Soybean Meal Can Be Replaced by Faba Beans, Pumpkin Seed Cake, Spirulina or Be Completely Omitted in a Forage-Based Diet for Fattening Bulls to Achieve Comparable Performance, Carcass and Meat Quality
Abstract
:Simple Summary
Abstract
1. Introduction
2. Animals, Materials, and Methods
2.1. Animals and Diets
2.2. Slaughter, Carcass Quality, and Sampling
2.3. Feed Sampling and Proximate Analysis of the Feeds
2.4. Analysis of Meat Quality and Fat Shelf Life
2.5. Fatty acid Analysis in Feeds and Meat
2.6. Statistical Analysis
3. Results
3.1. Feed Composition, Growth and Slaughter Performance
3.2. Physicochemical Meat Quality
3.3. Fatty Acid Profile of Intramuscular Fat
4. Discussion
4.1. Characteristics of Protein Sources Tested
4.2. Growth and Slaughter Performance
4.3. Meat Quality
4.4. Fatty Acid Profile of the Intramuscular Fat
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janett, R.M.; Wyss, M.; Favre, J.; Scheurer, A.; Reidy, B. Teil I: Eckpunkte einer Umweltfreundlichen und Effizienten Erzeugung von Hochwertigem Rindfleisch unter Schweizer Produktionsbedingungen; Project report; Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences HAFL: Zollikofen, Switzerland, 2021. [Google Scholar]
- Leguizamón, A. Modifying Argentina: GM soy and socio-environmental change. Geoforum 2014, 53, 149–160. [Google Scholar] [CrossRef]
- Prudêncio da Silva, V.; van der Werf, H.M.G.; Spies, A.; Soares, S.R. Variability in environmental impacts of Brazilian soybean according to crop production and transport scenarios. J. Environ. Manag. 2010, 91, 1831–1839. [Google Scholar] [CrossRef]
- Juniper, D.T.; Browne, E.M.; Fisher, A.V.; Bryant, M.J.; Nute, G.R.; Beever, D.E. Intake, growth and meat quality of steers given diets based on varying proportions of maize silage and grass silage. Anim. Sci. 2005, 81, 159–170. [Google Scholar] [CrossRef]
- Keady, T.W.J. Ensiled maize and whole crop wheat forages for beef and dairy cattle: Effects on animal performance. In Silage Production and Utilisation, Proceedings of the XIVth International Silage Conference, a Satellite Workshop of the XXth International Grassland Congress, Belfast, Northern Ireland, July 2005; Park, R.S., Stronge, M.D., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; pp. 65–82. [Google Scholar] [CrossRef]
- Huuskonen, A. Effects of barley grain compared to commercial concentrate or rapeseed meal supplementation on performance of growing dairy bulls offered grass silage-based diet. Agr. Food Sci. 2011, 20, 191–205. [Google Scholar] [CrossRef] [Green Version]
- Huuskonen, A.; Khalili, H.; Joki-Tokola, E. Effects of three different concentrate proportions and rapeseed meal supplement to grass silage on animal performance of dairy-breed bulls with TMR feeding. Livest. Sci. 2007, 110, 154–165. [Google Scholar] [CrossRef]
- Pesonen, M.; Honkavaara, M.; Kamarainen, H.; Tolonen, T.; Jaakkola, M.; Virtanen, V.; Huuskonen, A. Effects of concentrate level and rapeseed meal supplementation on performance, carcass characteristics, meat quality and valuable cuts of Hereford and Charolais bulls offered grass silage-barley-based rations. Agr. Food Sci. 2013, 22, 151–167. [Google Scholar] [CrossRef] [Green Version]
- Huuskonen, A.; Huhtanen, P. The development of a model to predict BW gain of growing cattle fed grass silage-based diets. Animal 2015, 9, 1329–1340. [Google Scholar] [CrossRef] [PubMed]
- Huuskonen, A.; Huhtanen, P.; Joki-Tokola, E. Evaluation of protein supplementation for growing cattle fed grass silage-based diets: A meta-analysis. Animal 2014, 8, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
- Halmemies-Beauchet-Filleau, A.; Rinne, M.; Lamminen, M.; Mapato, C.; Ampapon, T.; Wanapat, M.; Vanhatalo, A. Review: Alternative and novel feeds for ruminants: Nutritive value, product quality and environmental aspects. Animal 2018, 12, s295–s309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, M.; Upadhyaya, H.D.; Bisht, I.S. 5 Faba Bean. In Genetic and Genomic Resources of Grain Legume Improvement; Singh, M.; Upadhyaya, H.D.; Bisht, I.S. Elsevier: Oxford, UK, 2013; pp. 113–136. [Google Scholar]
- Köpke, U.; Nemecek, T. Ecological services of faba bean. Field Crops Res. 2010, 115, 217–233. [Google Scholar] [CrossRef]
- Wilkins, R.J.; Jones, R. Alternative home-grown protein sources for ruminants in the United Kingdom. Anim. Feed Sci. Technol. 2000, 85, 23–32. [Google Scholar] [CrossRef]
