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global biodiversity: Indicators of recent declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Roces-Díaz, J.V.; Vayreda, J.; De Cáceres, M.; García-Valdés, R.; Banqué-Casanovas, M.; Morán-Ordóñez, A.; Brotons, L.; de-Miguel, S.; Martínez-Vilalta, J. Temporal changes in mediterranean forest ecosystem services are driven by stand development, rather than by climate-related disturbances. Forest Ecol. Manag. 2021, 480, 118623. [Google Scholar] [CrossRef]
- Buira, A.; Fernández-Mazuecos, M.; Aedo, C.; Molina-Venegas, R. The contribution of the edaphic factor as a driver of recent plant diversification in a Mediterranean biodiversity hotspot. J. Ecol. 2021, 109, 987–999. [Google Scholar] [CrossRef]
- Silanikove, N. The physiological basis of adaptation in goats to harsh environments. Small Rumin. Res. 2000, 35, 181–193. [Google Scholar] [CrossRef]
- Arsenos, G.; Gelasakis, A.I.; Pinopoulos, S. Description and typology of dairy goat farms in Greece. In Proceedings of the 4th ISOFAR Scientific Conference, Istanbul, Turkey, 13–15 October 2014; pp. 571–574. [Google Scholar]
- Manousidis, T.; Parissi, Z.M.; Kyriazopoulos, A.P.; Malesios, C.; Koutroubas, S.D.; Abas, Z. Relationships among nutritive value of selected forages, diet composition and milk quality in goats grazing in a Mediterranean woody rangeland. Livest. Sci. 2018, 218, 8–19. [Google Scholar] [CrossRef]
- Chentouf, M.; Boulanouar, B.; Bister, J.L. Elevage Caprin au Nord du Maroc; INRA-Editions Press: Rabat, Morocco, 2015. [Google Scholar]
- Fantahun, T.; Alemayehu, A.; Abegaz, S. Characterization of goat production systems and trait preferences of goat keepers in Bench Maji zone, south western Ethiopia. Afr. J. Agric. Res. 2016, 11, 2768–2774. [Google Scholar]
- Glasser, T.A.; Landau, S.Y.; Ungar, E.D.; Perevolotsky, A.; Dvash, L.; Muklada, H.; Kababya, D.; Walker, J.W. Foraging selectivity of three goat breeds in a Mediterranean shrubland. Small Rumin. Res. 2012, 102, 7–12. [Google Scholar] [CrossRef]
- Manousidis, T.; Kyriazopoulos, A.P.; Parissi, Z.M.; Abraham, E.M.; Korakis, G.; Abas, Z. Grazing behavior, forage selection and diet composition of goats in a Mediterranean woody rangeland. Small Rumin. Res. 2016, 145, 142–153. [Google Scholar] [CrossRef]
- Chebli, Y.; Otmani, S.E.; Chentouf, M.; Hornick, J.-L.; Bindelle, J.; Cabaraux, J.-F. Foraging Behavior of Goats Browsing in Southern Mediterranean Forest Rangeland. Animals 2020, 10, 196. [Google Scholar] [CrossRef] [Green Version]
- Ammar, H.; López, S.; González, J.S.; Ranilla, M.J. Chemical composition and in vitro digestibility of some Spanish browse plant species. J. Sci. Food Agric. 2004, 84, 197–204. [Google Scholar] [CrossRef]
- Parlak, A.O.; Gokkus, A.; Hakyemez, B.H.; Baytekin, H. Shrub yield and forage quality in Mediterranean shrublands of West turkey for a period of one year. African J. Agric. Res. 2011, 6, 1726–1734. [Google Scholar] [CrossRef]
- Kokten, K.; Kaplarn, M.; Hatipoǧlu, R.; Saruhan, V.; Çinar, S. Nutritive value of Mediterranean shrubs. J. Anim. Plant Sci. 2012, 22, 188–194. [Google Scholar]
- Ammar, H.; López, S.; González, J.S. Assessment of the digestibility of some Mediterranean shrubs by in vitro techniques. Anim. Feed Sci. Technol. 2005, 119, 323–331. [Google Scholar] [CrossRef]
- Mebirouk-Boudechiche, L.; Cherif, M.; Boudechiche, L.; Sammar, F. Teneurs en composés primaires et secondaires des feuilles d’arbustes fourragers de la région humide d’Algérie. Revue Méd. Vét. 2014, 165, 344–352. [Google Scholar]
- Van, D.T.T.; Mui, N.T.; Ledin, I. Tropical foliages: Effect of presentation method and species on intake by goats. Anim. Feed Sci. Technol. 2005, 118, 1–17. [Google Scholar] [CrossRef]
- Celaya, R.; Oliván, M.; Ferreira, L.M.M.; Martínez, A.; García, U.; Osoro, K. Comparison of grazing behaviour, dietary overlap and performance in non-lactating domestic ruminants grazing on marginal heathland areas. Livest. Sci. 2007, 106, 271–281. [Google Scholar] [CrossRef]
