Effect of Dietary Supplementation of Fermented Pine Needle Extract on Productive Performance, Egg Quality, and Serum Lipid Parameters in Laying Hens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Pine Needle Fermentation
2.2. Characterization of FPNE
2.3. Experimental Animal and Design
2.4. Laying Performance
2.5. Egg Quality Analysis
2.6. Serum Lipid Parameters
2.7. Egg Quality during Storage
2.8. Statistical Analysis
3. Results
3.1. Characterization of FPNE
3.2. Egg Productivity
3.3. Egg Quality
3.4. Blood Lipid Profile
3.5. Effect of FPNE Supplementation on Haugh Unit and Lipid Oxidation of Eggs during Storage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, H.K.; Levine, U.Y.; Looft, T.; Bandrick, M.; Casey, T.A. Treatment, promotion, commotion: Antibiotic alternatives in food-producing animals. Trends Microbiol. 2013, 21, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Gadde, U.; Kim, W.; Oh, S.; Lillehoj, H.S. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Anim. Health Res. Rev. 2017, 18, 26–45. [Google Scholar] [CrossRef] [PubMed]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2008, 86 (Suppl. 14), E140–E148. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, G.R.; Syed, B.; Haldar, S.; Pender, C. Phytogenic feed additives as an alternative to antibiotic growth promoters in broiler chickens. Front. Vet. Sci. 2015, 2, 21. [Google Scholar] [PubMed] [Green Version]
- Sharma, M.; Dinh, T.; Adhikari, P. Production performance, egg quality, and small intestine histomorphology of the laying hens supplemented with phytogenic feed additive. J. Appl. Poult. Res. 2020, 29, 362–371. [Google Scholar] [CrossRef]
- Sung, K.-C. Characteristics and analysis of natural pine-needles extract. J. Korean Appl. Sci. Technol. 2004, 21, 320–326. [Google Scholar]
- Kim, Y.-S.; Shin, D.-H. Volatile components and antibacterial effects of pine needle (Pinus densiflora S. and Z.) extracts. Food Microbiol. 2005, 22, 37–45. [Google Scholar] [CrossRef]
- Kwak, C.S.; Moon, S.C.; Lee, M.S. Antioxidant, antimutagenic, and antitumor effects of pine needles (Pinus densiflora). Nutr. Cancer 2006, 56, 162–171. [Google Scholar] [CrossRef]
- Kang, Y.-H.; Park, Y.-K.; Oh, S.-R.; Moon, K.-D. Studies on the physiological functionality of pine needle and mugwort extracts. Korean J. Food Sci. Technol. 1995, 27, 978–984. [Google Scholar]
- Jung, Y.-S.; Park, S.-J.; Kim, J.-E.; Yang, S.-A.; Park, J.-H.; Kim, J.-H.; Jhee, K.-H.; Lee, S.-P.; Lee, I.-S. A comparative study of GABA, glutamate contents, acetylcholinesterase inhibition and antiradical activity of the methanolic extracts from 10 edible plants. Korean J. Food Sci. Technol. 2012, 44, 447–451. [Google Scholar] [CrossRef] [Green Version]
- Robbins, C.; Hanley, T.; Hagerman, A.; Hjeljord, O.; Baker, D.; Schwartz, C.; Mautz, W. Role of tannins in defending plants against ruminants: Reduction in protein availability. Ecology 1987, 68, 98–107. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Z.; Wang, G.; Li, Y.; Qi, Y. Effects of feed supplemented with fermented pine needles (Pinus ponderosa) on growth performance and antioxidant status in broilers. Poult. Sci. 2015, 94, 1138–1144. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.F.; Wang, H.M.; Shen, Y.C.; Venkatakrishnan, K.; Wang, C.K. Anti-inflammatory properties of fermented pine (Pinus morrisonicola Hay.) needle on lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. J. Food Biochem. 2019, 43, e12994. [Google Scholar] [CrossRef]