- Calabrò, S.; Cutrignelli, M.I.; Gonzalez, O.J.; Chiofalo, B.; Grossi, M.; Tudisco, R.; Panetta, C.; Infascelli, F. Meat quality of buffalo young bulls fed faba bean as protein source. Meat Sci. 2014, 96, 591–596. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, F.J.; Kirchgessner, M. Verfütterung von Samen verschiedener Leguminosen (Ackerbohne, Erbse, Lupine) und Rapsextraktionsschrot aus 0- und 00-Sorten in der Bullenmast. 1. Mitteilung: Zum Austausch von Sojaextraktionsschrot gegen alternative Eiweisskomponenten. Züchtungskunde 1989, 61, 71–82. [Google Scholar]
- Zdunczyk, Z.; Minakowski, D.; Frejnagel, S.; Flis, M. Comparative study of the chemical composition and nutritional value of pumpkin seed cake, soybean meal and casein. Nahrung 1999, 43, 392–395. [Google Scholar] [CrossRef]
- Antunović, Z.; Klir, Ž.; Šperanda, M.; Sičaja, V.; Čolović, D.; Mioč, B.; Novoselec, J. Partial replacement of soybean meal with pumpkin seed cake in lamb diets: Effects on carcass traits, haemato-chemical parameters and fatty acids in meat. S. Afr. J. Anim. Sci. 2018, 48, 695–704. [Google Scholar] [CrossRef]
- Klir, Z.; Castro-Montoya, J.M.; Novoselec, J.; Molkentin, J.; Domacinovic, M.; Mioc, B.; Dickhoefer, U.; Antunovic, Z. Influence of pumpkin seed cake and extruded linseed on milk production and milk fatty acid profile in Alpine goats. Animal 2017, 11, 1772–1778. [Google Scholar] [CrossRef] [Green Version]
- Wild, K.J.; Steingaß, H.; Rodehutscord, M. Variability in nutrient composition and in vitro crude protein digestibility of 16 microalgae products. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1306–1319. [Google Scholar] [CrossRef]
- Soni, R.A.; Sudhakar, K.; Rana, R.S. Spirulina–From growth to nutritional product: A review. Trends Food Sci. Tech. 2017, 69, 157–171. [Google Scholar] [CrossRef] [Green Version]
- Nasr, J.; Komisar, J.; de Zeeuw, H. A panorama of rooftop agriculture types. In Rooftop Urban Agriculture; Orsini, F., Dubbeling, M., De Zeeuw, H., Gianquinto, G., Eds.; Springer: Cham, Switzerland, 2017; pp. 9–29. [Google Scholar]
- Habib, M.A.B.; Parvin, M.; Huntington, T.C.; Hasan, M.R. Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish; Food and Agriculture Organisation of the United Nations (FAO): Rome, Italy, 2008. [Google Scholar]
- Van Krimpen, M.M.; Bikker, P.; Van der Meer, I.M.; Van der Peet-Schwering, C.M.C.; Vereijken, J.M. Cultivation, Processing and Nutritional Aspects for Pigs and Poultry of European Protein Sources as Alternatives for Imported Soybean Products; Wageningen UR Livestock Research: Lelystad, The Netherlands, 2013; p. 10. [Google Scholar]
- Kulpys, J.; Paulauskas, E.; Pilipavičius, V.; Stankevičius, R. Influence of cyanobacteria Arthrospira (Spirulina) platensis biomass additives towards the body condition of lactation cows and biochemical milk indexes. Agron. Res. 2009, 7, 823–835. [Google Scholar]
- Lamminen, M.; Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Jaakkola, S.; Vanhatalo, A. Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets. Anim. Feed Sci. Technol. 2019, 247, 112–126. [Google Scholar] [CrossRef]
- Manzocchi, E.; Guggenbühl, B.; Kreuzer, M.; Giller, K. Effects of the substitution of soybean meal by spirulina in a hay-based diet for dairy cows on milk composition and sensory perception. J. Dairy Sci. 2020, 103, 11349–11362. [Google Scholar] [CrossRef]
- Agroscope. Feeding Recommendations for Ruminants (in German). Available online: https://www.agroscope.admin.ch/agroscope/de/home/services/dienste/futtermittel/fuetterungsempfehlungen-wiederkaeuer.html (accessed on 28 March 2021).
- Proviande Genossenschaft. CH-TAX Einschätzungssystem für Schlachttiere und Schlachtkörper (Rindvieh, Schafe); Proviande Genossenschaft: Berne, Switzerland, 2015. [Google Scholar]
- AOAC INTERNATIONAL. Official Methods of Analysis; Association of official analytical chemists: Arlington, VA, USA, 1997. [Google Scholar]
- VDLUFA. Methodenbuch Vol. 3: Die Chemische Untersuchung von Futtermitteln; VDLUFA-Verlag: Darmstadt, Germany, 2012. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Agroscope. Berechnungsprogramme. 2017. Available online: https://www.agroscope.admin.ch/agroscope/de/home/services/dienste/futtermittel/berechnungsprogramme.html (accessed on 2 November 2020).