- Safari, J.; Mushi, D.E.; Kifaro, G.C.; Mtenga, L.A.; Eik, L.O. Seasonal variation in chemical composition of native forages, grazing behaviour and some blood metabolites of Small East African goats in a semi-arid area of Tanzania. Anim. Feed Sci. Technol. 2011, 164, 62–70. [Google Scholar] [CrossRef]
- Chebli, Y.; Chentouf, M.; Ozer, P.; Hornick, J.L.; Cabaraux, J.F. Forest and silvopastoral cover changes and its drivers in northern Morocco. Appl. Geogr. 2018, 101, 23–35. [Google Scholar] [CrossRef]
- Chentouf, M.; Zantar, S.; Doukkali, M.R.; Farahat, L.B.; Jouamaa, A.; Aden, H. Performances techniques et économiques des élevages caprins dans le nord du Maroc. Options Méditerranéennes 2011, 100, 151–156. [Google Scholar]
- Mastere, M.; Van Vliet-Lanoë, B.; Ait Brahim, L. Land use mapping and its relation to mass wasting and gullying in North-Western Rif (Morocco). Géomorphologie 2013, 193, 335–352. [Google Scholar] [CrossRef]
- Chebli, Y.; Chentouf, M.; Hornick, J.L.; Cabaraux, J.F. Extensive goat production systems in northern Morocco: Production and use of pastoral resources. In Grassland Resources for Extensive Farming Systems in Marginal Lands: Major Drivers and Future scenarios; Porqueddu, A., Franca, C., Lombardi, A., Molle, G., Peratoner, G., Hopkins, G., Eds.; Wageningen Academic Publishers Press: Wageningen, The Netherlands, 2017; pp. 131–133. [Google Scholar]
- Makkar, H.P.S.; Singh, B. Effect of drying conditions on tannin, fiber and lignin levels in mature oak (Quercus incana) leaves. J. Sci. Food Agric. 1991, 54, 323–328. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 16th ed.; AOAC International: Arlington, VA, USA, 1997. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 15th ed.; AOAC International: Arlington, VA, USA, 1990. [Google Scholar]
- Robertson, J.B.; Van Soest, P.J. The detergent system of analysis. In The Analysis of Dietary Fiber in Food; James, W.P.T., Theander, O., Eds.; Marcel Dekker: New York, NY, USA, 1981; pp. 123–158. [Google Scholar]
- Porter, L.J.; Hrstich, L.N.; Chan, B.G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 1986, 25, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Mabjeesh, S.J.; Cohen, M.; Arieli, A. In vitro methods for measuring the dry matter digestibility of ruminant feedstuffs: Comparison of methods and inoculum source. J. Dairy Sci. 2000, 83, 2289–2294. [Google Scholar] [CrossRef]
- Tassone, S.; Fortina, R.; Peiretti, P.G. In Vitro Techniques Using the DaisyII Incubator for the Assessment of Digestibility: A Review. Animals 2020, 10, 775. [Google Scholar] [CrossRef]
- El Otmani, S.; Chentouf, M.; Hornick, J.L.; Cabaraux, J.F. Chemical composition and in vitro digestibility of alternative feed resources for ruminants in Mediterranean climates: Olive cake and cactus cladodes. J. Agric. Sci. 2019, 157, 260–271. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Papachristou, T.G.; Platis, P.D.; Nastis, A.S. Foraging behaviour of cattle and goats in oak forest stands of varying coppicing age in Northern Greece. Small Rumin. Res. 2005, 59, 181–189. [Google Scholar] [CrossRef]
- González-Pech, P.G.; de Jesús Torres-Acosta, J.F.; Sandoval-Castro, C.A.; Tun-Garrido, J. Feeding behavior of sheep and goats in a deciduous tropical forest during the dry season: The same menu consumed differently. Small Rumin. Res. 2015, 133, 128–134. [Google Scholar] [CrossRef]
- Fomum, S.W.; Scogings, P.F.; Dziba, L.; Nsahlai, I.V. Seasonal variations in diet selection of Nguni goats: Effects of physical and chemical traits of browse. Afr. J. Range Forage Sci. 2015, 32, 193–201. [Google Scholar] [CrossRef]
- Ravetto Enri, S.; Probo, M.; Renna, M.; Caro, E.; Lussiana, C.; Battaglini, L.M.; Lombardi, G.; Lonati, M. Temporal variations in leaf traits, chemical composition and in vitro true digestibility of four temperate fodder tree species. Anim. Prod. Sci. 2020, 60, 643–658. [Google Scholar] [CrossRef]
- Jackson, F.S.; Barry, T.N.; Lascona, C.; Palmer, B. The extractable and bound condensed tannin content of leaves from tropical tree. J. Sci. Food Agric. 1996, 71, 103–110. [Google Scholar] [CrossRef]
