Evaluation of Chemical Composition and Meat Quality of Breast Muscle in Broilers Reared under Light-Emitting Diode
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Samples Collection
2.2. Evaluation of Breast Meat Color
2.3. Drip Loss, Cooking Loss, and Chemical Composition of Breast Meat
2.4. Fatty Acids Profile of Breast Meat
2.5. Determination of Volatile Components of Cooked Breast Meat
2.6. Statistical Analysis
3. Results
3.1. Production and Physical Parameters
3.2. Fatty Acid Profile
3.3. Volatile Profile of Cooked Meat
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, L.; Ma, Y.E.; Gu, L.Y.; Yuan, D.; Shi, M.I.; Guo, X.Y.; Zhan, X.A. Growth performance, antioxidant status, and nonspecific immunity in broilers under different lighting regimens. J. Appl. Poult. Res. 2013, 22, 798–807. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, J.; Wang, Y.; Liu, K.; Yu, Y.; Pan, J.; Ying, Y. Light-emitting diode spectral sensitivity relationship with growth, feed intake, meat, and manure characteristics in broilers. Trans. ASABE 2016, 59, 1361–1370. [Google Scholar] [CrossRef]
- Mendes, A.S.; Paixão, S.J.; Restelatto, R.; Morello, G.M.; Jorge de Moura, D.; Possenti, J.C. Performance and preference of broiler chickens exposed to different lighting sources. J. Appl. Poult. Res. 2013, 22, 62–70. [Google Scholar] [CrossRef]
- Council Directive 2007/43/EC of 28 June 2007 Laying down Minimum Rules for the Protection of Chickens Kept for Meat Production. Available online: https://eur lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:182:0019:0028:EN:PDF (accessed on 4 October 2020).
- Parvin, R.; Mustaq, M.; Kim, M.; Choi, H. Light emitting diode (LED) as a source of monochromatic light: A novel lighting approach for immunity and meat quality of poultry. World’s Poult. Sci. J. 2014, 70, 557–562. [Google Scholar] [CrossRef]
- Huth, J.C.; Archer, G.S. Comparison of two LED light bulbs to a dimmable CFL and their effects on broiler chicken growth, stress, and fear. Poult. Sci. 2015, 94, 2027–2036. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Liu, W.; Wang, Z.; Xie, D.; Jia, L.; Chen, Y. Green and Blue Monochromatic Lights Promote Growth and Development of Broilers via Stimulating Testosterone Secretion and Myofiber Growth. J. Appl. Poult. Res. 2008, 17, 211–218. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, Y.; Pan, J.; Ying, Y.; Zhou, H. A new method to manipulate broiler chicken growth and metabolism: Response to mixed LED light system. Nat. Sci. Rep. 2016, 6, 25972. [Google Scholar] [CrossRef]
- Archer, G.S. Color temperature of light-emitting diode lighting matters for optimum growth and welfare of broiler chickens. Animal 2017, 12, 1015–1021. [Google Scholar] [CrossRef]
- Duclos, M.J.; Berri, C.; Le Bihan-Duval, E. Muscle growth and meat quality. J. Appl. Poult. Res. 2007, 16, 107–112. [Google Scholar] [CrossRef]
- Halevy, O.; Piestun, Y.; Rozenboim, I.; Yablonka-Reuveni, Z. In ovo exposure to monochromatic green light promotes skeletal muscle cell proliferation and affects myofiber growth in posthatch chicks. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R1062–R1070. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, M.; Parlat, S.S.; Yilmaz, M.T.; Yildirim, I.; Ozalp, B. Growth performance and quality properties of meat from broiler chickens reared under different monochromatic light sources. Br. Poult. Sci. 2009, 50, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Bennato, F.; Di Luca, A.; Martino, C.; Ianni, A.; Marone, E.; Grotta, L.; Ramazzotti, S.; Cichelli, A.; Martino, G. Influence of Grape Pomace Intake on Nutritional Value, Lipid Oxidation and Volatile Profile of Poultry Meat. Foods 2020, 9, 508. [Google Scholar] [CrossRef] [Green Version]
- Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000.