- Hintz, H.F.; Heitman, H., Jr.; Weir, W.C.; Torell, D.T.; Meyer, J.H. Nutritive value of algae grown on sewage. J. Anim. Sci. 1966, 25, 675–681. [Google Scholar] [CrossRef]
- Mueller, S.; Taddei, L.; Albiker, D.; Kreuzer, M.; Siegrist, M.; Messikommer, R.E.; Gangnat, I.D.M. Growth, carcass, and meat quality of 2 dual-purpose chickens and a layer hybrid grown for 67 or 84 D compared with slow-growing broilers. J. Appl. Poult. Res. 2020, 29, 185–196. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Wolf, C.; Ulbrich, S.E.; Kreuzer, M.; Berard, J.; Giller, K. Differential partitioning of rumen-protected n-3 and n-6 fatty acids into muscles with different metabolism. Meat Sci. 2018, 137, 106–113. [Google Scholar] [CrossRef] [PubMed]
- IUPAC. Preparation of the fatty acid methyl esters. In IUPAC Standard Methods for the Analysis of Oils, Fats and Derivates; Dieffenbacher, A., Pocklington, W.D., Eds.; Blackwell Scientific Publications: Oxford, UK, 1987; pp. 123–129. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Heuzé, V.; Tran, G.; Kaushik, S. Soybean Meal. Available online: https://feedipedia.org/node/674 (accessed on 24 July 2020).
- Makkar, H.P.S.; Becker, K.; Abel, H.; Pawelzik, E. Nutrient contents, rumen protein degradability and antinutritional factors in some colour- and white-flowering cultivars of Vicia faba beans. J. Sci Food Agric. 1997, 75, 511–520. [Google Scholar] [CrossRef]
- Aguilera, J.F.; Bustos, M.; Molina, E. The degradability of legume seed meals in the rumen: Effect of heat treatment. Anim. Feed Sci. Technol. 1992, 36, 101–112. [Google Scholar] [CrossRef]
- Costa, D.F.A.; Quigley, S.P.; Isherwood, P.; McLennan, S.R.; Poppi, D.P. Supplementation of cattle fed tropical grasses with microalgae increases microbial protein production and average daily gain. J. Anim. Sci. 2016, 94, 2047–2058. [Google Scholar] [CrossRef] [PubMed]
- Wild, K.J.; Steingaß, H.; Rodehutscord, M. Variability of in vitro ruminal fermentation and nutritional value of cell-disrupted and nondisrupted microalgae for ruminants. GCB Bioenergy 2019, 11, 345–359. [Google Scholar] [CrossRef] [Green Version]
- Cutrignelli, M.I.; Piccolo, G.; Bovera, F.; Calabrò, S.; D’Urso, S.; Tudisco, R.; Infascelli, F. Effects of two protein sources and energy level of diet on the performance of young Marchigiana bulls. 1. Infra vitam performance and carcass quality. Ital. J. Anim. Sci. 2008, 7, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Puhakka, L.; Jaakkola, S.; Simpura, I.; Kokkonen, T.; Vanhatalo, A. Effects of replacing rapeseed meal with fava bean at 2 concentrate crude protein levels on feed intake, nutrient digestion, and milk production in cows fed grass silage-based diets. J. Dairy Sci. 2016, 99, 7993–8006. [Google Scholar] [CrossRef]
- Lamminen, M.; Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Vanhatalo, A.; Jaakkola, S. The effect of partial substitution of rapeseed meal and faba beans by Spirulina platensis microalgae on milk production, nitrogen utilization, and amino acid metabolism of lactating dairy cows. J. Dairy Sci. 2019, 102, 7102–7117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamminen, M.; Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Simpura, I.; Jaakkola, S.; Vanhatalo, A. Comparison of microalgae and rapeseed meal as supplementary protein in the grass silage based nutrition of dairy cows. Anim. Feed Sci. Technol. 2017, 234, 295–311. [Google Scholar] [CrossRef] [Green Version]