- Dzowela, B.H.; Hove, L.; Topps, J.H.; Mafongoya, P.L. Nutritional and anti-nutritional characters and rumen degradability of dry matter and nitrogen for some multipurpose tree species with potential for agroforestry in Zimbabwe. Anim. Feed Sci. Technol. 1995, 55, 207–214. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Minson, D.J. Forage in Ruminant Nutrition; Academic Press: New York, NY, USA, 1990. [Google Scholar]
- Mero, R.N.; Udén, P. Promising tropical grasses and legumes as feed resources in central Tanzania II. In sacco rumen degradation characteristics of four grasses and legumes. Anim. Feed Sci. Technol. 1997, 69, 341–352. [Google Scholar] [CrossRef]
- Hassen, A.; Rethman, N.F.G.; van Niekerk, W.A.; Tjelele, T.J. Influence of season/year and species on chemical composition and in vitro digestibility of five Indigofera accessions. Anim. Feed Sci. Technol. 2007, 136, 312–322. [Google Scholar] [CrossRef]
- Rawnsley, R.R.; Donaghy, D.J.; Fulkerson, W.J.; Lane, P.A. Changes in the physiology and feed quality of cocksfoot (Dactylis glomerata L.) during regrowth. Grass Forage Sci. 2002, 57, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Khanal, R.C.; Subba, D.B. Nutritional evaluation of leaves from some major fodder trees cultivated in the hills of Nepal. Anim. Feed Sci. Technol. 2001, 92, 17–32. [Google Scholar] [CrossRef]
- Kamalak, A. Determination of nutritive value of leaves of a native grown shrub, Glycyrrhiza glabra L. using in vitro and in situ measurements. Small Rumin. Res. 2006, 64, 268–278. [Google Scholar] [CrossRef]
- Ammar, H.; López, S.; Bochi-Brum, O.; Garcia, R.; Ranilla, M.J. Composition and in vitro digestibility of leaves and stems of grasses and legumes harvested from permanent mountain meadows at different stages of maturity. J. Anim. Feed Sci. 1999, 84, 599–610. [Google Scholar] [CrossRef]
- Alvarez del Pino, M.C.Á.; Hervás, G.; Mantecón, Á.R.; Giráldez, F.J.; Frutos, P. Comparison of biological and chemical methods, and internal and external standards, for assaying tannins in Spanish shrub species. J. Sci. Food Agric. 2005, 85, 583–590. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Becker, K. Vanillin-HCl method for condensed tannins: Effect of organic solvents used for extraction of tannins. J. Chem. Ecol. 1993, 19, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.F.Z.M. Impact of season of harvest on in vitro gas production and dry matter degradability of Acacia saligna leaves with inoculum from three ruminant species. Anim. Feed Sci. Technol. 2005, 123–124, 67–79. [Google Scholar] [CrossRef]
- Min, B.R.; Barry, T.N.; Attwood, G.T.; McNabb, W.C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Anim. Feed Sci. Technol. 2003, 106, 3–19. [Google Scholar] [CrossRef]
- Waghorn, G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-progress and challenges. Anim. Feed Sci. Technol. 2008, 147, 116–139. [Google Scholar] [CrossRef]
- Dove, H. Ingestive behaviour, diet selection, and feed intake. In Goat Science and Production; Solaiman, S.G., Ed.; Wiley-Blackwell: Ames, IA, USA, 2010; pp. 179–192. [Google Scholar]
- Mkhize, N.R.; Scogings, P.F.; Nsahlai, I.V.; Dziba, L.E. Diet selection of goats depends on season: Roles of plant physical and chemical traits. Afr. J. Range Forage 2014, 31, 209. [Google Scholar] [CrossRef]
- Iason, G.R.; Villalba, J.J. Behavioral strategies of mammal herbivores against plant secondary metabolites: The avoidance-tolerance continuum. J. Chem. Ecol. 2006, 32, 1115–1132. [Google Scholar] [CrossRef]
- Rogosic, J.; Pfister, J.A.; Provenza, F.D.; Grbesa, D. Sheep and goat preference for and nutritional value of Mediterranean maquis shrubs. Small Rumin. Res. 2006, 64, 169–179. [Google Scholar] [CrossRef]
- Molina-Alcaide, E.; Yáñez-Ruiz, D.R. Potential use of olive by-products in ruminant feeding: A review. Anim. Feed Sci. Technol. 2008, 147, 247–264. [Google Scholar] [CrossRef]
- Bartolomé, J.; Baraza, E.; Rita, J.; Serrano, E.; Pareja, J.; Ibáñez, M.; Capó, M.; Alomar, D.; Domenech, O. Cabra i forest: La qualitat dels recursos del bosc per a la cabra mallorquina. Mon. Soc. Hist. Nat. Balears 2019, 28, 95–100. [Google Scholar]
- Tainton, N. Veld Management in South Africa; University of Natal Press: Pietermaritzburg, South Africa, 1999. [Google Scholar]