- Park, G.; Paudyal, D.P.; Hwang, I.; Tripathi, G.R.; Yang, Y.; Cheong, H. Production of fermented needle extracts from red pine and their functional characterization. Biotechnol. Bioprocess Eng. 2008, 13, 256. [Google Scholar] [CrossRef]
- Park, G.; Paudyal, D.P.; Park, Y.; Lee, C.; Hwang, I.; Tripathi, G.R.; Cheong, H. Effects of pine needle extracts on plasma cholesterol, fibrinolysis and gastrointestinal motility. Biotechnol. Bioprocess Eng. 2008, 13, 262. [Google Scholar] [CrossRef]
- Yin, J.; Chen, J.D. Roles of interstitial cells of Cajal in regulating gastrointestinal motility: In vitro versus in vivo studies. J. Cell Mol. Med. 2008, 12, 1118–1129. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-H.; Hsieh, P.-C.; Mau, J.-L.; Sheu, S.-C. Antioxidant properties and mutagenicity of Pinus morrisonicola and its vinegar preparation. LWT Food Sci. Technol. 2011, 44, 1477–1481. [Google Scholar] [CrossRef]
- Feldsine, P.; Abeyta, C.; Andrews, W.H. AOAC International methods committee guidelines for validation of qualitative and quantitative food microbiological official methods of analysis. J. AOAC Int. 2002, 85, 1187–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council. Nutrient Requirements of Domestic Animals. In Nutrient Requirements of Poultry, 9th ed.; National Academy of Science: Washington, DC, USA, 1994. [Google Scholar]
- Haugh, R. The Haugh unit for measuring egg quality. U. S. Egg Poult. Mag. 1937, 43, 522–555. [Google Scholar]
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiou, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. J. Agric. Food Chem. 1994, 42, 1931–1937. [Google Scholar] [CrossRef]
- Bollengier-Lee, S.; Mitchell, M.; Utomo, D.; Williams, P.; Whitehead, C. Influence of high dietary vitamin E supplementation on egg production and plasma characteristics in hens subjected to heat stress. Br. Poult. Sci. 1998, 39, 106–112. [Google Scholar] [CrossRef]
- Abou-Elkhair, R.; Selim, S.; Hussein, E. Effect of supplementing layer hen diet with phytogenic feed additives on laying performance, egg quality, egg lipid peroxidation and blood biochemical constituents. Anim. Nutr. 2018, 4, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.-G.; Lee, S.-K.; Lee, W.-D.; Niu, K.-M.; Hwang, W.-U.; Oh, J.-S.; Kothari, D.; Kim, S.-K. Effect of dietary supplementation of a phytogenic blend containing Schisandra chinensis, Pinus densiflora, and Allium tuberosum on productivity, egg quality, and health parameters in laying hens. Anim. Biosci. 2021, 34, 285. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.; Lohakare, J. Productive performance, egg quality, nutrients digestibility, and physiological response of bovans brown hens fed various dietary inclusion levels of peppermint oil. Anim. Feed Sci. Technol. 2020, 267, 114554. [Google Scholar] [CrossRef]