- Staerfl, S.M.; Soliva, C.R.; Leiber, F.; Kreuzer, M. Fatty acid profile and oxidative stability of the perirenal fat of bulls fattened on grass silage and maize silage supplemented with tannins, garlic, maca and lupines. Meat Sci. 2011, 89, 98–104. [Google Scholar] [CrossRef] [PubMed]
- SUZUKI, A. Characteristics of Biceps femoris and Longissimus thoracis muscles of five cattle breeds grown in a feedlot system. Anim. Sci. J. 2003, 74, 59–65. [Google Scholar] [CrossRef]
- Sami, A.S.; Augustini, C.; Schwarz, F.J. Effects of feeding intensity and time on feed on performance, carcass characteristics and meat quality of Simmental bulls. Meat Sci. 2004, 67, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Cutrignelli, M.I.; Calabrò, S.; Bovera, F.; Tudisco, R.; D’Urso, S.; Marchiello, M.; Piccolo, V.; Infascelli, F. Effects of two protein sources and energy level of diet on the performance of young Marchigiana bulls. 2. Meat quality. Ital. J. Anim. Sci. 2008, 7, 271–285. [Google Scholar] [CrossRef]
- Li, X.; Babol, J.; Bredie, W.L.P.; Nielsen, B.; Tománková, J.; Lundström, K. A comparative study of beef quality after ageing longissimus muscle using a dry ageing bag, traditional dry ageing or vacuum package ageing. Meat Sci. 2014, 97, 433–442. [Google Scholar] [CrossRef]
- Boakye, K.; Mittal, G.S. Changes in colour of beef m. longissimus dorsi muscle during ageing. Meat Sci. 1996, 42, 347–354. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S. Reducing lipid peroxidation for improving colour stability of beef and lamb: On-farm considerations. J. Sci. Food Agric. 2012, 92, 719–726. [Google Scholar] [CrossRef]
- Marino, R.; Albenzio, M.; Braghieri, A.; Muscio, A.; Sevi, A. Organic farming: Effects of forage to concentrate ratio and ageing time on meat quality of Podolian young bulls. Livest. Sci. 2006, 102, 42–50. [Google Scholar] [CrossRef]
- Monsón, F.; Sañudo, C.; Sierra, I. Influence of cattle breed and ageing time on textural meat quality. Meat Sci. 2004, 68, 595–602. [Google Scholar] [CrossRef]
- O’Sullivan, A.; O’Sullivan, K.; Galvin, K.; Moloney, A.P.; Troy, D.J.; Kerry, J.P. Grass silage versus maize silage effects on retail packaged beef quality. J. Anim. Sci. 2002, 80, 1556–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sami, A.S.; Schuster, M.; Schwarz, F.J. Performance, carcass characteristics and chemical composition of beef affected by lupine seed, rapeseed meal and soybean meal. J. Anim. Physiol. Anim. Nutr. 2010, 94, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Kashani, A.; Holman, B.W.B.; Nichols, P.D.; Malau-Aduli, A.E.O. Effect of Level of Spirulina Supplementation on the Fatty Acid Compositions of Adipose, Muscle, Heart, Kidney and Liver Tissues in Australian Dual-Purpose Lambs. Ann. Anim. Sci. 2015, 15, 945–960. [Google Scholar] [CrossRef] [Green Version]
Protein Source | Soybean Meal | Faba Beans | Pumpkin Seed Cake | Spirulina |
---|---|---|---|---|
Proximate contents (g/kg DM) | ||||
DM (g/kg wet weight) | 882 | 864 | 925 | 945 |
Organic matter | 932 | 954 | 889 | 917 |