- Paton, D. Elaboration of a multi-variate model for the determination of the metabolizable energy of Mediterranean bushes based on chemical parameters. J. Arid Environ. 2003, 53, 271–280. [Google Scholar] [CrossRef]
Item | 2016 (Dry Year) | 2017 (Wet Year) | SEM | p-Value (2016–2017) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spring | Summer | Autumn | SEM | p-Value | Spring | Summer | Autumn | SEM | p-Value | S | Y | Y × S | ||
Arbutus unedo | ||||||||||||||
DM | 576 b | 660 a | 445 c | 31.6 | <0.001 | 550 b | 647 a | 427 c | 32.3 | <0.001 | 22 | <0.001 | 0.035 | 0.828 |
OM | 962 | 964 | 955 | 4.7 | 0.768 | 974 | 974 | 968 | 3.72 | 0.775 | 3.23 | 0.6 | 0.116 | 0.99 |
CP | 69.8 a | 52.7 b | 60.3 ab | 2.79 | 0.009 | 60 | 67.3 | 70.7 | 2.24 | 0.13 | 1.84 | 0.156 | 0.054 | 0.003 |
CT | 91.4 b | 112 ab | 121 a | 5.1 | 0.014 | 83.7 b | 101 ab | 110 a | 4.56 | 0.018 | 3.53 | <0.001 | 0.028 | 0.926 |
EE | 70.3 b | 91.3 a | 67.7 b | 4.11 | 0.005 | 73.3 b | 96.6 a | 72.3 b | 4.27 | 0.003 | 2.93 | <0.001 | 0.138 | 0.936 |
NDF | 354 b | 485 a | 482 a | 23.5 | 0.004 | 344 b | 491 a | 488 a | 26.1 | 0.003 | 17 | <0.001 | 0.972 | 0.884 |
ADF | 257 c | 324 b | 363 a | 16 | <0.001 | 243 c | 346 b | 377 a | 20.4 | <0.001 | 12.6 | <0.001 | 0.203 | 0.056 |
ADL | 110 b | 172 a | 185 a | 12.7 | 0.004 | 105 b | 191 a | 197 a | 15.7 | 0.001 | 9.82 | <0.001 | 0.324 | 0.538 |
IVOMD | 603 a | 506 b | 387 c | 31.5 | <0.001 | 617 a | 512 b | 405 c | 30.8 | <0.001 | 21.4 | <0.001 | 0.037 | 0.637 |
ME | 9.11 a | 7.34 b | 5.13 c | 0.582 | <0.001 | 9.23 a | 7.56 b | 5.20 c | 0.591 | <0.001 | 0.403 | <0.001 | 0.372 | 0.899 |
Calicotome villosa | ||||||||||||||
DM | 228 c | 487 a | 366 b | 37.6 | <0.001 | 215 c | 471 a | 326 b | 37.1 | <0.001 | 25.7 | <0.001 | 0.002 | 0.138 |
OM | 927 b | 984 a | 950 ab | 10.1 | 0.038 | 937 b | 988 a | 961 ab | 9.33 | 0.044 | 6.75 | 0.002 | 0.383 | 0.95 |
CP | 175 | 190 | 232 | 10.9 | 0.059 | 161 b | 201 ab | 238 a | 12.9 | 0.016 | 8.18 | 0.001 | 0.944 | 0.603 |
CT | 3.81 | 2.43 | 2.97 | 0.439 | 0.492 | 2.87 | 1.97 | 2.09 | 0.202 | 0.133 | 0.252 | 0.178 | 0.137 | 0.905 |
EE | 31.3 a | 27.0 a | 22.0 b | 1.44 | 0.002 | 34.3 a | 30.3 b | 30.7 ab | 0.777 | 0.033 | 0.999 | <0.001 | <0.001 | 0.019 |
NDF | 520 b | 619 a | 593 a | 15.3 | <0.001 | 511 b | 629 a | 601 a | 18.1 | <0.001 | 11.5 | <0.001 | 0.632 | 0.425 |
ADF | 417 b | 464 a | 417 b | 8.63 | 0.007 | 406 b | 482 a | 429 b | 12 | 0.002 | 7.22 | <0.001 | 0.366 | 0.212 |
ADL | 95.7 b | 124 a | 117 a | 4.65 | 0.004 | 94.7 c | 138 a | 128 b | 7.08 | <0.001 | 4.19 | <0.001 | 0.017 | 0.028 |
IVOMD | 545 a | 439 b | 351 c | 28.4 | <0.001 | 554 a | 443 b | 362 c | 28.1 | <0.001 | 19.4 | <0.001 | 0.239 | 0.906 |
ME | 7.74 a | 6.17 b | 4.42 c | 0.485 | <0.001 | 7.89 a | 6.16 b | 4.49 c | 0.499 | <0.001 | 0.338 | <0.001 | 0.6077 | 0.889 |
Cistus crispus | ||||||||||||||
DM | 414 b | 528 a | 344 c | 27 | <0.001 | 399 b | 514 a | 332 c | 26.9 | <0.001 | 18.6 | <0.001 | 0.064 | 0.983 |
OM | 945 a | 946 a | 914 b | 6.56 | 0.049 | 963 a | 951 ab | 927 b | 6.56 | 0.034 | 4.73 | 0.002 | 0.083 | 0.695 |
CP | 113 a | 60.3 b | 76.0 b | 8.71 | 0.009 | 99.7 | 79.3 | 85.3 | 5.05 | 0.266 | 4.92 | 0.002 | 0.451 | 0.166 |
CT | 15.1 b | 65.0 a | 61.7 a | 8.2 | <0.001 | 13.7 b | 61.3 a | 54.0 a | 7.51 | <0.001 | 5.42 | <0.001 | 0.083 | 0.537 |
EE | 15.8 b | 21.8 a | 17.9 ab | 0.986 | 0.011 | 19 | 23.3 | 20.3 | 0.873 | 0.098 | 0.7 | 0.001 | 0.018 | 0.758 |
NDF | 309 b | 242 c | 384 a | 20.8 | <0.001 | 305 b | 256 c | 393 a | 20.3 | <0.001 | 14.1 | <0.001 | 0.318 | 0.43 |
ADF | 266 a | 207 b | 252 a | 10.4 | 0.02 | 251 | 226 | 265 | 7.46 | 0.076 | 6.25 | 0.002 | 0.529 | 0.257 |
ADL | 103 b | 184 a | 170 a | 12.9 | <0.001 | 93.0 b | 195 a | 184 a | 16.4 | <0.001 | 10.1 | <0.001 | 0.261 | 0.101 |
IVOMD | 642 a | 408 c | 488 b | 34.3 | <0.001 | 652 a | 412 c | 498 b | 35.2 | <0.001 | 23.9 | <0.001 | 0.039 | 0.676 |
ME | 9.63 a | 5.59 c | 7.12 b | 0.589 | <0.001 | 9.76 a | 5.71 c | 7.20 b | 0.592 | <0.001 | 0.405 | <0.001 | 0.059 | 0.891 |
Cistus monspeliensis | ||||||||||||||
DM | 585 b | 698 a | 379 c | 46.8 | <0.001 | 573 b | 676 a | 366 c | 45.8 | <0.001 | 31.8 | <0.001 | 0.011 | 0.717 |
OM | 905 c | 952 a | 930 b | 6.94 | <0.001 | 918 c | 966 a | 947 b | 7.32 | <0.001 | 5.21 | <0.001 | <0.001 | 0.832 |