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Boil. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Ianni, A.; Innosa, D.; Martino, C.; Grotta, L.; Bennato, F.; Martino, G. Zinc supplementation of Friesian cows: Effect on chemical-nutritional composition and aromatic profile of dairy products. J. Dairy Sci. 2019, 102, 2918–2927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olanrewaju, H.A.; Miller, W.W.; Maslin, W.R.; Collier, S.D.; Purswell, J.L.; Branton, S.L. Effects of light sources and intensity on broilers grown to heavy weights. Part 1: Growth performance, carcass characteristics, and welfare indices. Poult. Sci. 2016, 95, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Olanrewaju, H.A.; Miller, W.W.; Maslin, W.R.; Collier, S.D.; Purswell, J.L.; Branton, S.L. Influence of light sources and photoperiod on growth performance, carcass characteristics, and health indices of broilers grown to heavy weights. Poult. Sci. 2018, 97, 1109–1116. [Google Scholar] [CrossRef]
- Ke, Y.Y.; Liu, W.J.; Wang, Z.X.; Chen, Y.X. Effects of monochromatic light on quality properties and antioxidation of meat in broilers. Poult. Sci. 2011, 90, 2632–2637. [Google Scholar] [CrossRef]
- Kim, M.J.; Parvin, R.; Mushtaq, M.M.H.; Hwangbo, J.; Kim, J.H.; Na, J.C.; Kim, D.W.; Kang, H.K.; Kim, C.D.; Cho, K.O.; et al. Influence of monochromatic light on quality traits, nutritional, fatty acid, and amino acid profiles of broiler chicken meat. Poult. Sci. 2013, 92, 2844–2852. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, J.; Wang, Z.; Dong, Y.; Chen, Y. Melatonin modulates monochromatic light-induced GHRH expression in the hypothalamus and GH secretion in chicks. Acta Histochem. 2016, 118, 286–292. [Google Scholar] [CrossRef]
- Wang, Z.; He, F.; Rao, W.; Ni, N.; Shen, Q.; Zhang, D. Proteomic analysis of goat Longissimus dorsi muscles with different drip loss values related to meat quality traits. Food Sci. Biotechnol. 2016, 25, 425–431. [Google Scholar] [CrossRef]
- Diesbougr, L.; Swatland, H.J.; Millman, B.M. X-ray diffraction measurements of postmortem changes in the myofilament lattice of pork. J. Anim. Sci. 1988, 66, 1048–1054. [Google Scholar] [CrossRef]