Crude protein | 536 | 275 | 623 | 710 |
Ether extract | 16.1 | 21.6 | 90.1 | 67.6 |
Neutral detergent fiber | 131 | 398 | 139 | n.a. |
Acid detergent fiber | 94 | 198 | 111 | n.a. |
Gross energy (MJ/kg DM) | 19.6 | 18.5 | 20.7 | 22.1 |
Crude protein fractions (g/100 g crude protein) 1 | ||||
A | 8.3 | 25.1 | 10.1 | 9.4 |
B1 | 6.5 | 43.6 | 19.6 | 91.6 |
B2 | 82.1 | 17.5 | 68.7 | |
B3 | 2.5 | 12.5 | 1.1 | |
C | 0.74 | 1.20 | 0.68 | |
FA (g/100 g total FA) | ||||
C12:0 | 0.12 | 2.46 | 0.02 | 0.17 |
C14:0 | 0.16 | 0.69 | 0.12 | 0.11 |
C16:0 | 15.6 | 13.5 | 13.2 | 44.4 |
C16 iso | 0.05 | 0.09 | 0.03 | 1.43 |
C16:1 n–7 | 0.15 | 0.39 | 0.15 | 3.37 |
C17:0 | 0.16 | 0.16 | 0.05 | 0.13 |
C16:2 | 0.00 | 0.00 | 0.00 | 0.31 |
C17:1 | 0.07 | 0.04 | 0.02 | 0.16 |
C18:0 | 3.96 | 2.76 | 4.95 | 1.05 |
C16:4 | 0.00 | 0.00 | 0.00 | 0.24 |
C18:1 trans-11 | 0.00 | 0.00 | 0.00 | 0.00 |
C18:1 cis-9 | 18.7 | 28.5 | 29.60 | 1.68 |
C18:1 cis-11 | 1.79 | 0.36 | 0.82 | 0.31 |
C18:1 cis-12 | 0.00 | 0.00 | 0.00 | 0.00 |
C18:2 n–6 cis | 51.0 | 45.0 | 49.0 | 18.6 |
C18:3 n–6 | 0.00 | 0.04 | 0.00 | 26.66 |
C18:3 n–3 | 6.37 | 2.95 | 0.63 | 0.05 |
C20:0 | 0.29 | 1.05 | 0.39 | 0.06 |
C20:1 n–9 | 0.23 | 0.51 | 0.11 | 0.06 |
C20:2 n–6 | 0.07 | 0.11 | 0.08 | 0.25 |
C20:4 n–6 | 0.00 | 0.00 | 0.00 | 0.07 |
C22:0 | 0.35 | 0.43 | 0.18 | 0.00 |
C20:5 n–3 | 0.06 | 0.04 | 0.09 | 0.03 |
C23:0 | 0.11 | 0.12 | 0.06 | 0.05 |
C22:2 | 0.19 | 0.06 | 0.15 | 0.00 |
C24:0 | 0.23 | 0.21 | 0.15 | 0.03 |
∑ Saturated FA | 21.2 | 21.8 | 19.2 | 47.6 |
∑ Monounsaturated FA | 21.1 | 30.0 | 30.8 | 5.9 |
∑ Polyunsaturated FA | 57.7 | 48.2 | 50.0 | 46.5 |
∑ n–3 | 6.43 | 2.99 | 0.73 | 0.08 |
∑ n–6 | 51.0 | 45.2 | 49.1 | 45.9 |
n–6/n–3 FA | 8 | 15 | 67 | 574 |
Feed | Grass Silage | Maize Silage | Concentrates | ||||||
---|---|---|---|---|---|---|---|---|---|
1–26 1 | 27–40 1 | 1–10 1 | 11–40 1 | SB | FB | PS | SP | NP | |
n | 10 | 5 | 2 | 9 | 3 | 3 | 3 | 3 | 3 |
Ingredients (g/kg DM) | |||||||||
Soybean meal | 277 | - | - | - | - | ||||
Faba beans | - | 748 | - | - | - | ||||
Pumpkin seed cake | - | - | 227 | - | - | ||||
Spirulina powder | - | - | - | 198 | - | ||||
Wheat grain | 450 | 171 | 500 | 516 | 450 | ||||
Maize grain | 237 | 45 | 248 | 250 | 225 | ||||
Wheat bran | 11 | - | - | - | 300 | ||||
Molasses | 20 | 20 | 20 | 20 | 20 | ||||
Tallow-lard mixture | 5 | 16 | 5 | 16 | 5 | ||||
Proximate contents (g/kg DM) | |||||||||
DM (g/kg wet weight) | 360 | 558 | 397 | 318 | 882 | 870 | 882 | 881 | 878 |
Organic matter | 864 | 876 | 966 | 962 | 968 | 964 | 961 | 971 | 967 |
Crude protein | 183 | 168 | 69 | 81 | 228 | 238 | 225 | 214 | 135 |
Ether extract | 37.0 | 26.1 | 31.3 | 29.4 | 26.0 | 31.4 | 48.6 | 47.4 | 34.7 |
Neutral detergent fiber | 477 | 512 | 414 | 471 | 464 | 473 | 459 | n.a. | 461 |
Acid detergent fiber | 344 | 333 | 270 | 311 | 105 | 137 | 93 | n.a. | 128 |
Acid detergent lignin | 50.2 | 56.4 | 44.2 | 39.5 | n.a. | n.a. | n.a. | n.a. | n.a. |
Gross energy (MJ/kg DM) | 17.6 | 17.9 | 18.2 | 18.4 | 18.6 | 18.5 | 18.8 | 19.0 | 18.4 |
Metabolizable energy (MJ/ kg DM) | 8.3 | 7.8 | 10.3 | 10.0 | 13.5 | 12.5 | 13.5 | 13.3 | 12.8 |
APDE (g/kg DM) | 67 | 78 | 61 | 62 | 155 | 109 | - 2 | - 2 | 105 |
APDN (g/kg DM) | 115 | 80 | 41 | 50 | 171 | 153 | - 2 | - 2 | 94 |