CP | 98.4 a | 84.7 ab | 66.3 b | 5.36 | 0.015 | 88.0 ab | 98.7 a | 73.7 b | 4.39 | 0.032 | 3.39 | 0.001 | 0.405 | 0.088 |
CT | 46.0 c | 65.6 b | 78.0 a | 4.82 | <0.001 | 40.7 b | 54.7 a | 65.7 a | 3.93 | 0.004 | 3.23 | <0.001 | 0.001 | 0.439 |
EE | 56.4 b | 90.6 a | 96.0 a | 6.39 | <0.001 | 60.6 b | 98.6 a | 101 a | 6.78 | <0.001 | 4.57 | <0.001 | 0.061 | 0.845 |
NDF | 388 c | 492 a | 434 b | 15.2 | <0.001 | 377 c | 503 a | 440 b | 18.3 | <0.001 | 11.6 | <0.001 | 0.588 | 0.062 |
ADF | 220 c | 255 b | 314 a | 13.8 | <0.001 | 206 c | 274 b | 325 a | 17.6 | <0.001 | 10.9 | <0.001 | 0.23 | 0.028 |
ADL | 172 b | 176 b | 205 a | 5.81 | 0.007 | 162 c | 187 b | 221 a | 8.72 | <0.001 | 5.13 | <0.001 | 0.164 | 0.04 |
IVOMD | 592 a | 407 c | 489 b | 26.8 | <0.001 | 601 a | 412 c | 501 b | 27.4 | <0.001 | 18.6 | <0.001 | 0.012 | 0.617 |
ME | 8.27 a | 5.39 c | 6.72 b | 0.417 | <0.001 | 8.46 a | 5.49 c | 6.77 b | 0.431 | <0.001 | 0.291 | <0.001 | 0.053 | 0.562 |
Cistus salviifolius | ||||||||||||||
DM | 488 a | 441 b | 366 c | 18 | <.0001 | 477 a | 424 b | 353 c | 18.2 | <0.001 | 12.5 | <0.001 | 0.019 | 0.913 |
OM | 876 b | 854 b | 906 a | 8 | 0.001 | 890 b | 861 c | 921 a | 9.24 | 0.001 | 6.1 | <0.001 | 0.021 | 0.714 |
CP | 108 a | 80.7 b | 70.7 b | 5.73 | <0.001 | 95.7 | 94 | 83 | 2.68 | 0.091 | 3.11 | <0.001 | 0.107 | 0.002 |
CT | 25.0 c | 78.0 a | 49.7 b | 7.96 | <0.001 | 21.0 c | 61.0 a | 41.7 b | 5.91 | <0.001 | 4.95 | <0.001 | 0.006 | 0.215 |
EE | 23.3 b | 50.3 a | 40.6 a | 4.23 | 0.002 | 27.3 c | 63.6 a | 46.3 b | 5.42 | <0.001 | 3.46 | <0.001 | 0.007 | 0.274 |
NDF | 417 c | 506 a | 485 b | 13.6 | <0.001 | 406 c | 515 a | 496 b | 16.9 | <0.001 | 10.5 | <0.001 | 0.434 | 0.025 |
ADF | 252 c | 341 a | 291 b | 13.23 | <0.001 | 239 c | 360 a | 303 b | 17.7 | <0.001 | 10.7 | <0.001 | 0.282 | 0.071 |
ADL | 154 c | 228 a | 206 b | 11.1 | <0.001 | 142 b | 238 a | 224 a | 15.2 | <0.001 | 9.14 | <0.001 | 0.08 | 0.003 |
IVOMD | 602 a | 439 b | 440 b | 27.5 | <0.001 | 611 a | 445 b | 455 b | 27.2 | <0.001 | 18.8 | <0.001 | 0.181 | 0.877 |
ME | 8.47 a | 5.91 c | 6.32 b | 0.398 | <0.001 | 8.60 a | 5.91 c | 6.38 b | 0.416 | <0.001 | 0.279 | <0.001 | 0.302 | 0.725 |
Erica arborea | ||||||||||||||
DM | 571 b | 650 a | 500 c | 21.8 | <0.001 | 551 b | 634 a | 475 c | 23.1 | <0.001 | 15.6 | <0.001 | 0.001 | 0.711 |
OM | 947 | 955 | 965 | 4.69 | 0.331 | 960 | 967 | 977 | 4.15 | 0.24 | 3.41 | 0.083 | 0.051 | 0.999 |
CP | 88.7 a | 53.7 c | 69.7 b | 5.38 | 0.002 | 73.7 | 65 | 77.3 | 2.66 | 0.146 | 2.92 | <0.001 | 0.673 | 0.009 |
CT | 108 | 107 | 119 | 2.78 | 0.143 | 100 | 91.7 | 108 | 3.21 | 0.111 | 2.48 | 0.019 | 0.006 | 0.674 |
EE | 96.3 a | 90.0 a | 46.6 b | 7.89 | <0.001 | 99.6 a | 93.6 a | 57.0 b | 6.77 | <0.001 | 5.09 | <0.001 | 0.012 | 0.294 |
NDF | 439 c | 531 b | 578 a | 21 | <0.001 | 428 c | 544 b | 586 a | 24 | <0.001 | 15.4 | <0.001 | 0.611 | 0.323 |
ADF | 341 c | 399 b | 445 a | 15.6 | <0.001 | 328 c | 414 b | 458 a | 19.5 | <0.001 | 12.1 | <0.001 | 0.448 | 0.178 |
ADL | 217 b | 307 a | 311 a | 15.4 | <0.001 | 207 b | 320 a | 324 a | 19.3 | <0.001 | 12 | <0.001 | 0.042 | 0.002 |
IVOMD | 479 a | 343 c | 407 b | 19.9 | <0.001 | 486 a | 348 c | 417 b | 20.3 | <0.001 | 13.8 | <0.001 | 0.257 | 0.948 |
ME | 6.62 a | 4.58 c | 5.79 b | 0.299 | <0.001 | 6.77 a | 4.41 c | 5.86 b | 0.347 | <0.001 | 0.222 | <0.001 | 0.891 | 0.282 |
Lavandula stoechas | ||||||||||||||
DM | 299 c | 475 a | 409 b | 25.7 | <0.001 | 281 c | 459 a | 385 b | 25.8 | <0.001 | 17.8 | <0.001 | <0.001 | 0.491 |
OM | 944 | 939 | 916 | 6.24 | 0.133 | 953 | 954 | 930 | 6.25 | 0.217 | 4.56 | 0.031 | 0.116 | 0.936 |
CP | 106 a | 83.0 b | 72.7 b | 5.09 | <0.001 | 224 a | 96.7 b | 80.0 b | 2.81 | 0.014 | 2.83 | <0.001 | 0.374 | <0.001 |
CT | 3.07 | 3.57 | 2.57 | 0.222 | 0.191 | 2.57 | 2.93 | 2.2 | 0.237 | 0.513 | 0.169 | 0.118 | 0.136 | 0.941 |
EE | 90.0 a | 34.3 b | 33.0 b | 9.41 | <0.001 | 96.6 a | 38.6 b | 42.3 b | 9.38 | <0.001 | 6.5 | <0.001 | <0.001 | 0.112 |
NDF | 418 c | 472 a | 446 b | 8.24 | 0.001 | 409 c | 486 a | 455 b | 11.5 | <0.001 | 6.87 | <0.001 | 0.341 | 0.11 |