- Moreno, J.; Osorno, J.L. Avian egg colour and sexual selection: Does eggshell pigmentation reflect female condition and genetic quality? Ecology Lett. 2003, 6, 803–806. [Google Scholar] [CrossRef] [Green Version]
- Radwan Nadia, L.; Hassan, R.; Qota, E.; Fayek, H. Effect of natural antioxidant on oxidative stability of eggs and productive and reproductive performance of laying hens. Int. J. Poult. Sci. 2008, 7, 134–150. [Google Scholar] [CrossRef] [Green Version]
- Pires, M.; Leandro, N.; Jacob, D.; Carvalho, F.; Oliveira, H.; Stringhini, J.; Pires, S.; Mello, H.; Carvalho, D. Performance and egg quality of commercial laying hens fed with various levels of protected sodium butyrate. S. Afr. J. Anim. Sci. 2020, 50, 758–765. [Google Scholar]
- Guo, A.; Cheng, L.; Al-Mamun, M.; Xiong, C.; Yang, S. Effect of dietary pine needles powder supplementation on growth, organ weight and blood biochemical profiles in broilers. J. Appl. Anim. Res. 2018, 46, 518–522. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-J. Effects of dietary supplementation of pine needle powder on carcass characteristics and blood cholesterol contents of broiler chicken. Korean J. Poult. Sci. 2011, 38, 51–57. [Google Scholar] [CrossRef] [Green Version]
Items | Amount |
---|---|
Moisture, % | 14.2 ± 0.120 |
Crude protein, % | 27.0 ± 0.056 |
Crude fat, % | 4.56 ± 0.141 |
Crude fiber, % | 11.8 ± 0.134 |
Crude ash, % | 14.8 ± 0.084 |
Calcium, % | 0.715 ± 0.007 |
Phosphorus, % | 0.835 ± 0.021 |
Acid detergent fiber, % | 15.0 ± 0.176 |
Neutral detergent fiber, % | 19.2 ± 0.268 |
Potassium, ppm | 46,591 ± 23.2 |
Magnesium, ppm | 2092 ± 14.8 |
Sodium, ppm | 362 ± 18.6 |
Iron, ppm | 1080 ± 11.1 |
Sulfur, ppm | 1329 ± 48.4 |
Items | Composition (%) |
---|---|
Ingredients | |
Corn | 50.0 |
Tallow | 0.900 |
Corn dried distillers’ grains with solubles | 21.2 |
Soybean meal | 7.42 |
Rapeseed meal | 5.00 |
Sesame seed oil meal | 2.00 |
Feather meal | 1.50 |
Syn. Lys-sulfate | 0.38 |
Syn. Met (liq.) | 0.105 |
Syn. Thr | 0.026 |
Limestone | 10.20 |
Mono dicalcium phosphate | 0.590 |
Salt | 0.200 |
Sodium bicarbonate | 0.100 |
Vitamin premix 1 | 0.110 |
Mineral premix 2 | 0.180 |
Choline-chloride (50%) | 0.049 |
Calculated nutrient composition | |
Crude protein, % | 17.0 |
Crude fat, % | 5.30 |
Crude fiber, % | 3.70 |
Ca, % | 4.00 |
Available P, % | 0.270 |
Lys, % | 0.830 |
TSAA 3, % | 0.720 |
TMEn 4, kcal/kg | 2800 |
Items | Amount |
---|---|
DPPH 2 radical scavenging activity (% inhibition) | 66.9 ± 1.21 |
TPC (µg of QE/mL) 3 | 50.1 ± 0.005 |
TFC (µg of QE/mL) 4 | 16.1 ± 0.010 |
Items | Treatment 1 | SEM 2 | p Value | |||
---|---|---|---|---|---|---|
CON | T1 | T2 | Linear | Quadratic | ||
week 43 | ||||||
Egg production (%) | 83.7 | 90.1 | 92.1 | 1.75 | 0.049 | 0.516 |
Egg weight, g | 64.3 | 62.5 | 63.3 | 0.367 | 0.224 | 0.101 |
Egg mass, g/hen/day | 53.8 | 56.3 | 58.2 | 1.03 | 0.098 | 0.895 |
Feed intake, g/hen/day | 114 | 113 | 118 | 1.05 | 0.122 | 0.227 |
FCR 3, g feed/g egg | 2.12 | 2.02 | 2.02 | 0.046 | 0.426 | 0.641 |
week 44 | ||||||
Egg production (%) | 87.5 | 94.2 | 94.0 | 1.66 | 0.116 | 0.310 |
Egg weight, g | 63.2 | 62.4 | 63.5 | 0.377 | 0.751 | 0.299 |