FA (g/100 g total FA) | |||||||||
n | 3 | 3 | 2 | 3 | 2 | 2 | 2 | 2 | 2 |
C14:0 | 0.66 | 0.50 | 0.18 | 0.22 | 0.55 | 1.35 | 0.49 | 1.02 | 0.50 |
C16:0 | 15.0 | 16.2 | 13.2 | 13.1 | 16.6 | 19.7 | 15.7 | 24.6 | 16.6 |
C16:0 iso | 1.96 | 1.85 | 0.13 | 0.17 | 0.09 | 0.14 | 0.06 | 0.37 | 0.11 |
C16:1 n-7 | 0.23 | 0.22 | 0.17 | 0.18 | 0.56 | 1.30 | 0.49 | 1.62 | 0.52 |
C17:0 | 0.14 | 0.16 | 0.11 | 0.13 | 0.22 | 0.46 | 0.18 | 0.36 | 0.21 |
C18:0 | 1.15 | 1.43 | 2.11 | 2.04 | 4.77 | 9.54 | 5.40 | 7.23 | 3.98 |
C18:1 trans-11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.19 | 0.50 | 0.16 | 0.39 | 0.17 |
C18:1 cis-9 | 1.8 | 2.4 | 24.6 | 23.9 | 24.9 | 30.8 | 27.6 | 23.2 | 22.9 |
C18:1 cis-11 | 0.43 | 0.40 | 0.64 | 0.66 | 1.07 | 1.04 | 0.96 | 1.00 | 0.95 |
C18:1 cis-12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.06 | 0.02 | 0.04 | 0.02 |
C18:2 n–6 cis | 13.2 | 15.1 | 52.4 | 50.0 | 45.8 | 29.6 | 45.0 | 32.3 | 48.5 |
C18:3 n–6 | 0.23 | 0.14 | 0.04 | 0.05 | 0.02 | 0.03 | 0.02 | 2.52 | 0.03 |
C18:3 n–3 | 61.2 | 57.9 | 3.4 | 6.7 | 2.8 | 2.0 | 1.6 | 2.6 | 3.0 |
C20:0 | 0.36 | 0.57 | 0.61 | 0.51 | 0.29 | 0.57 | 0.33 | 0.23 | 0.25 |
C20:1 n–9 | 0.36 | 0.22 | 0.31 | 0.37 | 0.45 | 0.49 | 0.33 | 0.39 | 0.54 |
C20:4 n–6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.01 | 0.03 | 0.02 |
C22:0 | 0.78 | 0.72 | 0.36 | 0.32 | 0.18 | 0.23 | 0.16 | 0.10 | 0.16 |
C20:5 n–3 | 0.04 | 0.09 | 0.11 | 0.06 | 0.04 | 0.02 | 0.12 | 0.10 | 0.10 |
C24:0 | 0.66 | 0.60 | 0.50 | 0.52 | 0.17 | 0.13 | 0.15 | 0.10 | 0.17 |
∑ Saturated FA | 21.4 | 22.8 | 17.5 | 17.5 | 23.2 | 32.7 | 22.8 | 34.3 | 22.2 |
∑ Monounsaturated FA | 3.6 | 3.8 | 26.3 | 25.5 | 28.0 | 35.5 | 30.2 | 27.8 | 25.9 |
∑ Polyunsaturated FA | 75.0 | 73.4 | 56.3 | 57.0 | 48.8 | 31.8 | 47.0 | 37.9 | 51.9 |
∑ n–3 FA | 61.4 | 58.0 | 3.6 | 6.8 | 2.8 | 2.0 | 1.7 | 2.7 | 3.1 |
∑ n–6 FA | 13.6 | 15.3 | 52.5 | 50.1 | 45.9 | 29.8 | 45.1 | 35.0 | 48.7 |
n–6/n–3 FA | 0.2 | 0.3 | 14.6 | 7.4 | 16.4 | 14.9 | 26.5 | 13.0 | 15.7 |
Proximate Contents (g/kg DM) | Complete Diets | ||||
---|---|---|---|---|---|
SB | FB | PS | SP | NP | |
Organic matter | 916 | 916 | 915 | 917 | 916 |
Crude protein | 158 | 160 | 157 | 155 | 139 |
Ether extract | 30.8 | 31.8 | 35.3 | 35.0 | 32.5 |
Neutral detergent fiber | 475 | 476 | 474 | n.a. | 474 |
Acid detergent fiber | 281 | 288 | 279 | 279 | 286 |
Gross energy (MJ/kg DM) | 18.1 | 18.1 | 18.1 | 18.2 | 18.0 |
Metabolizable energy (MJ/kg DM) | 9.8 | 9.6 | 9.8 | 9.8 | 9.7 |
APDE (g/kg DM) | 85 | 76 | - | - | 75 |
APDN (g/kg DM) | 100 | 96 | - | - | 85 |
Concentrate | SB | FB | PS | SP | NP | SEM | p-Value |
---|---|---|---|---|---|---|---|
Average fattening period (days) | 245 | 246 | 253 | 253 | 245 | 11.5 | 0.837 |
Age at start (months) 1 | 4.4 | 4.4 | 4.4 | 4.2 | 4.3 | 0.22 | 0.860 |
Body weight (kg) | |||||||
Initial (start of experiment) | 164 | 165 | 161 | 164 | 166 | 8.28 | 0.971 |
At slaughter | 518 | 522 | 524 | 518 | 510 | 5.82 | 0.428 |
Average weight gain (kg/day) | 1.45 | 1.46 | 1.44 | 1.40 | 1.41 | 0.047 | 0.771 |
DM intake (DMI; kg/day) | |||||||
Total | 6.79 | 6.85 | 7.02 | 6.96 | 6.98 | 0.217 | 0.845 |
Silage | 5.43 | 5.50 | 5.60 | 5.56 | 5.58 | 0.178 | 0.872 |
Concentrate | 1.36 | 1.35 | 1.42 | 1.40 | 1.40 | 0.045 | 0.647 |