ADF | 253 b | 313 a | 298 a | 9.42 | <0.001 | 238 b | 326 a | 313 a | 13.9 | <0.001 | 8.16 | <0.001 | 0.312 | 0.03 |
ADL | 173 b | 208 a | 211 a | 6.23 | <0.001 | 160 b | 215 a | 224 a | 10.1 | <0.001 | 5.76 | <0.001 | 0.264 | 0.002 |
IVOMD | 698 a | 476 c | 512 b | 34.5 | <0.001 | 704 a | 484 c | 522 b | 34 | <0.001 | 23.5 | <0.001 | 0.108 | 0.936 |
ME | 10.2 a | 6.69 c | 7.29 b | 0.54 | <0.001 | 10.3 a | 6.90 c | 7.40 b | 0.539 | <0.001 | 0.371 | <0.001 | 0.025 | 0.829 |
Myrtus communis | ||||||||||||||
DM | 554 a | 531 b | 437 c | 18.1 | <0.001 | 533 a | 515 a | 420 b | 17.7 | <0.001 | 12.4 | <0.001 | <0.001 | 0.851 |
OM | 952 | 939 | 948 | 3.79 | 0.428 | 962 | 953 | 959 | 3.31 | 0.571 | 2.81 | 0.245 | 0.045 | 0.959 |
CP | 89.7 a | 72.3 b | 82.7 ab | 3.03 | 0.03 | 75.7 b | 84.7 ab | 90.7 a | 2.57 | 0.022 | 1.94 | 0.061 | 0.415 | 0.002 |
CT | 96.0 b | 128 a | 115 a | 4.88 | 0.002 | 88.0 b | 116 a | 110 a | 4.47 | 0.002 | 3.37 | <0.001 | 0.008 | 0.562 |
EE | 42.6 a | 41.0 a | 24.0 b | 3.09 | <0.001 | 46.3 a | 48.0 a | 27.6 b | 3.37 | <0.001 | 2.29 | <0.001 | 0.005 | 0.543 |
NDF | 379 a | 362 ab | 336 b | 7.37 | 0.027 | 369 | 372 | 346 | 6.05 | 0.17 | 4.64 | 0.006 | 0.642 | 0.462 |
ADF | 218 | 228 | 242 | 4.65 | 0.067 | 205 b | 242 a | 252 a | 7.76 | 0.003 | 4.41 | <0.001 | 0.475 | 0.087 |
ADL | 102 | 93 | 94.3 | 2.01 | 0.169 | 93.7 b | 108 a | 106 a | 2.55 | 0.015 | 1.74 | 0.571 | 0.019 | 0.003 |
IVOMD | 493 b | 550 a | 485 b | 10.6 | <0.001 | 500 b | 556 a | 504 b | 9.21 | <0.001 | 6.94 | <0.001 | 0.024 | 0.374 |
ME | 7.24 b | 8.24 a | 7.16 b | 0.178 | <0.001 | 7.41 b | 8.02 a | 7.28 b | 0.12 | <0.001 | 0.104 | <0.001 | 0.673 | 0.047 |
Phillyrea media | ||||||||||||||
DM | 523 c | 612 a | 570 b | 13.1 | <0.001 | 507 c | 598 a | 555 b | 13.5 | <0.001 | 9.31 | <0.001 | 0.004 | 0.974 |
OM | 960 | 970 | 962 | 2.74 | 0.338 | 974 | 978 | 975 | 2.52 | 0.78 | 2.3 | 0.3 | 0.01 | 0.843 |
CP | 109 a | 86.3 b | 81.0 b | 4.4 | <0.001 | 96 | 97.3 | 92 | 1.48 | 0.351 | 2.28 | <0.001 | 0.124 | <0.001 |
CT | 2.73 | 2.67 | 3.17 | 0.28 | 0.784 | 2.4 | 2.2 | 2.77 | 0.241 | 0.685 | 0.186 | 0.553 | 0.344 | 0.991 |
EE | 23.6 | 25.6 | 28 | 1.22 | 0.401 | 28.6 | 28.6 | 31.6 | 1.47 | 0.692 | 1.04 | 0.337 | 0.076 | 0.918 |
NDF | 399 b | 435 a | 424 ab | 6.79 | 0.047 | 387 b | 448 a | 429 a | 9.98 | 0.007 | 5.86 | 0.003 | 0.765 | 0.379 |
ADF | 272 a | 259 ab | 250 b | 4.07 | 0.043 | 258 b | 272 a | 255 b | 2.92 | 0.005 | 2.44 | 0.006 | 0.651 | 0.011 |
ADL | 171 a | 124 b | 119 b | 8.42 | <0.001 | 159 a | 136 b | 134 b | 4.56 | 0.008 | 4.69 | <0.001 | 0.126 | 0.007 |
IVOMD | 515 a | 429 b | 413 b | 16.9 | 0.002 | 523 a | 435 b | 425 b | 16.7 | 0.003 | 11.6 | <0.001 | 0.396 | 0.967 |
ME | 7.29 a | 5.96 b | 5.82 b | 0.247 | 0.001 | 7.46 a | 5.76 b | 5.90 b | 0.285 | <0.001 | 0.183 | <0.001 | 0.889 | 0.504 |
Pistacia lentiscus | ||||||||||||||
DM | 547 c | 622 a | 590 b | 11.1 | <0.001 | 530 c | 607 a | 578 b | 11.5 | <0.001 | 7.98 | <0.001 | 0.006 | 0.882 |
OM | 959 a | 927 b | 954 a | 5.25 | 0.001 | 973 a | 941 b | 964 a | 5.21 | 0.005 | 3.91 | <0.001 | 0.001 | 0.79 |
CP | 93.0 b | 91.7 b | 106 a | 2.41 | 0.003 | 78.0 b | 105 a | 113 a | 5.45 | <0.001 | 2.9 | <0.001 | 0.32 | <0.001 |
CT | 175 | 191 | 185 | 3.64 | 0.187 | 161 b | 177 a | 172 ab | 2.85 | 0.033 | 2.79 | 0.012 | 0.003 | 0.997 |
EE | 27.3 a | 23.6 b | 23.3 b | 0.741 | 0.016 | 34 | 30 | 27.3 | 1.52 | 0.214 | 1.07 | 0.027 | 0.002 | 0.716 |
NDF | 448 b | 483 a | 422 c | 8.98 | <0.001 | 437 b | 493 a | 426 b | 10.4 | <0.001 | 6.68 | <0.001 | 0.591 | 0.012 |
ADF | 284 a | 248 b | 270 ab | 5.95 | 0.014 | 268 | 263 | 284 | 4.33 | 0.109 | 3.61 | 0.006 | 0.363 | 0.037 |
ADL | 118 b | 165 a | 168 a | 8.5 | 0.002 | 109 b | 178 a | 186 a | 12.57 | <0.001 | 7.42 | <0.001 | 0.132 | 0.069 |
IVOMD | 505 a | 443 c | 471 b | 9.28 | <0.001 | 508 a | 453 c | 483 b | 8.18 | <0.001 | 6.09 | <0.001 | 0.022 | 0.453 |
ME | 7.21 | 6.6 | 6.74 | 0.121 | 0.069 | 7.37 a | 6.42 b | 6.83 ab | 0.159 | 0.018 | 0.097 | 0.001 | 0.876 | 0.567 |
Rubus ulmifolius | ||||||||||||||
DM | 371 b | 409 a | 410 a | 6.69 | <0.001 | 356 b | 394 a | 406 a | 8.43 | 0.008 | 5.42 | <0.001 | 0.033 | 0.601 |
OM | 908 b | 924 ab | 939 a | 5.26 | 0.025 | 922 b | 936 ab | 947 a | 4.33 | 0.028 | 3.59 | 0.001 | 0.02 | 0.862 |