- Ryu, Y.C.; Kim, B.C. The relationship between muscle fiber characteristics, postmortem metabolic rate and meat quality of pig longissimus dorsi muscle. Meat Sci. 2005, 71, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Berri, C.; Bihan-Duval, E.L.; Debut, M.; Sante-Lhoutellier, V.; Baeza, E.; Gigaud, V.; Jego, Y.; Duclos, M.J. Consequence of muscle hypertrophy on characteristics of Pectoralis major muscle and breast meat quality of broiler chickens. J. Anim. Sci. 2007, 85, 2005–2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waritthitham, A.; Lambertz, C.; Langholz, H.J.; Wicke, M.; Gauly, M. Muscle Fiber Characteristics and Their Relationship to Water Holding Capacity of Longissimus dorsi Muscle in Brahman and Charolais Crossbred Bulls. Asian-Aust. J. Anim. Sci. 2010, 5, 665–671. [Google Scholar] [CrossRef]
- Chartrin, P.; Meteau, K.; Juin, H.; Bernadet, M.D.; Guy, G.; Larzul, G.; Remignon, H.; Mourot, J.; Duclos, M.J.; Baeza, E. Effects of intramuscular fat levels on sensory characteristics of duck breast meat. Poult. Sci. 2006, 85, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Petracci, M.; Betti, M.; Bianchi, M.; Cavani, C. Color variation and characterization of broiler breast meat during processing in Italy. Poult. Sci. 2004, 83, 2086–2092. [Google Scholar] [CrossRef] [PubMed]
- Napper, S.; Dadgar, S.; Arsenault, R.J.; Trost, B.; Scruten, E.; Kusalik, A.; Shand, P. Induction of tissue- and stressor-specific kinomic responses in chickens exposed to hot and cold stresses. Poult. Sci. 2015, 94, 1333–1345. [Google Scholar] [CrossRef] [PubMed]
- Schneider, B.L.; Renema, R.A.; Betti, M.; Carney, V.L.; Zuidhof, M.J. Effect of holding temperature, shackling, sex, and age on broiler breast meat quality. Poult. Sci. 2012, 91, 468–477. [Google Scholar] [CrossRef]
- Kruk, Z.A.; Yun, H.D.; Rutley, L.; Lee, E.J.; Kim, Y.J.; Jo, C. The effect of high pressure on microbial population, meat quality and sensory characteristics of chicken breast fillet. Food Control 2011, 22, 6–12. [Google Scholar] [CrossRef]
- Lindahl, G.; Lundström, K.; Tornberg, E. Contribution of pigment content, myoglobin forms and internal reflectance to the colour of pork loin and ham from pure breed pigs. Meat Sci. 2011, 59, 141–151. [Google Scholar] [CrossRef]
- Burns, T.A.; Kadegowda, A.K.G.; Duckett, S.K.; Pratt, S.L.; Jenkins, T.C. Palmitoleic (16:1 cis-9) and cis-Vaccenic (18:1 cis-11) Acid Alter Lipogenesis in Bovine Adipocyte Cultures. Lipids 2012, 47, 1143–1153. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Parvin, J.R.; Mushtaq, M.; Kim, J.H.; Kim, D.W.; Kang, H.K.; Na, J.C.; Hwangbo, J.; Kim, C.D.; Cho, K.O.; et al. Influence of colored light-emitting diode illumination on the growth performance and meat quality traits of Pekin ducks (Anas 1platyrhynchos). Bulg. J. Agric. Sci 2014, 20, 943–948. [Google Scholar]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Perez-Alvarez, J.A.; Sendra-Nadal, E.; Sanchez-Zapata, E.J.; Viuda-Martos, M. Poultry flavour: General aspects and applications. In Handbook of Poultry Science and Technology: Secondary Processing; Guerrero-Legarreta, I., Hui, Y.H., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 339–357. [Google Scholar]
- Beltran, E.; Pla, R.; Yuste, J.; Mor-Mur, M. Lipid oxidation of pressurized and cooked chicken: Role of sodium chloride and mechanical processing on TBARS and hexanal values. Meat Sci. 2003, 64, 19–25. [Google Scholar] [CrossRef]
- Mielnik, M.; Olsen, B.E.; Vogt, G.; Adeline, D.; Skrede, G. Grape seed extract as antioxidant in cooked, cold stored turkey meat. LWT-Food Sci. Technol. 2006, 39, 191–198. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Ross, C.F.; Smith, D.M. Use of volatiles as indicators of lipid oxidation in muscle foods. Compr. Rev. Food Sci. Food Saf. 2006, 5, 18–25. [Google Scholar] [CrossRef]
Chemical Composition (%) | Starter | Grower | Finisher |
---|---|---|---|
Dry Matter | 89.10 | 88.90 | 89.00 |
Crude Protein † | 25.45 | 21.70 | 19.65 |
Ether Extract † | 5.65 | 6.88 | 7.97 |
Crude Fiber † | 3.54 | 3.64 | 3.82 |
Ash † | 6.23 | 5.71 | 4.78 |
Lysine † | 1.54 | 1.23 | 1.17 |
Methionine † | 0.63 | 0.46 | 0.39 |
Sodium † | 0.17 | 0.16 | 0.15 |
Calcium † | 0.85 | 0.74 | 0.65 |
Phosphorus † | 0.68 | 0.56 | 0.45 |
Trait | Control | Neutral LED | Cool LED | Warm LED |
---|---|---|---|---|
Live weight, kg | 3.53 ± 0.29 a | 3.48 ± 0.27 abc | 3.52 ± 0.29 ab | 3.22 ± 0.39 c |
Carcass weight, kg | 2.58 ± 0.25 a | 2.56 ± 0.24 ab | 2.61 ± 0.25 ab | 2.38 ± 0.31 b |
Carcass yield, % | 73.85 ± 11.43 | 75.17 ± 9.42 | 74.81 ± 10.47 | 75.46 ± 16.84 |
Drip loss, % | 0.90 ± 0.14 a | 1.22 ± 0.43 b | 1.10 ± 0.29 c | 1.08 ± 0.34 abc |
Cooking loss, % | 16.37 ± 2.30 | 17.73 ± 3.35 | 16.22 ± 4.05 | 14.96 ± 2.20 |
pH24-h | 5.69 ± 0.07 | 5.64 ± 0.07 | 5.73 ± 0.07 | 5.68 ± 0.06 |
Color | ||||
L* | 27.92 ± 3.03 a | 28.86 ± 2.95 a | 28.19 ± 3.56 a | 26.44 ± 2.17 b |
a* | −1.57 ± 0.46 a | −1.90 ± 0.34 b | −1.69 ± 0.53 ab | −1.43 ± 0.38 a |
b* | 0.26 ± 0.99 a | 1.27± 1.59 b | 0.23 ± 1.14 ac | 0.77 ± 0.62 ad |
Chemical Composition (%) | ||||
Moisture | 73.21 ± 2.77 a | 75.86 ± 1.35 b | 74.58 ± 0.93 ab | 74.38 ± 2.00 ab |
Dry matter | 26.79 ± 2.77 a | 24.15 ± 1.35 b | 25.42 ± 0.93 ab | 25.62 ± 2.00 ab |
Total lipids † | 6.34 ± 2.19 | 6.25 ± 1.69 | 6.08 ± 1.73 | 5.72 ± 1.37 |