Feed conversion ratio (kg DMI/kg gain) | 4.69 | 4.69 | 4.88 | 4.94 | 4.98 | 0.207 | 0.467 |
Hot carcass weight (kg) | 278 | 279 | 287 | 278 | 276 | 5.26 | 0.318 |
Dressing percentage | 53.7 | 53.4 | 54.8 | 53.6 | 54.0 | 0.59 | 0.532 |
Conformation score 2 | 3.7 | 3.9 | 4.4 | 3.7 | 3.7 | 0.30 | 0.220 |
Fat cover score 3 | 2.4 | 1.7 | 2.3 | 1.8 | 2.3 | 0.44 | 0.406 |
Organ weights (g/kg carcass weight) | |||||||
Heart | 6.58 | 6.80 | 6.64 | 7.00 | 7.03 | 0.301 | 0.279 |
Liver | 21.6 | 22.2 | 21.0 | 20.7 | 20.8 | 0.68 | 0.106 |
Spleen | 3.77 | 3.52 | 3.26 | 3.86 | 3.44 | 0.292 | 0.078 |
Kidneys | 3.75 | 3.76 | 3.49 | 3.61 | 3.78 | 0.650 | 0.491 |
Perirenal fat (g/kg carcass weight) | 14.0 | 13.3 | 15.3 | 17.6 | 12.1 | 3.12 | 0.183 |
Concentrate (C) | SB | FB | PS | SP | NP | SEM | p-Values | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH24 h postmortem | 5.63 | 5.67 | 5.81 | 5.75 | 5.64 | 0.109 | 0.515 | |||||||
Temperature24 h postmortem (°C) | 5.68 | 5.62 | 5.37 | 5.57 | 5.38 | 0.15 | 0.475 | |||||||
Chemical composition (g/kg) | ||||||||||||||
Moisture | 739 | 754 | 748 | 751 | 750 | 4.9 | 0.127 | |||||||
Protein | 232 | 223 | 222 | 225 | 228 | 3.7 | 0.141 | |||||||
Fat (Ether extract) | 8.91 | 8.27 | 8.42 | 8.01 | 8.45 | 2.047 | 0.995 | |||||||
Ash 1 | 12.3 | 13.2 | 12.4 | 12.3 | 14.3 | 0.93 | 0.076 | |||||||
Oxidative stability (h) | 4.12 | 4.14 | 3.49 | 4.68 | 4.6 | 1.28 | 0.641 | |||||||
Ageing Period in Days (A) | 7 | 21 | 7 | 21 | 7 | 21 | 7 | 21 | 7 | 21 | C | A | C × A | |
Water holding capacity (%) | ||||||||||||||
Aging loss | 1.33 | 1.61 | 1.26 | 1.40 | 1.29 | 1.35 2 | 1.37a | 1.95b | 1.41 | 1.72 2 | 0.258 | 0.510 | 0.003 | 0.377 |
Drip loss | 1.14 | 1.04 | 0.97 | 0.96 | 0.79 | 0.94 | 1.02 | 1.08 | 0.93 | 0.890 | 0.181 | 0.625 | 0.850 | 0.798 |
Cooking loss | 23.7 | 24.8 | 24.0 | 23.4 | 22.9 | 19.2 2 | 25.7 | 25.9 | 24.9 | 22.0 | 2.58 | 0.075 | 0.244 | 0.495 |
Color | ||||||||||||||
L* (lightness) | 39.8 a | 42.0 b | 40.7 | 41.9 | 38.0 a | 40.3 b | 40.5 | 40.8 | 40.1 | 41.6 | 1.26 | 0.298 | <0.001 | 0.266 |
a* (redness) | 15.6 a | 16.7 b | 15.9 a | 16.9 b | 14.2 a | 16.2 b | 15.3 | 15.8 | 15.3 a | 16.6 b | 0.97 | 0.667 | <0.001 | 0.092 |
b* (yellowness) | 11.6 a | 13.6 b | 12.2 | 13.6 | 10.7 a | 12.5 b | 12.0 | 12.6 | 11.3 a | 13.4 b | 0.7 | 0.418 | <0.001 | 0.356 |
Shear force (N) 1 | 100.9 b | 77.4 a | 89.3 b | 64.7 a | 97.6 b | 69.8 a 2 | 98.0 b | 70.7 a | 100.4 b | 72.7 a | 7.68 | 0.505 | <0.001 | 0.805 |
FA (g/100 g Total FA) 1 | SB | FB | PS | SP | NP | SEM | p-Value |
---|---|---|---|---|---|---|---|
C14:0 | 2.10 | 1.70 | 1.73 | 1.88 | 1.84 | 0.217 | 0.866 |
C14:1 2 | 0.48 | 0.39 | 0.38 | 0.36 | 0.37 | 0.151 | 0.871 |
C15:0 | 0.44 | 0.43 | 0.43 | 0.43 | 0.44 | 0.030 | 0.984 |
C15:0 iso | 0.21 | 0.20 | 0.19 | 0.20 | 0.21 | 0.015 | 0.641 |
C16:0 | 24.1 | 23.4 | 23.7 | 23.9 | 23.1 | 0.94 | 0.838 |
C16:0 iso | 0.21 b | 0.20 ab | 0.17 a | 0.20 ab | 0.18 ab | 0.009 | 0.031 |
C16:1 2 | 3.30 | 2.93 | 2.79 | 3.04 | 2.83 | 0.526 | 0.728 |
C16:1x | 0.51 | 0.48 | 0.43 | 0.46 | 0.47 | 0.043 | 0.420 |
C17:0 | 0.79 | 0.82 | 0.75 | 0.75 | 0.79 | 0.061 | 0.829 |
C17:1 2 | 0.13 | 0.12 | 0.16 | 0.23 | 0.15 | 0.070 | 0.688 |
C17:0 anteiso | 0.21 | 0.24 | 0.29 | 0.15 | 0.15 | 0.086 | 0.384 |
C18:0 | 15.5 | 15.2 | 15.0 | 15.2 | 15.7 | 1.02 | 0.677 |