CP | 125 | 119 | 139 | 4 | 0.101 | 110 b | 132 ab | 152 a | 6.61 | 0.004 | 3.77 | 0.001 | 0.404 | 0.036 |
CT | 136 | 138 | 119 | 3.77 | 0.052 | 116 | 121 | 109 | 2.31 | 0.122 | 2.87 | 0.007 | <0.001 | 0.419 |
EE | 18.6 | 18 | 21.3 | 0.927 | 0.341 | 24 | 21.6 | 27 | 1.35 | 0.306 | 0.991 | 0.112 | 0.009 | 0.856 |
NDF | 365 | 369 | 361 | 4.78 | 0.834 | 352 | 380 | 372 | 6.48 | 0.211 | 3.92 | 0.303 | 0.73 | 0.381 |
ADF | 199 | 208 | 201 | 3.07 | 0.485 | 186 b | 221 a | 207 a | 5.59 | 0.005 | 3.11 | 0.003 | 0.548 | 0.065 |
ADL | 75.3 | 70.3 | 62.3 | 2.75 | 0.145 | 67.3 b | 83.0 a | 76.7 ab | 2.8 | 0.039 | 2.05 | 0.166 | 0.055 | 0.017 |
IVOMD | 405 b | 443 a | 444 a | 7.19 | 0.008 | 413 b | 452 a | 457 a | 7.75 | 0.012 | 5.27 | <0.001 | 0.095 | 0.936 |
ME | 5.55 b | 6.62 a | 6.24 ab | 0.177 | 0.001 | 5.71 b | 6.46 a | 6.43 a | 0.147 | 0.027 | 0.112 | 0.001 | 0.637 | 0.511 |
Item | 2016 (Dry Year) | 2017 (Wet Year) | SEM | p-Value (2016–2017) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spring | Summer | Autumn | SEM | p-Value | Spring | Summer | Autumn | SEM | p-Value | S | Y | Y × S | ||
Olea europaea | ||||||||||||||
DM | 461 a | 437 b | 426 b | 5.57 | 0.003 | 444 a | 423 b | 414 b | 4.76 | 0.002 | 3.95 | <0.001 | <0.001 | 0.801 |
OM | 954 a | 912 b | 907 b | 8.1 | 0.004 | 970 a | 920 b | 918 b | 8.67 | 0.001 | 5.94 | <0.001 | 0.017 | 0.753 |
CP | 76.3 | 79.3 | 82 | 2.86 | 0.773 | 66.7 b | 94.0 a | 89.3 a | 4.92 | 0.019 | 2.81 | 0.024 | 0.359 | 0.101 |
CT | 4.20 a | 2.17 b | 3.20 ab | 0.32 | 0.004 | 3.87 a | 1.77 b | 2.63 ab | 0.327 | 0.002 | 0.228 | <0.001 | 0.051 | 0.888 |
EE | 94.0 b | 123 a | 79.6 c | 6.39 | <0.001 | 99.0 b | 131 a | 85.0 c | 7.02 | <0.001 | 4.67 | <0.001 | 0.005 | 0.722 |
NDF | 415 b | 449 a | 442 a | 5.72 | 0.005 | 404 b | 459 a | 450 a | 8.8 | <0.001 | 5.1 | <0.001 | 0.512 | 0.065 |
ADF | 314 a | 258 b | 265 b | 9.74 | 0.008 | 302 | 279 | 276 | 5.29 | 0.067 | 5.44 | <0.001 | 0.306 | 0.14 |
ADL | 159 | 151 | 161 | 2.51 | 0.282 | 147 b | 164 a | 174 a | 4.41 | 0.008 | 2.53 | 0.011 | 0.178 | 0.012 |
IVOMD | 499 | 517 | 517 | 4.28 | 0.105 | 505 b | 528 a | 530 a | 4.84 | 0.043 | 3.35 | 0.005 | 0.062 | 0.886 |
ME | 6.85 c | 8.12 a | 7.59 b | 0.193 | <0.001 | 6.96 b | 7.97 a | 7.75 a | 0.161 | <0.001 | 0.122 | <0.001 | 0.649 | 0.305 |
Quercus canariensis | ||||||||||||||
DM | 564 c | 690 a | 634 b | 18.3 | <0.001 | 548 c | 678 a | 620 b | 18.8 | <.0001 | 12.8 | <0.001 | 0.001 | 0.859 |
OM | 939 | 961 | 963 | 4.91 | 0.054 | 950 | 967 | 974 | 4.38 | 0.054 | 3.41 | 0.003 | 0.058 | 0.871 |
CP | 104 a | 63.7 c | 72.3 b | 6.23 | <0.001 | 90.7 a | 77.3 b | 79.0 b | 2.22 | 0.001 | 3.22 | <0.001 | 0.095 | <0.001 |
CT | 20 | 26.7 | 17.3 | 2.15 | 0.194 | 14 | 16.3 | 12.7 | 1.09 | 0.438 | 1.45 | 0.081 | 0.008 | 0.554 |
EE | 18.2 b | 24.6 a | 24.0 a | 1.18 | 0.015 | 21.7 | 27.3 | 28 | 1.3 | 0.075 | 0.947 | 0.002 | 0.014 | 0.897 |
NDF | 488 c | 550 a | 525 b | 9.25 | <0.001 | 480 c | 560 a | 535 b | 11.9 | <0.001 | 7.33 | <0.001 | 0.157 | 0.036 |
ADF | 322 c | 372 b | 394 a | 10.7 | <0.001 | 317 c | 382 b | 404 a | 13 | <0.001 | 8.19 | <0.001 | 0.01 | 0.003 |
ADL | 114 c | 157 b | 176 a | 9.44 | <0.001 | 103 c | 168 b | 189 a | 13.1 | <0.001 | 7.85 | <0.001 | 0.255 | 0.025 |
IVOMD | 602 a | 406 c | 446 b | 30 | <0.001 | 607 a | 414 c | 454 b | 29.3 | <0.001 | 20.4 | <0.001 | 0.007 | 0.694 |
ME | 8.69 a | 6.00 b | 6.30 b | 0.427 | <0.001 | 8.82 a | 5.81 c | 6.42 b | 0.462 | <0.001 | 0.305 | <0.001 | 0.775 | 0.159 |
Quercus ilex | ||||||||||||||
DM | 571 b | 612 a | 601 a | 6.25 | <0.001 | 551 b | 596 a | 588 a | 7.14 | <0.001 | 5.02 | <0.001 | <0.001 | 0.509 |
OM | 943 | 953 | 957 | 3.34 | 0.251 | 955 | 960 | 968 | 3.36 | 0.322 | 2.59 | 0.086 | 0.048 | 0.926 |
CP | 114 a | 70.3 b | 71.3 b | 7.6 | 0.001 | 99.7 a | 83.0 ab | 78.0 b | 4.03 | 0.039 | 4.18 | <0.001 | 0.687 | 0.029 |
CT | 26.3 b | 60.0 a | 55.0 a | 5.31 | <0.001 | 22.7 b | 48.3 a | 45.7 a | 4.17 | <0.001 | 3.42 | <0.001 | <0.001 | 0.097 |
EE | 17.7 | 19.1 | 19 | 0.83 | 0.803 | 19.6 | 22.6 | 23.6 | 1.1 | 0.35 | 0.786 | 0.302 | 0.034 | 0.736 |