Egg mass, g/hen/day | 55.3 | 58.8 | 59.7 | 1.19 | 0.164 | 0.613 |
Feed intake, g/hen/day | 110 | 118 | 120 | 1.76 | 0.010 | 0.335 |
FCR, g feed/g egg | 1.95 | 2.02 | 2.03 | 0.044 | 0.478 | 0.751 |
week 45 | ||||||
Egg production (%) | 85.0 | 92.4 | 92.4 | 1.28 | 0.005 | 0.059 |
Egg weight, g | 63.0 | 62.3 | 63.7 | 0.286 | 0.322 | 0.074 |
Egg mass, g/hen/day | 53.5 | 57.5 | 58.8 | 0.803 | 0.002 | 0.215 |
Feed intake, g/hen/day | 94.7 | 105.3 | 106.5 | 1.97 | 0.005 | 0.125 |
FCR, g feed/g egg | 1.77 | 1.83 | 1.81 | 0.029 | 0.585 | 0.542 |
week 46 | ||||||
Egg production (%) | 88.9 | 95.1 | 93.3 | 1.44 | 0.210 | 0.186 |
Egg weight, g | 63.8 | 63.2 | 62.6 | 0.412 | 0.277 | 0.986 |
Egg mass, g/hen/day | 56.7 | 60.1 | 58.3 | 0.953 | 0.502 | 0.233 |
Feed intake, g/hen/day | 122 | 121 | 123 | 0.667 | 0.568 | 0.627 |
FCR, g feed/g egg | 2.15 | 2.02 | 2.10 | 0.031 | 0.526 | 0.123 |
week 47 | ||||||
Egg production (%) | 92.1 | 95.4 | 93.3 | 0.950 | 0.631 | 0.219 |
Egg weight, g | 64.2 | 63.8 | 63.5 | 0.414 | 0.577 | 0.952 |
Egg mass, g/hen/day | 59.2 | 60.8 | 59.3 | 0.756 | 0.966 | 0.364 |
Feed intake, g/hen/day | 122 | 121 | 123 | 0.821 | 0.641 | 0.295 |
FCR, g feed/g egg | 2.07 | 1.99 | 2.08 | 0.029 | 0.891 | 0.175 |
week 48 | ||||||
Egg production (%) | 88.0 | 90.1 | 92.4 | 1.25 | 0.186 | 0.965 |
Egg weight, g | 63.9 | 63.3 | 63.1 | 0.313 | 0.360 | 0.818 |
Egg mass, g/hen/day | 56.2 | 57.0 | 58.3 | 0.912 | 0.407 | 0.918 |
Feed intake, g/hen/day | 113 | 112 | 115 | 1.03 | 0.607 | 0.359 |
FCR, g feed/g egg | 2.03 | 1.97 | 1.97 | 0.026 | 0.573 | 0.674 |
Overall period (week 43–48) | ||||||
Egg production (%) | 87.5 | 92.9 | 92.9 | 0.895 | 0.002 | 0.040 |
Egg weight, g | 63.7 | 62.9 | 63.3 | 0.302 | 0.574 | 0.407 |
Egg mass, g/hen/day | 55.8 | 58.4 | 58.8 | 0.610 | 0.042 | 0.316 |
Feed intake, g/hen/day | 113 | 115 | 117 | 0.839 | 0.013 | 0.990 |
FCR, g feed/g egg | 2.02 | 1.98 | 2.00 | 0.019 | 0.831 | 0.511 |
Items | Treatment 1 | SEM 2 | p Value | |||
---|---|---|---|---|---|---|
CON | T1 | T2 | Linear | Quadratic | ||
week 43 | ||||||
Haugh unit | 97.0 | 92.8 | 92.5 | 1.36 | 0.189 | 0.497 |
Eggshell color | 10.07 | 10.50 | 10.37 | 0.169 | 0.497 | 0.460 |
Egg yolk color | 6.83 | 7.37 | 7.10 | 0.120 | 0.358 | 0.124 |
ESBS 3, kg/cm2 | 3.04 | 3.56 | 3.25 | 0.199 | 0.461 | 0.110 |
EST 4, mm | 0.327 | 0.333 | 0.327 | 0.004 | 0.998 | 0.497 |
week 44 | ||||||
Haugh unit | 92.4 | 91.5 | 93.3 | 0.788 | 0.678 | 0.459 |
Eggshell color | 10.5 | 11.6 | 11.1 | 0.152 | 0.056 | 0.007 |
Egg yolk color | 6.67 | 7.20 | 6.77 | 0.118 | 0.713 | 0.057 |
ESBS, kg/cm2 | 3.20 | 3.62 | 3.62 | 0.092 | 0.058 | 0.249 |
EST, mm | 0.371 | 0.364 | 0.363 | 0.005 | 0.528 | 0.807 |
week 45 | ||||||
Haugh unit | 90.9 | 93.9 | 94.8 | 1.01 | 0.140 | 0.633 |
Eggshell color | 9.93 | 11.3 | 11.7 | 0.253 | 0.001 | 0.187 |
Egg yolk color | 7.07 | 7.17 | 7.20 | 0.095 | 0.600 | 0.879 |
ESBS, kg/cm2 | 3.57 | 3.92 | 3.51 | 0.082 | 0.749 | 0.026 |
EST, mm | 0.377 | 0.373 | 0.357 | 0.004 | 0.037 | 0.430 |
week 46 | ||||||
Haugh unit | 97.2 | 84.7 | 85.3 | 1.74 | < 0.001 | 0.005 |
Eggshell color | 11.6 | 11.8 | 11.5 | 0.129 | 0.770 | 0.539 |
Egg yolk color | 7.53 | 7.73 | 7.47 | 0.097 | 0.790 | 0.293 |