C18:1 trans-9 | 0.21 | 0.22 | 0.21 | 0.19 | 0.19 | 0.018 | 0.371 |
C18:1 trans-11 | 1.04 | 0.84 | 0.91 | 0.92 | 1.11 | 0.092 | 0.058 |
C18:1 trans-12 | 0.21 | 0.20 | 0.22 | 0.20 | 0.22 | 0.017 | 0.636 |
C18:1 cis-9 | 33.3 | 33.8 | 32.7 | 32.9 | 30.0 | 1.94 | 0.319 |
C18:1 cis-11 | 1.42 | 1.46 | 1.45 | 1.51 | 1.48 | 0.101 | 0.924 |
C18:1 cis-12 | 0.21 a | 0.22 ab | 0.29 b | 0.21 a | 0.28 ab | 0.026 | 0.015 |
C18:1 cis-13 | 0.20 | 0.21 | 0.20 | 0.19 | 0.18 | 0.035 | 0.870 |
C18:2 trans-11, cis-15 2 | 0.20 | 0.18 | 0.17 | 0.18 | 0.20 | 0.024 | 0.309 |
C18:2 n–6 cis 2 | 5.93 | 6.20 | 7.38 | 6.43 | 8.70 | 1.613 | 0.319 |
C18:3 n–6 2 | 0.11 | 0.20 | 0.10 | 0.15 | 0.08 | 0.085 | 0.521 |
C18:3 n–3 2 | 1.91 | 2.16 | 2.11 | 2.26 | 2.78 | 0.527 | 0.491 |
C18:2 cis-9, trans-11 | 0.32 | 0.27 | 0.29 | 0.27 | 0.33 | 0.028 | 0.310 |
C20:3 n–6 | 0.44 | 0.50 | 0.58 | 0.56 | 0.53 | 0.096 | 0.741 |
C20:4 n–6 2 | 2.10 | 2.29 | 2.52 | 2.41 | 2.66 | 0.411 | 0.844 |
C20:5 n–3 2 | 0.77 | 1.03 | 0.96 | 1.00 | 1.05 | 0.200 | 0.775 |
C22:4 n–6 | 0.19 | 0.19 | 0.21 | 0.20 | 0.21 | 0.027 | 0.884 |
C22:5 n–3 2 | 1.31 | 1.49 | 1.55 | 1.47 | 1.57 | 0.232 | 0.900 |
C22:6 n–3 2 | 0.20 | 0.25 | 0.22 | 0.21 | 0.21 | 0.068 | 0940 |
∑ Saturated FA | 44.4 | 43.0 | 43.1 | 43.5 | 43.1 | 1.35 | 0.846 |
∑ Monounsaturated FA | 41.8 | 41.7 | 40.5 | 41.0 | 38.2 | 2.24 | 0.496 |
∑ Polyunsaturated FA 2 | 13.8 | 15.2 | 16.4 | 15.5 | 18.7 | 3.08 | 0.630 |
∑ n–3 FA 2 | 4.36 | 5.13 | 5.02 | 5.13 | 5.84 | 0.973 | 0.765 |
∑ n–6 FA 2 | 8.8 | 9.5 | 10.8 | 9.8 | 12.3 | 2.14 | 0.519 |
n–6/n–3 FA 2 | 2.02 abc | 1.85a | 2.15 c | 1.91 ab | 2.11bc | 0.077 | 0.002 |
Atherogenicity index | 0.59 | 0.54 | 0.55 | 0.56 | 0.54 | 0.088 | 0.762 |
Thrombogenicity index | 1.03 | 0.96 | 0.96 | 0.97 | 0.93 | 0.080 | 0.812 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keller, M.; Reidy, B.; Scheurer, A.; Eggerschwiler, L.; Morel, I.; Giller, K. Soybean Meal Can Be Replaced by Faba Beans, Pumpkin Seed Cake, Spirulina or Be Completely Omitted in a Forage-Based Diet for Fattening Bulls to Achieve Comparable Performance, Carcass and Meat Quality. Animals 2021, 11, 1588. https://doi.org/10.3390/ani11061588
Keller M, Reidy B, Scheurer A, Eggerschwiler L, Morel I, Giller K. Soybean Meal Can Be Replaced by Faba Beans, Pumpkin Seed Cake, Spirulina or Be Completely Omitted in a Forage-Based Diet for Fattening Bulls to Achieve Comparable Performance, Carcass and Meat Quality. Animals. 2021; 11(6):1588. https://doi.org/10.3390/ani11061588
Chicago/Turabian StyleKeller, Magdalena, Beat Reidy, Andreas Scheurer, Lukas Eggerschwiler, Isabelle Morel, and Katrin Giller. 2021. "Soybean Meal Can Be Replaced by Faba Beans, Pumpkin Seed Cake, Spirulina or Be Completely Omitted in a Forage-Based Diet for Fattening Bulls to Achieve Comparable Performance, Carcass and Meat Quality" Animals 11, no. 6: 1588. https://doi.org/10.3390/ani11061588
APA StyleKeller, M., Reidy, B., Scheurer, A., Eggerschwiler, L., Morel, I., & Giller, K. (2021). Soybean Meal Can Be Replaced by Faba Beans, Pumpkin Seed Cake, Spirulina or Be Completely Omitted in a Forage-Based Diet for Fattening Bulls to Achieve Comparable Performance, Carcass and Meat Quality. Animals, 11(6), 1588. https://doi.org/10.3390/ani11061588