NDF | 568 a | 534 b | 506 b | 9.82 | 0.004 | 553 a | 539 ab | 512 b | 7.58 | 0.045 | 6.02 | <0.001 | 0.889 | 0.399 |
ADF | 352 | 322 | 333 | 5.77 | 0.071 | 342 | 334 | 345 | 3.91 | 0.559 | 3.44 | 0.063 | 0.416 | 0.256 |
ADL | 170 | 163 | 171 | 3.18 | 0.582 | 162 b | 175 ab | 192 a | 5.16 | 0.024 | 3.13 | 0.039 | 0.083 | 0.071 |
IVOMD | 508 a | 410 c | 459 b | 14.4 | <0.001 | 513 a | 424 c | 468 b | 13.1 | <0.001 | 9.49 | <0.001 | 0.049 | 0.673 |
ME | 7.16 a | 5.99 c | 6.59 b | 0.172 | <0.001 | 7.38 a | 5.87 c | 6.70 b | 0.223 | <0.001 | 0.137 | <0.001 | 0.317 | 0.146 |
Quercus suber | ||||||||||||||
DM | 587 b | 650 a | 604 b | 9.7 | <0.001 | 573 b | 639 a | 589 b | 10.2 | <0.001 | 7.03 | <0.001 | 0.004 | 0.932 |
OM | 968 a | 957 ab | 947 b | 3.8 | 0.04 | 978 | 969 | 963 | 3.5 | 0.212 | 2.94 | 0.01 | 0.009 | 0.829 |
CP | 85 | 78.3 | 88.3 | 2.36 | 0.229 | 75.3 | 91 | 95 | 3.83 | 0.057 | 2.22 | 0.056 | 0.374 | 0.056 |
CT | 119 | 132 | 124 | 2.93 | 0.196 | 110 | 118 | 116 | 2.7 | 0.48 | 2.29 | 0.11 | 0.02 | 0.796 |
EE | 25 | 26 | 27.3 | 1.12 | 0.752 | 28.6 | 29.3 | 30.3 | 1.09 | 0.86 | 0.861 | 0.653 | 0.081 | 0.988 |
NDF | 579 a | 502 b | 485 b | 14.7 | <0.001 | 565 a | 511 b | 490 b | 11.5 | 0.004 | 9.07 | <0.001 | 0.982 | 0.164 |
ADF | 377 a | 348 b | 311 c | 10.1 | 0.001 | 367 a | 367 a | 321 b | 8.22 | 0.003 | 6.36 | <0.001 | 0.223 | 0.097 |
ADL | 168 a | 134 b | 133 b | 6.12 | 0.002 | 161 | 146 | 149 | 2.98 | 0.069 | 3.41 | <0.001 | 0.061 | 0.036 |
IVOMD | 543 a | 406 c | 506 b | 20.4 | <0.001 | 550 a | 421 c | 513 b | 19.2 | <0.001 | 13.6 | <0.001 | 0.003 | 0.412 |
ME | 8.05 a | 6.00 c | 7.34 b | 0.296 | <0.001 | 8.19 a | 5.84 c | 7.51 b | 0.353 | <0.001 | 0.223 | <0.001 | 0.605 | 0.085 |
Herbaceous | ||||||||||||||
DM | 463 c | 631 a | 516 b | 25 | <0.001 | 446 c | 616 a | 495 b | 25.6 | <0.001 | 17.5 | <0.001 | 0.019 | 0.923 |
OM | 916 a | 870 b | 855 b | 9.8 | 0.002 | 931 a | 883 b | 872 b | 9.5 | 0.001 | 6.87 | <0.001 | 0.013 | 0.958 |
CP | 156 a | 78.3 b | 65.7 b | 14.2 | <0.001 | 142 a | 91.0 b | 76.7 b | 10.1 | <0.001 | 8.45 | <0.001 | 0.291 | 0.006 |
CT | 2.42 b | 4.17 a | 2.97 b | 0.323 | 0.048 | 2.2 | 3.53 | 2.43 | 0.287 | 0.116 | 0.217 | 0.006 | 0.176 | 0.865 |
EE | 19.9 | 22 | 23.3 | 0.823 | 0.262 | 22.6 | 26.3 | 26.3 | 1.12 | 0.349 | 0.789 | 0.11 | 0.027 | 0.872 |
NDF | 517 | 568 | 497 | 15.4 | 0.147 | 508 | 580 | 507 | 16.2 | 0.087 | 10.8 | 0.014 | 0.827 | 0.865 |
ADF | 339 b | 363 a | 269 c | 14.7 | 0.001 | 326 b | 379 a | 283 c | 14.6 | 0.001 | 10.1 | <0.001 | 0.426 | 0.216 |
ADL | 71.4 | 75.7 | 64.3 | 2.76 | 0.265 | 67.0 b | 89.0 a | 79.0 ab | 3.95 | 0.043 | 2.53 | 0.031 | 0.056 | 0.106 |
IVOMD | 804 a | 651 c | 705 b | 22.7 | <0.001 | 807 a | 658 c | 719 b | 22 | <0.001 | 15.3 | <0.001 | 0.223 | 0.771 |
ME | 12.0 a | 9.25 c | 10.7 b | 0.405 | <0.001 | 12.1 a | 9.57 c | 10.8 b | 0.364 | <0.001 | 0.265 | <0.001 | 0.097 | 0.334 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chebli, Y.; El Otmani, S.; Chentouf, M.; Hornick, J.-L.; Cabaraux, J.-F. Temporal Variations in Chemical Composition, In Vitro Digestibility, and Metabolizable Energy of Plant Species Browsed by Goats in Southern Mediterranean Forest Rangeland. Animals 2021, 11, 1441. https://doi.org/10.3390/ani11051441
Chebli Y, El Otmani S, Chentouf M, Hornick J-L, Cabaraux J-F. Temporal Variations in Chemical Composition, In Vitro Digestibility, and Metabolizable Energy of Plant Species Browsed by Goats in Southern Mediterranean Forest Rangeland. Animals. 2021; 11(5):1441. https://doi.org/10.3390/ani11051441
Chicago/Turabian StyleChebli, Youssef, Samira El Otmani, Mouad Chentouf, Jean-Luc Hornick, and Jean-François Cabaraux. 2021. "Temporal Variations in Chemical Composition, In Vitro Digestibility, and Metabolizable Energy of Plant Species Browsed by Goats in Southern Mediterranean Forest Rangeland" Animals 11, no. 5: 1441. https://doi.org/10.3390/ani11051441
APA StyleChebli, Y., El Otmani, S., Chentouf, M., Hornick, J. -L., & Cabaraux, J. -F. (2021). Temporal Variations in Chemical Composition, In Vitro Digestibility, and Metabolizable Energy of Plant Species Browsed by Goats in Southern Mediterranean Forest Rangeland. Animals, 11(5), 1441. https://doi.org/10.3390/ani11051441