In Vitro Neutral Detergent Cellulase Method and Chemical Composition to Predict In Vivo Fermentable Organic Matter of Roughages
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Chemical Analysis
2.3. In Situ Nylon Bag Technique
2.4. In Vitro Neutral Detergent-Cellulase Plus Amylase Method
2.5. Statistical Analysis
3. Results
3.1. Chemical Compositions of Roughages
3.2. In Situ Organic Matter Degradation
3.3. In Situ Organic Matter Disappearance Rate
3.4. Prediction Equations of FOMin situ Based on Chemical Composition
3.5. Comparison of FOMNDC and FOMin situ
3.6. Correlation Analysis between FOMNDC and FOMin situ of Forages, Crop Residues, and Roughages
3.7. Prediction Equations of FOMNDC Based on Chemical Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gosselink, J.M.J.; Dulphy, J.P.; Poncet, C.; Jailler, M.; Tamminga, S.; Cone, J.W. Prediction of forage digestibility in ruminants using in situ and in vitro techniques. Anim. Feed. Sci. Technol. 2004, 115, 227–246. [Google Scholar] [CrossRef]
- Pagella, J.H.; Mayes, R.W.; Pérez-Barbería, F.J.; Ørskov, E.R. The development of an intraruminal nylon bag technique using non-fistulated animals to assess the rumen degradability of dietary plant materials. Animals 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitessa, S.; Irish, G.G.; Flinn, P.C. Comparison of methods used to predict the in vivo digestibility of feeds in ruminants. Aust. J. Agric. Res. 1999, 50, 825–841. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.I.H.; Theodorou, M.K. Enzyme techniques for estimating digestibility. Forage Eval. Rumin. Nutr. 2000, 155–173. [Google Scholar] [CrossRef]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. J. Brit. Forageland. Soc. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Aufrerre, J.; Michalet-Doreau, B. Comparison of methods for predicting digestibility of feeds. Anim. Feed. Sci. Technol. 1988, 20, 203–218. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Fonseca, A.J.M.; Dias-da-Silva, A.A.; Orskov, E.R. In sacco degradation characteristics as predictors of digestibility and voluntary intake of roughages by mature ewes. Anim. Feed. Sci. Technol. 1998, 72, 205–219. [Google Scholar] [CrossRef]
- Morgan, D.J.; Stakelum, G. The Prediction of the Digestibility of Herbage for Dairy Cows. Irish J. Agr. Food. Res. 1987, 26, 23–34. Available online: https://www.jstor.org/stable/25556174 (accessed on 1 August 2018).
- Dowman, M.G.; Collins, F.C. The Use of Enzymes to Predict the Digestibility of Animal Feeds. J. Sci. Food Agric. 1982, 33, 689–696. [Google Scholar] [CrossRef]
- Steg, A.; Spoelstra, S.F.; Van der Meer, J.M.; Hindle, V.A. Digestibility of grass silage. Neth. J. Agric. Sci. 1990, 38, 407–422. [Google Scholar] [CrossRef]
- Tamminga, S.; Van Straalen, W.M.; Subnel, A.P.J.; Meijer, R.G.M.; Steg, A.; Wever, C.J.G.; Blok, M.C. The dutch protein evaluation system: The DVE/OEB-system. Livest. Prod. Sci. 1994, 40, 139–155. [Google Scholar] [CrossRef]
- Wang, F.; Li, D.Y.; Meng, Q.X. Technical note: A special apparatus for facilitating the in situ nylon bag measurement of the ruminal degradation of feedstuffs in cattle. J. Anim. Sci. 2016, 94, 3457–3463. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- NRC (National Research Council). Nutrient Requirements of Beef Cattle, 7th ed.; National Academy of Sciences: Washington, DC, USA, 2000. [Google Scholar]
- Orskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, Z.M.; Ludwin, J.; Górka, P.; Rinne, M.; Weisbjerg, M.R.; Jagusiak, W. The use of cellulase and filter bag technique to predict digestibility of forages. Anim. Feed. Sci. Technol. 2014, 198, 49–56. [Google Scholar] [CrossRef]
- Keady, T.; Lively, F.O.; Kilpatrick, D.J.; Moss, B.W. Effects of replacing grass silage with either maize or whole-crop wheat silages on the performance and meat quality of beef cattle offered two levels of concentrates. J. Anim. Sci. 2007, 1, 613–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krizsan, S.J.; Nyholm, L.; Nousiainen, J.; Südekum, K.H.; Huhtanen, P. Comparison of in vitro and in situ methods in evaluation of forage digestibility in ruminants. J. Anim. Sci. 2012, 90, 3162–3173. [Google Scholar] [CrossRef] [PubMed]
- Huhtanen, P.; Nousiainen, J.; Rinne, M. Recent developments in forage evaluation with special reference to practical applications. Agric. Food. Sci. 2006, 15, 293–323. [Google Scholar] [CrossRef] [Green Version]
- Nousiainen, J.; Ahvenjärvi, S.; Rinne, M.; Hellämäki, M.; Huhtanen, P. Prediction of indigestible cell wall fraction of grass silage by near infrared reflectance spectroscopy. Anim. Feed. Sci. Technol. 2004, 115, 295–311. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: New York, NY, USA, 1982. [Google Scholar]
- Givens, D.I.; Moss, A.R.; Adamson, A.H. Influence of growth stage and season on the energy value of fresh herbage. 1. changes in metabolizable energy content. Grass. Forage Sci. 1993, 48, 166–174. [Google Scholar] [CrossRef]
Item | Roughages | DM | OM | EE | CP | CF | NDF | ADF | Ash | NFE |
---|---|---|---|---|---|---|---|---|---|---|
Forages | Langsdorff small reed | 93.28 | 94.67 | 0.84 | 5.94 | 38.25 | 74.88 | 42.66 | 5.33 | 42.91 |
Alfalfa | 92.40 | 94.10 | 0.65 | 18.40 | 29.03 | 42.60 | 34.43 | 5.90 | 42.17 | |
Mixed forage | 92.62 | 91.15 | 2.02 | 14.85 | 22.19 | 45.43 | 25.15 | 8.85 | 44.71 | |
Lolium perenne | 91.01 | 95.36 | 0.68 | 6.85 | 32.16 | 61.84 | 37.91 | 4.64 | 44.69 | |
Poa annua L. | 93.29 | 93.03 | 1.47 | 14.59 | 30.36 | 69.08 | 33.85 | 6.97 | 39.90 | |
Alpine kobresia | 92.80 | 95.73 | 1.27 | 12.80 | 34.80 | 73.82 | 36.17 | 4.27 | 39.67 | |
Mean | 92.57 | 94.00 | 1.16 a | 12.24 a | 31.13 b | 61.28 b | 35.03 b | 6.00 | 42.68 a | |
Crop residues | Oat straw | 93.08 | 90.56 | 0.81 | 12.56 | 35.48 | 68.84 | 40.75 | 9.44 | 34.80 |
Hulless barley straw | 92.52 | 92.53 | 0.63 | 4.13 | 41.22 | 82.64 | 51.47 | 7.47 | 39.07 | |
Rapeseed straw | 91.27 | 91.96 | 1.46 | 9.96 | 48.26 | 70.65 | 52.20 | 8.04 | 23.55 | |
Avena nuda straw | 93.14 | 94.01 | 0.67 | 2.04 | 45.24 | 79.91 | 51.81 | 5.99 | 39.20 | |
Corn straw | 92.42 | 95.20 | 0.36 | 3.05 | 39.67 | 79.86 | 47.75 | 4.80 | 44.55 | |
Barley straw | 92.80 | 95.84 | 0.57 | 5.40 | 29.46 | 57.40 | 33.09 | 4.16 | 53.20 | |
Mean | 92.54 | 93.35 | 0.75 b | 6.19 b | 39.89 a | 73.22 a | 46.18 a | 6.65 | 39.06 b | |
SEM 1 | Forage vs. Crop residues | 0.34 | 0.59 | 0.15 | 1.42 | 1.95 | 3.79 | 2.15 | 0.59 | 0.14 |
p value | Forage vs. Crop residues | 0.94 | 0.27 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.27 | <0.01 |
Item | Roughages | a, % | b, % | c, %h | FOMin situ, % 1 |
---|---|---|---|---|---|
Forages | Langsdorff small reed | 20.84 | 54.16 | 0.017 | 30.55 |
Alfalfa | 24.48 | 58.03 | 0.045 | 41.13 | |
Mix forage | 21.22 | 52.65 | 0.029 | 64.36 | |
Lolium perenne | 21.33 | 50.90 | 0.022 | 47.33 | |
Poa annua L. | 20.06 | 50.77 | 0.020 | 50.9 | |
Alpine kobresia | 19.01 | 52.44 | 0.010 | 41.02 | |
Mean | 21.16 a | 53.16 a | 0.024 a | 45.88 a | |