Fatty Acids | Control | Neutral LED | Cool LED | Warm LED |
---|---|---|---|---|
C14:0 | 0.47 ± 0.11 | 0.53 ± 0.13 | 0.43 ± 0.06 | 0.45 ± 0.09 |
C15:0 | 0.05 ± 0.03 | 0.07 ± 0.03 | 0.05 ± 0.02 b | 0.05 ± 0.01 |
C16:0 | 19.52 ± 1.87 | 20.13 ± 1.48 | 20.01 ± 2.17 | 19.83 ± 1.49 |
C17:0 | 0.17 ± 0.05 | 0.19 ± 0.04 | 0.16 ± 0.02 | 0.17 ± 0.02 |
C18:0 | 8.72 ± 1.93 | 9.27 ± 1.61 | 8.89 ± 1.23 | 8.04 ± 1.90 |
C20:0 | 0.08 ± 0.01 | 0.07 ± 0.01 | 0.06 ± 0.03 | 0.10 ± 0.10 |
C14:1 | 0.02 ± 0.01 | 0.03 ± 0.02 | 0.03 ± 0.01 | 0.03 ± 0.02 |
C16:1 | 1.83 ± 0.58 | 1.72 ± 0.87 | 1.86 ± 0.39 | 2.14 ± 0.79 |
C18:1, c9 | 23.56 ± 2.69 | 23.82 ± 3.65 | 23.72 ± 2.24 | 23.99 ± 2.64 |
C18:1, c11 | 1.35 ± 0.29 a | 1.59 ± 0.21 b | 1.55 ± 0.40 ab | 1.47 ± 0.18 ab |
C22:1 | 0.13 ± 0.07 | 0.12 ± 0.04 | 0.12 ± 0.05 | 0.12 ± 0.06 |
C18:2 | 34.56 ± 3.40 | 32.72 ± 5.33 | 33.12 ± 3.18 | 34.66 ± 1.74 |
C18:3 | 3.35 ± 0.72 | 3.19 ± 0.87 | 3.26 ± 0.60 | 3.37 ± 0.42 |
C20:4 | 3.67 ± 1.97 | 3.98 ± 1.88 | 4.07 ± 1.45 | 3.20 ± 1.88 |
Others | 2.52 ± 0.61 | 2.58 ± 0.56 | 2.66 ± 0.54 | 2.39 ± 0.59 |
SFA | 29.01 ± 3.52 | 30.26 ± 2.27 | 29.61 ± 3.03 | 28.64 ± 2.38 |
MUFA | 26.90 ± 2.86 | 27.28 ± 4.61 | 27.28 ± 2.44 | 27.75 ± 3.25 |
PUFA | 39.04 ± 3.84 a | 39.89 ± 5.79 ab | 40.45 ± 2.81 ab | 41.23 ± 2.11 b |
UFA/SFA | 2.32 ± 0.43 | 2.25 ± 0.24 | 2.32 ± 0.33 | 2.43 ± 0.31 |
VOC | T0 | T7 | ||||||
---|---|---|---|---|---|---|---|---|
Control | Neutral LED | Cool LED | Warm LED | Control | Neutral LED | Cool LED | Warm LED | |
Aldehydes | ||||||||
Pentanal | 2.35 ± 0.22 | 4.14 ± 2.16 | 2.59 ± 1.76 | 1.56 ± 1.10 | 1.06 ± 0.17 | 2.15 ± 0.26 | 1.55 ± 0.24 | 1.74 ± 0.12 |
Hexanal | 74.48 ± 0.05 | 71.24 ± 1.13 | 72.03 ± 4.82 | 79.91 ± 6.45 | 62.68 ± 1.55 | 52.23 ± 4.98 | 62.29 ± 3.34 | 67.21 ± 4.22 |
Heptanal | 2.02 ± 0.23 | 6.87 ± 6.52 | 1.43 ± 2.02 | 4.33 ± 4.98 | 3.09 ± 0.22 | 3.17 ± 0.24 | 1.99 ± 0.30 | 1.98 ± 0.28 |
Octanal | 1.81 ± 0.07 | 2.64 ± 1.01 | 1.99 ± 0.62 | 1.96 ± 0.67 | 2.07 ± 0.15 | 2.60 ± 0.33 | 2.04 ± 0.12 | 2.10 ± 0.17 |
Nonanal | 1.86 ± 0.11 | 2.55 ± 0.54 | 2.85 ± 0.20 | 2.18 ± 0.49 | 2.78 ± 0.40 | 3.01 ± 0.31 | 2.79 ± 0.31 | 2.89 ± 0.30 |
Alcohol | ||||||||
1-Pentanol | 1.58 ± 0.17 | 1.43 ± 0.55 | 2.35 ± 0.49 | 1.56 ± 0.03 | 2.00 ± 0.24 a | 1.93 ± 0.26 ab | 2.54 ± 0.32 ab | 2.83 ± 0.26 b |
1-Heptanol | 0.17 ± 0.08 | 0.23 ± 0.13 | 0.21 ± 0.30 | 0.14 ± 0.19 | 0.90 ± 0.15 | 0.98 ± 0.12 | 0.70 ± 0.13 | 0.68 ± 0.13 |