ESBS, kg/cm2 | 3.27 | 3.19 | 3.01 | 0.093 | 0.296 | 0.816 |
EST, mm | 0.358 | 0.351 | 0.354 | 0.003 | 0.582 | 0.459 |
week 47 | ||||||
Haugh unit | 98.6 | 95.8 | 98.6 | 0.970 | 0.983 | 0.205 |
Eggshell color | 11.3 | 11.4 | 11.7 | 0.157 | 0.335 | 0.678 |
Egg yolk color | 7.40 | 7.83 | 7.67 | 0.088 | 0.197 | 0.102 |
ESBS, kg/cm2 | 2.85 | 3.52 | 3.90 | 0.171 | 0.008 | 0.625 |
EST, mm | 0.360 | 0.374 | 0.367 | 0.004 | 0.513 | 0.275 |
week 48 | ||||||
Haugh unit | 97.1 | 96.5 | 98.4 | 0.655 | 0.452 | 0.391 |
Eggshell color | 11.0 | 11.4 | 11.6 | 0.156 | 0.132 | 0.685 |
Egg yolk color | 7.53 | 7.33 | 7.47 | 0.116 | 0.828 | 0.534 |
ESBS, kg/cm2 | 2.97 | 3.74 | 3.33 | 0.130 | 0.188 | 0.024 |
EST, mm | 0.363 | 0.384 | 0.375 | 0.004 | 0.151 | 0.046 |
Overall period (week 43–48) | ||||||
Haugh unit | 95.6 | 92.5 | 93.8 | 0.536 | 0.148 | 0.047 |
Eggshell color | 10.75 | 11.3 | 11.3 | 0.101 | 0.008 | 0.088 |
Egg yolk color | 7.17 | 7.44 | 7.28 | 0.038 | 0.130 | 0.003 |
ESBS, kg/cm2 | 3.15 | 3.53 | 3.44 | 0.059 | 0.019 | 0.023 |
EST, mm | 0.359 | 0.363 | 0.357 | 0.002 | 0.639 | 0.225 |
Items (mg/dL) | Treatment 1 | SEM 2 | p Value | |||
---|---|---|---|---|---|---|
CON | T1 | T2 | Linear | Quadratic | ||
Triglycerides | 1175 | 1385 | 1239 | 81.4 | 0.756 | 0.322 |
Total cholesterol | 134 | 145 | 133 | 5.64 | 0.986 | 0.375 |
HDL 3-cholesterol | 10.22 | 9.72 | 9.64 | 0.545 | 0.682 | 0.867 |
VLDL + LDL 4-cholesterol | 123 | 133 | 124 | 5.30 | 0.981 | 0.461 |
Items | Period | Treatment 1 | SEM 2 | p Value | |||
---|---|---|---|---|---|---|---|
CON | T1 | T2 | Linear | Quadratic | |||
Haugh unit | week 1 | 87.1 | 82.5 | 84.4 | 1.28 | 0.399 | 0.258 |
week 2 | 72.6 | 71.3 | 72.1 | 0.538 | 0.698 | 0.409 | |
week 3 | 63.5 | 61.9 | 64.1 | 0.827 | 0.763 | 0.310 | |
week 4 | 60.9 | 60.5 | 59.6 | 1.45 | 0.741 | 0.940 | |
MDA, μg/g yolk 3 | week 4 | 0.013 | 0.014 | 0.015 | 0.001 | 0.156 | 0.702 |
MDA, μg/g yolk 4 | week 6 | 0.069 | 0.019 | 0.018 | 0.008 | <0.001 | 0.022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kothari, D.; Oh, J.-S.; Kim, J.-H.; Lee, W.-D.; Kim, S.-K. Effect of Dietary Supplementation of Fermented Pine Needle Extract on Productive Performance, Egg Quality, and Serum Lipid Parameters in Laying Hens. Animals 2021, 11, 1475. https://doi.org/10.3390/ani11051475
Kothari D, Oh J-S, Kim J-H, Lee W-D, Kim S-K. Effect of Dietary Supplementation of Fermented Pine Needle Extract on Productive Performance, Egg Quality, and Serum Lipid Parameters in Laying Hens. Animals. 2021; 11(5):1475. https://doi.org/10.3390/ani11051475
Chicago/Turabian StyleKothari, Damini, Jong-Seok Oh, Ju-Hee Kim, Woo-Do Lee, and Soo-Ki Kim. 2021. "Effect of Dietary Supplementation of Fermented Pine Needle Extract on Productive Performance, Egg Quality, and Serum Lipid Parameters in Laying Hens" Animals 11, no. 5: 1475. https://doi.org/10.3390/ani11051475
APA StyleKothari, D., Oh, J. -S., Kim, J. -H., Lee, W. -D., & Kim, S. -K. (2021). Effect of Dietary Supplementation of Fermented Pine Needle Extract on Productive Performance, Egg Quality, and Serum Lipid Parameters in Laying Hens. Animals, 11(5), 1475. https://doi.org/10.3390/ani11051475