Crop residues | Oat straw | 20.61 | 48.36 | 0.018 | 38.85 |
Hulless barley straw | 19.05 | 49.43 | 0.016 | 27.51 | |
Rapeseed straw | 19.37 | 48.40 | 0.019 | 29.79 | |
Avena nuda straw | 19.93 | 48.43 | 0.017 | 26.14 | |
Corn straw | 19.25 | 50.90 | 0.012 | 33.72 | |
Barley straw | 19.90 | 50.48 | 0.010 | 49.26 | |
Mean | 19.69 b | 49.33 b | 0.015 b | 34.21 b | |
SEM 2 | Forages vs. Crop residues | 0.48 | 0.70 | 0.003 | 3.37 |
p value | Forages vs. Crop residues | <0.01 | <0.01 | 0.01 | <0.01 |
Item | Regression Equation 1 | R2 | p-Value | RMSE 2 |
---|---|---|---|---|
1 | FOMin situ = 88.85 − 1.40 CF | 0.84 | <0.01 | 4.76 |
2 | FOMin situ = 89.52 − 1.22 ADF | 0.87 | <0.01 | 4.25 |
3 | FOMin situ = 78.62 + 6.67 EE − 1.27 CF | 0.92 | <0.01 | 3.65 |
4 | FOMin situ = 89.79 + 5.44 EE − 0.44 CP − 1.26 ADF | 0.92 | <0.01 | 3.90 |
5 | FOMin situ = 84.80 + 8.56 EE − 0.39 CP − 0.64 CF | 0.93 | <0.01 | 3.48 |
Item 1 | Roughages | FOMNDC 1 | CV 2 | FOMin situ 3 | CV | SEM 4 | p-Value |
---|---|---|---|---|---|---|---|
Forages | Langsdorff small reed | 28.76 | 1.83 | 30.55 | 12.99 | 1.63 | 0.48 |
Alfalfa | 47.77 a | 1.64 | 41.13 b | 6.56 | 1.15 | 0.02 | |
Mixed forage | 71.43 | 1.73 | 64.36 | 9.09 | 2.44 | 0.11 | |
Lolium perenne | 45.70 | 4.30 | 47.33 | 4.91 | 1.24 | 0.41 | |
Poa annua | 43.96 | 2.70 | 50.90 | 12.76 | 2.69 | 0.14 | |
Alpine kobresia | 41.99 | 1.69 | 41.02 | 9.29 | 1.58 | 0.69 | |
Crop residues | Oat straw | 38.49 | 3.80 | 38.85 | 13.44 | 2.21 | 0.91 |
Hulless barley straw | 21.60 | 3.61 | 27.51 | 17.99 | 2.04 | 0.11 | |
Rapeseed straw | 31.96 | 4.36 | 29.79 | 5.48 | 0.88 | 0.15 | |
Avena nuda straw | 23.86 | 4.24 | 26.14 | 5.68 | 0.73 | 0.09 | |
Corn straw | 32.44 | 5.41 | 33.72 | 9.38 | 1.48 | 0.57 | |
Barley straw | 46.83 | 3.23 | 49.26 | 7.34 | 1.60 | 0.34 |
Item | Regression Equation 1 | R2 | p-Value | RMSE 2 |
---|---|---|---|---|
1 | FOMNDC = 96.31 − 1.60 CF | 0.79 | <0.01 | 6.51 |
2 | FOMNDC = 81.99 + 9.32 EE − 0.76 NDF | 0.83 | < 0.01 | 6.10 |
3 | FOMNDC = 96.83 − 1.41 ADF | 0.84 | <0.01 | 5.59 |
4 | FOMNDC = 88.74 + 10.82 EE − 0.34 CP − 0.84 NDF | 0.84 | <0.01 | 6.33 |
5 | FOMNDC = 85.47 + 5.79 EE − 1.27 ADF | 0.88 | <0.01 | 5.18 |
6 | FOMNDC = 86.20 + 5.96 EE − 0.04 CP − 1.28 ADF | 0.88 | <0.01 | 5.49 |
7 | FOMNDC = 80.73 + 9.03 EE + 0.02 CP − 1.41 CF | 0.89 | <0.01 | 5.31 |
8 | FOMNDC = 80.98 + 9.10 EE − 1.41 CF | 0.89 | <0.01 | 5.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Li, R.; Wu, H.; Meng, Q.; Khan, M.Z.; Zhou, Z. In Vitro Neutral Detergent Cellulase Method and Chemical Composition to Predict In Vivo Fermentable Organic Matter of Roughages. Animals 2021, 11, 1594. https://doi.org/10.3390/ani11061594
Liu Y, Li R, Wu H, Meng Q, Khan MZ, Zhou Z. In Vitro Neutral Detergent Cellulase Method and Chemical Composition to Predict In Vivo Fermentable Organic Matter of Roughages. Animals. 2021; 11(6):1594. https://doi.org/10.3390/ani11061594
Chicago/Turabian StyleLiu, Yue, Rui Li, Hao Wu, Qingxiang Meng, Muhammad Zahoor Khan, and Zhenming Zhou. 2021. "In Vitro Neutral Detergent Cellulase Method and Chemical Composition to Predict In Vivo Fermentable Organic Matter of Roughages" Animals 11, no. 6: 1594. https://doi.org/10.3390/ani11061594
APA StyleLiu, Y., Li, R., Wu, H., Meng, Q., Khan, M. Z., & Zhou, Z. (2021). In Vitro Neutral Detergent Cellulase Method and Chemical Composition to Predict In Vivo Fermentable Organic Matter of Roughages. Animals, 11(6), 1594. https://doi.org/10.3390/ani11061594