1-Octanol | nd | 0.07 ± 0.10 | nd | nd | 0.45 ± 0.06 a | 0.52 ± 0.08 ab | 0.28 ± 0.09 b | 0.20 ± 0.06 ab |
1-Octen-3-ol | 8.20 ± 0.05 a | 5.53 ± 0.11 b | 9.36 ± 1.34 ab | 2.83 ± 2.06 ab | 10.61 ± 0.95 a | 21.44 ± 1.94 ab | 9.62 b ± 1.02 | 8.70 ± 0.84 ab |
2-Octen-1-ol | 0.39 ± 0.04 | 0.20 ± 0.10 | 0.25 ± 0.36 | 0.03 ± 0.04 | 1.34 ± 0.40 | 0.86 ± 0.14 | 1.05 ± 0.14 | 0.89 ± 0.11 |
1-Hexanol, 2-ethyl- | 0.14 ± 0.20 | 0.75 ± 0.24 | 1.54 ± 1.37 | 1.73 ± 1.01 | nd | 0.07 ± 0.10 | nd | nd |
Ketones | ||||||||
2-Heptenal | 0.90 ± 0.37 ab | 0.28 ± 0.03 ab | 0.65 ± 0.04 a | 0.16 ± 0.07 b | 0.74 ± 0.09 | 0.34 ± 0.05 | 0.68 ± 0.07 | 0.57 ± 0.08 |
1-Octenal | 1.52 ± 0.32 ab | 0.88 ± 0.02 a | 1.50 ± 0.57 ab | 0.56 ± 0.05 b | 0.51 ± 0.08 a | 0.62 ± 0.10 a | 1.37 ± 0.03 b | 0.84 ± 0.17 a |
2-Hexanone, 4-methyl- | 0.08 ± 0.01 a | 0.01 ± 0.01 b | 0.04 ± 0.06 ab | 0.02 ± 0.03 ab | 0.24 ± 0.02 | 0.19 ± 0.12 | 0.25 ± 0.17 | 0.23 ± 0.19 |
3-Octanone, 2-methyl- | 3.27 ± 0.29 a | 2.15 ± 0.83 ab | 2.20 ± 0.32 ab | 1.68 ± 0.13 b | 3.95 ± 0.21 a | 4.03 ± 0.37 abc | 3.18 ± 0.37 b | 3.04± 0.27 c |
Phenolic Compounds | ||||||||
Ethylbenzene | 0.50 ± 0.17 | 0.41 ± 0.10 | 0.48 ± 0.14 | 0.71 ± 0.15 | 3.13 ± 0.46 | 2.40 ± 0.40 | 4.27 ± 0.38 | 2.71 ± 0.31 |
p-Xylene | 0.63 ± 0.13 | 0.53 ± 0.05 | 0.43 ± 0.34 | 0.54 ± 0.19 | 4.25 ± 0.17 | 3.27 ± 0.28 | 5.05 ± 0.57 | 3.03 ± 0.69 |
Benzaldehyde | 0.10 ± 0.08 | 0.13 ± 0.07 | 0.09 ± 0.07 | 0.13 ± 0.01 | 0.20 ± 0.17 | 0.25 ± 0.04 | 0.34 ± 0.04 | 0.35 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bennato, F.; Ianni, A.; Martino, C.; Grotta, L.; Martino, G. Evaluation of Chemical Composition and Meat Quality of Breast Muscle in Broilers Reared under Light-Emitting Diode. Animals 2021, 11, 1505. https://doi.org/10.3390/ani11061505
Bennato F, Ianni A, Martino C, Grotta L, Martino G. Evaluation of Chemical Composition and Meat Quality of Breast Muscle in Broilers Reared under Light-Emitting Diode. Animals. 2021; 11(6):1505. https://doi.org/10.3390/ani11061505
Chicago/Turabian StyleBennato, Francesca, Andrea Ianni, Camillo Martino, Lisa Grotta, and Giuseppe Martino. 2021. "Evaluation of Chemical Composition and Meat Quality of Breast Muscle in Broilers Reared under Light-Emitting Diode" Animals 11, no. 6: 1505. https://doi.org/10.3390/ani11061505
APA StyleBennato, F., Ianni, A., Martino, C., Grotta, L., & Martino, G. (2021). Evaluation of Chemical Composition and Meat Quality of Breast Muscle in Broilers Reared under Light-Emitting Diode. Animals, 11(6), 1505. https://doi.org/10.3390/ani11061505